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THE POLISH TOPOLOGY OF ERDŐS SPACE

JAN VAN MILL

Abstract. We show that Erdős space E is Polishable and prove
that E with its Polish topology is homeomorphic to complete Erdős
space.

1. Introduction

A topological group is Polishable if it admits a stronger Polish topology
that is compatible with its group structure. If a topological group is
Polishable then it is obviously Borel. But this is not sufficient, see Becker
and Kechris [1, p. 12]. If a topological group is Polishable, then its Polish
topology is unique; see Kechris [8, Theorem 9.10]. Hence the property of
being Polishable is an intrinsic property of the topological group we are
interested in. The reader can find more information on Polishable groups
for example in Solecki [11].

As usual, Q and P denote the sets of rationals and irrationals, respec-
tively.

The aim of this note is to show that Erdős space

E = {x ∈ ℓ2 : (∀n ∈ N)(xn ∈ Q)}

from [6] is Polishable. We will show that E with its Polish topology is
homeomorphic to complete Erdős space

Ec = {x ∈ ℓ2 : (∀n ∈ N)(xn ∈ ({0} ∪ {1/n : n ∈ N})},

which was also considered in [6]. It is known, see [7] (and [2, 3]), that this
space is homeomorphic to {x ∈ ℓ2 : (∀n ∈ N)(xn ∈ P)}.
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2. Erdős spaces

All topological spaces unders discussion are separable and metrizable.
Topological characterization theorems for Ec and E were obtained in

[7, 3, 4]. These papers also contain various “models” for both Ec and E.
Of particular importance here is the main result in [3]:

Theorem 2.1. A nonempty space E is homeomorphic to Ec if and only
if there is a zero-dimensional topology W on E that is coarser than the
given topology on E such that for every x ∈ E and neighborhood U of x in
E there is a neighbourhood V of x in E with V closed in (E,W ), (V,W )
Polish, and V a nowhere dense subset of (U,W ).

3. The Polishability of E

Let Qd stand for the space of the rational numbers endowed with the
discrete topology. We do not change the group structure on Qd. Hence
Q∞

d is a Polish group with its standard operations. Observe that it is
homeomorphic to the space of all irrational numbers. Let d be a complete
metric on Q∞

d generating its topology, and put G = Q∞
d ×ℓ2. The formula

ϱ((x1, y1), (x2, y2)) = d(x1, x2) + ∥y1 − y2∥ ((x1, y1), (x2, y2) ∈ G)

defines an admissible complete metric on G.
Put Es = {x ∈ Q∞

d : ∥x∥ < ∞}. Hence as a set and as a group, Es is
nothing but E. It will be convenient to introduce the following notation.
If x ∈ E, then x̂ denotes x but considered to be an element of Es. Define
i : E → G by

i(x) = (x̂, x) (x ∈ E).

Observe that i is an algebraic imbedding, that π1(i(E))=Es and π2(i(E))=
E, where π1 and π2 are the standard projection maps.

Lemma 3.1. i(E) is a closed subspace of G and hence is a Polish group.

Proof. Let ((x̂(n), x(n)))n be a sequence in i(E) converging to an element
(p, q) ∈ G.

Claim 1. For every j there exists N such that for all n ≥ N we have
x(n)j = x̂(n)j = pj .

This is clear since x̂(n)j → pj and Qd has the discrete topology.

Claim 2. q ∈ E and p = q̂.

Indeed, fix j and let N be as in Claim 1 for j. Observe that x(n)j → qj .
But for all n ≥ N we have x(n)j = pj and so qj = pj ∈ Q. �
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Hence i(E) is a closed subgroup of the Polish group G. From this we
conclude that the formula

ϱ(x, y) = d(x, y) + ∥x− y∥ (x, y ∈ Es)

defines a complete metric compatible with the topological group structure
on Es. Moreover, this topology on Es is clearly stronger than the topology
on E, hence E is Polishable.

Let F ⊆ N be finite, ε > 0, and put

V (F, ε) = {x ∈ Es : (∀n ∈ F )(xn = 0)& (∥x∥ ≤ ε)}.

The collection V of all V (F, ε)’s is a closed neighborhood base at the
neutral element e = (0, 0, . . . ) in Es. Since Es is a topological group,
translates of members from V are closed neighborhood bases at arbitrary
points of Es.

Lemma 3.2. For every V ∈ V and p ∈ Es, p+V is closed in Q∞
d . Hence

every point x of Es has arbitrarily small closed neighborhoods W such that
W is a closed subspace of the zero-dimensional Polish space Q∞

d .

Proof. It clearly suffices to prove the first statement. Fix an arbitrary
finite subset F of N and an arbitrary ε > 0. Observe that

p+ V (F, ε) = {z ∈ Es : (∀n ∈ F )(zn = pn)& ∥z − p∥ ≤ ε}.

Pick an arbitrary element y ∈ U = Q∞
d \ (p + V (F, ε)). If there exists

n ∈ F such that yn ̸= pn, then {z ∈ Q∞
d : zn = yn} is a neighborhood

of y which is contained in U . Assume therefore that yn = pn for all
n ∈ F . Then ∥y− p∥ > ε. Hence there is a finite subset G of N such that∑

n∈G(yn − pn)
2 > ε2. So

{z ∈ Q∞
d : (∀n ∈ F ∪G)(zn = yn)}

is a neighborhood of y which is contained in U , as required. �

Lemma 3.3. Let F ⊆ N be finite, ε > 0 and p ∈ Es. Then in Q∞
d ,

p+ V (F, 1/2ε) is a nowhere dense subset of p+ V (F, ε).

Proof. First observe that by Lemma 3.2, p+ V (F, 1/2ε) is a closed subset
of p+V (F, ε). Pick an arbitrary y ∈ p+V (F, 1/2ε). A basic neighborhood
of y in Q∞

d has the form

U = {z ∈ Q∞
d : (∀n ∈ G)(zn = yn)},

for certain finite G ⊆ N. Put λ =
√∑

n∈G(yn − pn)2. Then 0 ≤ λ ≤ 1/2ε.
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Moreover, let t ∈ Q be such that 1/4ε
2 < λ2 + t2 < ε2. Take an arbitrary

N > max(F ∪G), and define z ∈ Q∞
d as follows:

zn =


yn (n ∈ F ∪G),

t+ pN (n = N),

pn (n ̸∈ F ∪G ∪ {N}).
Since yn = pn for every n ∈ F , we get z ∈ (U ∩ (p + V (F, ε))) \ (p +
V (F, 1/2ε)), as required. �
Corollary 3.4. E is Polishable and E with its Polish topology is home-
omorphic to Ec.

Proof. Apply Lemmas 3.2 and 3.3 and Theorem 2.1. �

4. Examples

The question naturally arises whether all group structures on E that
are compatible with its topology, are Polishable. Such a group structure is
called compatible for short. Similarly, whether E with a compatible Polish
topology is homeomorphic to Ec. It is not surprising that the answers to
these questions are in the negative.

Example 4.1. There is a compatible Abelian group structure on E which
is Polishable and for which E with its Polish topology is homeomorphic
to E∞

c (and hence is not homeomorphic to Ec).

By [4, Corollary 9.4], E is homeomorphic to E∞. Since E is Polishable,
so is E∞ and E∞ with its Polish topology is clearly homeomorphic to E∞

c

(Corollary 3.4). Finally, Ec is not homeomorphic to E∞
c by [5].

Example 4.2. There is a compatible Abelian group structure on E which
is not Polishable.

Let K denote the Cantor group {0, 1}∞. Put

G = {x ∈ K : (∃m)(∀n ≥ m)(xn = 0)}.
Then G is clearly a σ-compact zero-dimensional topological group which
is not Polishable since G is a countable increasing union of compact sub-
groups each with uncountable index, see [1, p. 12]. By [4, Theorem 9.2],
G×E and E are homeomorphic. Since G is not Polishable, G×E is not
Polishable either.

For a space X, let H (X) be the group of all homeomorphisms of X
endowed with the compact-open topology. Moreover, a space X is called
countable dense homogeneous provided that for all countable and dense
subsets D and E of X there is an element f ∈ H (X) such that f(E) = F .
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In [9, p. 150], the following simple necessary criterion for the Polisha-
bility of a topological group was proved. Let G be a Polish group. In
addition, let H be a subgroup of G containing a countable collection B
of subgroups such that

(1) every B ∈ B is closed in H,
(2) for every B ∈ B there are countable subsets AB , A

′
B of H such

that
H =

∩
B∈B

ABB ∩
∩

B∈B

BA′
B

(here closure means closure in G).
Then H is Polishable.

This gives us:

Theorem 4.3. Let X be a connected space which is compact or locally
compact and locally connected. Assume moreover that X is countable
dense homogeneous space, and let D be an arbitrary countable dense subset
of X. Then the subgroup

H (X,D) = {f ∈ H (X) : f(D) = D}
of H (X) is Polishable.

Proof. For every d ∈ D, put Bd = {f ∈ H (X) : f(d) = d}. Then
every Bd is clearly a closed subgroup of the Polish group H (X). For all
d, e ∈ D, pick fd,e in H (X,D) such that fd,e(d) = e, [10]. Put

F = {fd,e : d, e ∈ D};
we denote the subgroup generated by it by A. It is easy to see that

H (X,D) =
∩
d∈D

ABd ∩
∩
d∈D

BdA.

Hence H (X,D) is Polishable by the criterion. �
Let X be a continuum. In many cases, the groups H (X,D) are home-

omorphic to E. This is true for example if X is a topological n-manifold
for some n ≥ 2, a Hilbert cube manifold, or a Menger manifold. See [4,
Chapter 10] for details. It is not clear what the Polish topology on the
groups H (X,D) for such spaces X is. But it can be shown that these
groups with their Polish topologies are not homeomorphic to Ec.
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