Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Covering Tychonoff cubes by topological groups

A.V. Arhangel'skii^a, J. van Mill^b

^a MGU and MPGU, Moscow, Russia

^b KdV Institute for Mathematics University of Amsterdam, Science Park 105-107, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands

ABSTRACT

ARTICLE INFO

Article history: Received 11 February 2019 Received in revised form 14 May 2019 Accepted 3 June 2019 Available online 3 April 2020

MSC: 54D35 54D40 54A25

Keywords: Tychonoff cube Topological group Covering

1. Introduction

If X is a space, then $\{\{x\} : x \in X\}$ is a cover of X by |X|-many spaces that are homeomorphic to a topological group. One naturally wonders whether one can do better than this triviality.

Every finite-dimensional compact metrizable space without isolated points can be covered by a finite family consisting of topological copies of the space of irrational numbers. Hence each such space can be covered by a finite family of subspaces, each homeomorphic to a topological group. For the Hilbert cube $Q = \mathbb{I}^{\omega}$ this is also true, but requires nontrivial results from infinite-dimensional topology. In fact, Q can be covered by two topological copies of the countable infinite product of lines. One of these copies is $s = (0, 1)^{\omega}$. The other one comes from the following observation. There is a homeomorphism f of Q sending its pseudo-boundary into its pseudo-interior. Hence $f^{-1}(s)$ is a topological copy of s containing the pseudo-boundary of Q. For details, see van Mill [5, §6.5].

Let τ be an uncountable cardinal. We prove that if \mathscr{A} is a cover of the Tychonoff cube \mathbb{I}^{τ} such that $|\mathscr{A}| \leq \tau$, then some element $A \in \mathscr{A}$ is not homeomorphic to a topological group.

© 2020 Elsevier B.V. All rights reserved.

x 94248, 109

 $[\]label{eq:entropy} \textit{E-mail addresses: arhangel.alex@gmail.com (A.V. Arhangel'skii), j.vanMill@uva.nl (J. van Mill).}$

URL: http://staff.fnwi.uva.nl/j.vanmill/ (J. van Mill).

For non-metrizable Tychonoff cubes, the situation is dramatically different.

Theorem 1.1. Let τ be an uncountable cardinal. If \mathscr{E} is a cover of the Tychonoff cube \mathbb{I}^{τ} by subspaces that are each homeomorphic to a topological group (not necessarily the same one), then $|\mathscr{E}| \geq \tau^+$.

So under the Generalized Continuum Hypothesis, it follows that for uncountable τ , the Tychonoff cube \mathbb{I}^{τ} cannot be covered by a family of fewer than 2^{τ} subspaces, each homeomorphic to a topological group. We do not know whether this can be proved without additional set theoretical assumptions.

We use some ideas in our recent paper Arhangel'skii and van Mill [3].

2. Preliminaries

All topological spaces under discussion are assumed to be Tychonoff.

We use standard notation. If B is a set and λ is a cardinal number, then $[B]^{\leq \lambda}$ denotes the collection $\{A \subseteq B : |A| \leq \lambda\}.$

Let λ be an infinite cardinal. We say that a subset B of a space X is a G_{λ} -subset of X provided there exists a family \mathscr{U} of open subsets of X such that $|\mathscr{U}| \leq \lambda$ and $B = \bigcap \mathscr{U}$. A subspace D of X is called G_{λ} -dense in X provided that D intersects every nonempty G_{λ} -subset of X.

Observe that since λ is assumed to be infinite, each nonempty G_{λ} -subset of X contains a nonempty closed G_{λ} -subset.

A G_{ω} -dense set is usually called G_{δ} -dense.

Let τ be an uncountable cardinal, and consider the Tychonoff cube \mathbb{I}^{τ} . If $A \subseteq \tau$ and $f: A \to \mathbb{I}$, then

$$B(A, f) = \{ x \in \mathbb{I}^{\tau} : (\forall \alpha \in A) (x_{\alpha} = f(\alpha)) \}.$$

Then B(A, f) is a closed G_{λ} -subset of \mathbb{I}^{τ} , where $\lambda = |A| \cdot \omega$. Observe that if $\lambda \leq \tau$ and B is a nonempty G_{λ} -subset of \mathbb{I}^{τ} , then there are a subset $A \in [\tau]^{\leq \lambda}$ and an $f \in \mathbb{I}^{A}$ such that $B(A, f) \subseteq B$. Moreover, B(A, f) is a closed G_{λ} -subset of \mathbb{I}^{τ} and hence of B.

We will use the trivial fact that if D is a G_{λ} -dense subset of a space X, and S is a nonempty G_{λ} -subset of X, then $D \cap S$ is G_{λ} -dense in S.

3. The construction

Now let τ be an uncountable cardinal, and let \mathscr{E} be a cover of \mathbb{I}^{τ} such that $|\mathscr{E}| \leq \tau$.

Lemma 3.1. There are $E \in \mathscr{E}$, λ and $A \in [\tau]^{\lambda}$, where $\omega \leq \lambda < \tau$, and $f \in \mathbb{I}^A$ such that $E \cap B(A, f)$ is a G_{λ} -dense subset of B(A, f).

Proof. Assume that this is not true. Enumerate \mathscr{E} as $\{E_{\alpha} : \alpha < \tau\}$ (repetitions permitted). By transfinite induction on $\alpha < \tau$, we will construct a subset A_{α} of τ of size at most $|\alpha| \cdot \omega$, and an element $f_{\alpha} \in \mathbb{I}^{A_{\alpha}}$ such that

(1) if $\alpha' < \alpha < \tau$, then $A_{\alpha'} \subseteq A_{\alpha}$ and $f_{\alpha} \upharpoonright A_{\alpha'} = f_{\alpha'}$, (2) $B(A_{\alpha}, f_{\alpha}) \cap E_{\alpha} = \emptyset$.

By assumption, E_0 is not G_{ω} -dense in \mathbb{I}^{τ} , hence there are a subset $A_0 \in [\tau]^{\omega}$ and a function $f_0 \in \mathbb{I}^{A_0}$ such that $E_0 \cap B(A_0, f_0) = \emptyset$. Assume that we completed the construction for all $\alpha' < \alpha$, where $\alpha < \tau$. Put $A = \bigcup_{\alpha' < \alpha} A_{\alpha'}$ and $f = \bigcup_{\alpha' < \alpha} f_{\alpha'}$, respectively. Then $\omega \leq \lambda = |A| \leq |\alpha| \cdot \omega < \tau$. By assumption, $E_{\alpha} \cap B(A, f)$ is not G_{λ} -dense in B(A, f). Hence there is a nonempty G_{λ} -subset F of B(A, f) such that $E_{\alpha} \cap F = \emptyset$. Then, clearly, F is a G_{λ} -subset of \mathbb{I}^{τ} . Hence there are $A' \in [\tau]^{\leq \lambda}$ and $f' \in \mathbb{I}^{A'}$ such that $B(A', f') \subseteq F \subseteq B(A, f)$. Clearly, $A \subseteq A'$ and $f' \upharpoonright A = f$. Hence by putting $A_{\alpha} = A'$ and $f_{\alpha} = f'$, we satisfy our inductive requirements. This completes the transfinite construction.

Now put $A = \bigcup_{\alpha < \tau} A_{\alpha}$ and $f = \bigcup_{\alpha < \tau} f_{\alpha}$. There exists $x \in \mathbb{I}^{\tau}$ such that

$$\forall \alpha \in A : x_{\alpha} = f(\alpha)$$

Then, by construction, $x \notin \bigcup \mathscr{E}$, which contradicts the fact that \mathscr{E} covers \mathbb{I}^{τ} . \Box

Lemma 3.2. Let λ be an infinite cardinal, and assume that X is a G_{λ} -dense subset of Y. Then for every subset A of X which is a G_{λ} -subset of X, there is a G_{λ} -subset S of Y such that $A \subseteq S \subseteq \overline{A}$ (here 'closure' means closure in Y), and $S \cap X = A$.

Proof. Let \mathscr{U} be a family of at most λ open subsets of X such that $A = \bigcap \mathscr{U}$. For every $U \in \mathscr{U}$, pick an open subset V(U) of Y such that $V(U) \cap X = U$. Put $S = \bigcap_{U \in \mathscr{U}} V(U)$. Then, clearly, S is a G_{λ} -subset of $Y, A \subseteq S$, and $S \cap X = A$. Assume that there exists an element $p \in S \setminus \overline{A}$. Then $S \cap (Y \setminus \overline{A})$ is a nonempty G_{λ} -subset of Y which misses X, which contradicts the fact that X is G_{λ} -dense in Y. \Box

The following lemma is well-known and its proof is left to the reader (or see [3, Lemma 3.1]).

Lemma 3.3. Let G be a topological group. If S is a G_{δ} -subset of G containing the neutral element e of G, then there is a closed subgroup N of G such that

(1) N ⊆ S,
(2) N is a G_δ-subset of G.

After these preliminary observations, we will present the proof of Theorem 1.1.

By Lemma 3.1, there exist $E \in \mathscr{E}$, an infinite cardinal $\lambda < \tau$ and $A \in [\tau]^{\lambda}$ such that $F = E \cap B(A, f)$ is G_{λ} -dense in B(A, f). We claim that E is not a topological group. Striving for a contradiction, let us assume that E is a topological group. Since E is homogeneous, we assume without loss of generality that the neutral element e of E belongs to F.

Since B(A, f) is a G_{λ} -subset of \mathbb{I}^{τ} , F is a G_{λ} -subset of E. Hence by Lemma 3.3 there is a closed subgroup N of E such that N is a G_{λ} -subset of E which is contained in F. Hence N is a G_{λ} -subset of F. By Lemma 3.2, there is a G_{λ} -subset S of B(A, f) such that $N \subseteq S \subseteq \overline{N}$ (here 'closure' is closure in B(A, f) and hence in \mathbb{I}^{τ}). Observe that S is a G_{λ} -subset of \mathbb{I}^{τ} .

Since $e \in S \subseteq B(A, f)$, we may consequently pick a subset $A_0 \in [\tau]^{\lambda}$ and a function $f_0 \in \mathbb{I}^{A_0}$ such that $e \in B(A_0, f_0) \subseteq S \subseteq \overline{N} \subseteq B(A, f)$. Observe that $A \subseteq A_0$ and $f_0 \upharpoonright A = f$. Since $B(A_0, f_0)$ is a G_{λ} -subset of \mathbb{I}^{τ} and $F = E \cap B(A, f)$ is G_{λ} -dense in B(A, f), it follows that $F_0 = E \cap B(A_0, f_0)$ is G_{λ} -dense in B(A, f). Now pick a closed subgroup N_0 of E such that N_0 is a G_{λ} -subset of E which is contained in F_0 .

Continuing in this way recursively, we construct:

- (1) subsets $A_0 \subseteq A_1 \subseteq \cdots$ of τ , each of size λ ,
- (2) functions $f_n \colon A_n \to \mathbb{I}$ for $n < \omega$, such that $f_n \upharpoonright A_{n-1} = f_{n-1}$,
- (3) closed subgroups $N_0 \supseteq N_1 \supseteq \cdots$ of E which are G_{λ} -subsets of E while moreover

$$B(A_0, f_0) \supseteq \overline{N}_0 \supseteq B(A_1, f_1) \supseteq \overline{N}_1 \supseteq \cdots$$

Put $M = \bigcap_{n < \omega} N_n$. Then M is a closed subgroup of E and is a G_{λ} -subset of E. Moreover, put $P = \bigcup_{n < \omega} A_n$ and $g = \bigcup_{n < \omega} f_n$, respectively. Then $M \subseteq B(P, g)$. Observe that

$$E \cap B(P,g) = E \cap \bigcap_{n < \omega} B(A_n, f_n) = \bigcap_{n < \omega} N_n = M.$$

It is clear that P is of the size λ and that M is a G_{λ} -dense subset of B(P,g). Notice that B(P,g) is a non-metrizable Tychonoff cube since $\lambda < \tau$. We see that M is a topological group which is G_{δ} -dense in a non-metrizable Tychonoff cube. This will lead to a contradiction: in Claim 1 we will show that some Tychonoff cube is the Čech-Stone-compactification of M, and then we will show that this is impossible.

Claim 1. The space M is pseudocompact, and some Tychonoff cube \mathbb{I}^{κ} is the Čech-Stone compactification βM of M.

To prove Claim 1, we need to use a factorization result of Arhangel'skii [1], the key feature of which is that it concerns continuous functions on dense subspaces of products of separable metrizable spaces [2, Corollary 1.7.8]. It implies that every continuous realvalued function on a dense subset of a Tychonoff cube depends on countably many coordinates. Thus if A is a G_{δ} -dense subset of some Tychonoff cube \mathbb{I}^{τ} , then for every continuous function $f: A \to \mathbb{R}$ there is, by Corollary 1.7.8 in [2], a countable subset L of τ and a continuous function $g: \pi_L(A) \to \mathbb{R}$, where $\pi_L: \mathbb{I}^{\tau} \to \mathbb{I}^L$ is the projection mapping, such that $g(\pi_L(a)) = f(a)$ for all $a \in A$. However, since A is G_{δ} -dense in the Tychonoff cube \mathbb{I}^{τ} , we have $\pi_L(A) = \mathbb{I}^L$, which evidently implies that f can be continuously extended over \mathbb{I}^{τ} . We also see that every continuous function $f: A \to \mathbb{R}$ is bounded since \mathbb{I}^{τ} is compact. Hence A is pseudocompact. We apply this argument to A = M and conclude that M is pseudocompact. Thus, Claim 1 holds.

However, since M is a pseudocompact topological group, βM is also a topological group by the Comfort-Ross theorem [4]. But \mathbb{I}^{τ} is not a topological group, for example because it has the Fixed-Point Property by Brouwer's Theorem. (A similar argument was also used in [3]).

We repeat a problem posed in [3]: can every compact topological group be split into two homeomorphic and homogeneous parts?

Again, τ be an uncountable cardinal. The referee remarked that our arguments actually prove a stronger result: If X is a compact space of countable weight such that X^{ω} is not a topological group, and if \mathscr{E} is a cover of X^{τ} by subspaces that are each homeomorphic to a topological group (not necessarily the same one), then $|\mathscr{E}| \geq \tau^+$. The proof is identical to the one above, except for the fact that we need an argument to conclude that X^{τ} is not a topological group. But, as the referee noted, this is a direct consequence of Ridderbos [6, Theorem 2.3].

References

- A.V. Arhangel'skii, Continuous mappings, factorization theorems and spaces of functions, Tr. Mosk. Mat. Obŝ. 47 (1984) 3–21, 246, English translation: Trans. Mosc. Math. Soc. 47 (1984) 1–22.
- [2] A.V. Arhangel'skii, M.G. Tkachenko, Topological groups and related structures, in: Atlantis Studies in Mathematics, vol. 1, Atlantis Press, World Scientific, Paris, 2008.
- [3] A.V. Arhangel'skii, J. van Mill, Splitting Tychonoff cubes into homeomorphic and homogeneous parts, Topol. Appl. 275 (2020) 107018.
- [4] W.W. Comfort, K.A. Ross, Pseudocompactness and uniform continuity in topological groups, Pac. J. Math. 16 (1966) 483–496.
- [5] J. van Mill, Infinite-Dimensional Topology: Prerequisites and Introduction, North-Holland Publishing Co., Amsterdam, 1989.
- [6] G.J. Ridderbos, Group structures and rectifiability in powers of spaces, Bull. Pol. Acad. Sci., Math. 55 (2007) 357-363.