Covering Tychonoff cubes by topological groups

A.V. Arhangel’skii a, J. van Mill b

a MGU and MPGU, Moscow, Russia
b KdV Institute for Mathematics University of Amsterdam, Science Park 105-107, P.O. Box 94248, 1090
GE Amsterdam, the Netherlands

ARTICLE INFO

Article history:
Received 11 February 2019
Received in revised form 14 May
2019
Accepted 3 June 2019
Available online 3 April 2020

MSC:
54D35
54D40
54A25

Keywords:
Tychonoff cube
Topological group
Covering

ABSTRACT

Let \(\tau \) be an uncountable cardinal. We prove that if \(\mathcal{A} \) is a cover of the Tychonoff cube \(I^\tau \) such that \(|\mathcal{A}| \leq \tau \), then some element \(A \in \mathcal{A} \) is not homeomorphic to a topological group.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

If \(X \) is a space, then \(\{ \{ x \} : x \in X \} \) is a cover of \(X \) by \(|X| \)-many spaces that are homeomorphic to a topological group. One naturally wonders whether one can do better than this triviality.

Every finite-dimensional compact metrizable space without isolated points can be covered by a finite family consisting of topological copies of the space of irrational numbers. Hence each such space can be covered by a finite family of subspaces, each homeomorphic to a topological group. For the Hilbert cube \(Q = \mathbb{I}^\omega \) this is also true, but requires nontrivial results from infinite-dimensional topology. In fact, \(Q \) can be covered by two topological copies of the countable infinite product of lines. One of these copies is \(s = (0, 1)^\omega \). The other one comes from the following observation. There is a homeomorphism \(f \) of \(Q \) sending its pseudo-boundary into its pseudo-interior. Hence \(f^{-1}(s) \) is a topological copy of \(s \) containing the pseudo-boundary of \(Q \). For details, see van Mill [5, §6.5].
For non-metrizable Tychonoff cubes, the situation is dramatically different.

Theorem 1.1. Let τ be an uncountable cardinal. If \mathcal{E} is a cover of the Tychonoff cube I^τ by subspaces that are each homeomorphic to a topological group (not necessarily the same one), then $|\mathcal{E}| \geq \tau^+$.

So under the Generalized Continuum Hypothesis, it follows that for uncountable τ, the Tychonoff cube I^τ cannot be covered by a family of fewer than 2^τ subspaces, each homeomorphic to a topological group. We do not know whether this can be proved without additional set theoretical assumptions.

We use some ideas in our recent paper Arhangel’skii and van Mill [3].

2. Preliminaries

All topological spaces under discussion are assumed to be Tychonoff.

We use standard notation. If B is a set and λ is a cardinal number, then $[B]^{\lambda}$ denotes the collection $\{A \subseteq B : |A| \leq \lambda\}$.

Let λ be an infinite cardinal. We say that a subset B of a space X is a G_λ-subset of X provided there exists a family \mathcal{U} of open subsets of X such that $|\mathcal{U}| \leq \lambda$ and $B = \bigcap \mathcal{U}$. A subspace D of X is called G_λ-dense in X provided that D intersects every nonempty G_λ-subset of X.

Observe that since λ is assumed to be infinite, each nonempty G_λ-subset of X contains a nonempty closed G_λ-subset.

A G_ω-dense set is usually called G_δ-dense.

Let τ be an uncountable cardinal, and consider the Tychonoff cube I^τ. If $A \subseteq \tau$ and $f : A \to I$, then

$$B(A, f) = \{x \in I^\tau : (\forall \alpha \in A)(x_\alpha = f(\alpha))\}.$$

Then $B(A, f)$ is a closed G_λ-subset of I^τ, where $\lambda = |A| \cdot \omega$. Observe that if $\lambda \leq \tau$ and B is a nonempty G_λ-subset of I^τ, then there are a subset $A \in [\tau]^{\leq \lambda}$ and an $f \in I^A$ such that $B(A, f) \subseteq B$. Moreover, $B(A, f)$ is a closed G_λ-subset of I^τ and hence of B.

We will use the trivial fact that if D is a G_λ-dense subset of a space X, and S is a nonempty G_λ-subset of X, then $D \cap S$ is G_λ-dense in S.

3. The construction

Now let τ be an uncountable cardinal, and let \mathcal{E} be a cover of I^τ such that $|\mathcal{E}| \leq \tau$.

Lemma 3.1. There are $E \in \mathcal{E}$, λ and $A \in [\tau]^{\lambda}$, where $\omega \leq \lambda < \tau$, and $f \in I^A$ such that $E \cap B(A, f)$ is a G_λ-dense subset of $B(A, f)$.

Proof. Assume that this is not true. Enumerate \mathcal{E} as $\{E_\alpha : \alpha < \tau\}$ (repetitions permitted). By transfinite induction on $\alpha < \tau$, we will construct a subset A_α of τ of size at most $|\alpha| \cdot \omega$, and an element $f_\alpha \in I^{A_\alpha}$ such that

1. if $\alpha' < \alpha < \tau$, then $A_\alpha' \subseteq A_\alpha$ and $f_\alpha | A_\alpha' = f_{\alpha'}$,
2. $B(A_\alpha, f_\alpha) \cap E_\alpha = \emptyset$.

By assumption, E_0 is not G_ω-dense in I^τ, hence there are a subset $A_0 \in [\tau]^{\omega}$ and a function $f_0 \in I^{A_0}$ such that $E_0 \cap B(A_0, f_0) = \emptyset$. Assume that we completed the construction for all $\alpha' < \alpha$, where $\alpha < \tau$. Put $A = \bigcup_{\alpha' < \alpha} A_{\alpha'}$ and $f = \bigcup_{\alpha' < \alpha} f_{\alpha'}$, respectively. Then $\omega \leq \lambda = |A| \leq |\alpha| \cdot \omega < \tau$. By assumption, $E_\alpha \cap B(A, f)$ is not G_λ-dense in $B(A, f)$. Hence there is a nonempty G_λ-subset F of $B(A, f)$ such that
$E_\alpha \cap F = \emptyset$. Then, clearly, F is a G_λ-subset of \mathbb{I}^τ. Hence there are $A' \in [\tau]^{<\lambda}$ and $f' \in \mathbb{I}^{A'}$ such that $B(A', f') \subseteq F \subseteq B(A, f)$. Clearly, $A \subseteq A'$ and $f'|A = f$. Hence by putting $A_\alpha = A'$ and $f_\alpha = f'$, we satisfy our inductive requirements. This completes the transfinite construction.

Now put $A = \bigcup_{\alpha < \tau} A_\alpha$ and $f = \bigcup_{\alpha < \tau} f_\alpha$. There exists $x \in \mathbb{I}^\tau$ such that
\[\forall \alpha \in A : x_\alpha = f(\alpha). \]

Then, by construction, $x \notin \bigcup \mathcal{E}'$, which contradicts the fact that \mathcal{E}' covers \mathbb{I}^τ. \qed

Lemma 3.2. Let λ be an infinite cardinal, and assume that X is a G_λ-dense subset of Y. Then for every subset A of X which is a G_λ-subset of X, there is a G_λ-subset S of Y such that $A \subseteq S \subseteq \overline{A}$ (here ‘closure’ means closure in Y), and $S \cap X = A$.

Proof. Let \mathcal{W} be a family of at most λ open subsets of X such that $A = \bigcap \mathcal{W}$. For every $U \in \mathcal{W}$, pick an open subset $V(U)$ of Y such that $V(U) \cap X = U$. Put $S = \bigcap_{U \in \mathcal{W}} V(U)$. Then, clearly, S is a G_λ-subset of Y, $A \subseteq S$, and $S \cap X = A$. Assume that there exists an element $p \in S \setminus \overline{A}$. Then $S \cap (Y \setminus \overline{A})$ is a nonempty G_λ-subset of Y which misses X, which contradicts the fact that X is G_λ-dense in Y. \qed

The following lemma is well-known and its proof is left to the reader (or see [3, Lemma 3.1]).

Lemma 3.3. Let G be a topological group. If S is a G_δ-subset of G containing the neutral element e of G, then there is a closed subgroup N of G such that

1. $N \subseteq S$,
2. N is a G_δ-subset of G.

After these preliminary observations, we will present the proof of Theorem 1.1.

By Lemma 3.1, there exist $E \in \mathcal{E}'$, an infinite cardinal $\lambda < \tau$ and $A \in [\tau]^\lambda$ such that $F = E \cap B(A, f)$ is G_λ-dense in $B(A, f)$. We claim that E is not a topological group. Striving for a contradiction, let us assume that E is a topological group. Since E is homogeneous, we assume without loss of generality that the neutral element e of E belongs to F.

Since $B(A, f)$ is a G_λ-subset of \mathbb{I}^τ, F is a G_λ-subset of E. Hence by Lemma 3.3 there is a closed subgroup N of E such that N is a G_λ-subset of E which is contained in F. Hence N is a G_λ-subset of F. By Lemma 3.2, there is a G_λ-subset S of $B(A, f)$ such that $N \subseteq S \subseteq \overline{N}$ (here ‘closure’ is closure in $B(A, f)$ and hence in \mathbb{I}^τ). Observe that S is a G_λ-subset of \mathbb{I}^τ.

Since $e \in S \subseteq B(A, f)$, we may consequently pick a subset $A_0 \in [\tau]^\lambda$ and a function $f_0 \in \mathbb{I}^{A_0}$ such that $e \in B(A_0, f_0) \subseteq S \subseteq \overline{N} \subseteq B(A, f)$. Observe that $A \subseteq A_0$ and $f_0|A = f$. Since $B(A_0, f_0)$ is a G_λ-subset of \mathbb{I}^τ and $F = E \cap B(A, f)$ is G_λ-dense in $B(A, f)$, it follows that $F_0 = E \cap B(A_0, f_0)$ is G_λ-dense in $B(A_0, f_0)$. Now pick a closed subgroup N_0 of E such that N_0 is a G_λ-subset of E which is contained in F_0.

Continuing in this way recursively, we construct:

1. subsets $A_0 \subseteq A_1 \subseteq \cdots$ of τ, each of size λ,
2. functions $f_n : A_n \rightarrow \mathbb{I}$ for $n < \omega$ such that $f_n|A_{n-1} = f_{n-1}$,
3. closed subgroups $N_0 \supseteq N_1 \supseteq \cdots$ of E which are G_λ-subsets of E while moreover
\[B(A_0, f_0) \supseteq N_0 \supseteq B(A_1, f_1) \supseteq N_1 \supseteq \cdots. \]

Put $M = \bigcap_{n < \omega} N_n$. Then M is a closed subgroup of E and is a G_λ-subset of E. Moreover, put $P = \bigcup_{n < \omega} A_n$ and $g = \bigcup_{n < \omega} f_n$, respectively. Then $M \subseteq B(P, g)$. Observe that
\[E \cap B(P, g) = E \cap \bigcap_{n < \omega} B(A_n, f_n) = \bigcap_{n < \omega} N_n = M. \]

It is clear that \(P \) is of the size \(\lambda \) and that \(M \) is a \(G_\lambda \)-dense subset of \(B(P, g) \). Notice that \(B(P, g) \) is a non-metrizable Tychonoff cube since \(\lambda < \tau \). We see that \(M \) is a topological group which is \(G_\delta \)-dense in a non-metrizable Tychonoff cube. This will lead to a contradiction: in Claim 1 we will show that some Tychonoff cube is the Čech-Stone-compactification of \(M \), and then we will show that this is impossible.

Claim 1. The space \(M \) is pseudocompact, and some Tychonoff cube \(\Gamma^\kappa \) is the Čech-Stone compactification \(\beta M \) of \(M \).

To prove Claim 1, we need to use a factorization result of Arhangel’skii [1], the key feature of which is that it concerns continuous functions on dense subspaces of products of separable metrizable spaces [2, Corollary 1.7.8]. It implies that every continuous realvalued function on a dense subset of a Tychonoff cube depends on countably many coordinates. Thus if \(A \) is a \(G_\delta \)-dense subset of some Tychonoff cube \(\Gamma^\tau \), then for every continuous function \(f: A \to \mathbb{R} \) there is, by Corollary 1.7.8 in [2], a countable subset \(L \) of \(\tau \) and a continuous function \(g: \pi_L(A) \to \mathbb{R} \), where \(\pi_L: \Gamma^\tau \to \Gamma^L \) is the projection mapping, such that \(g(\pi_L(a)) = f(a) \) for all \(a \in A \). However, since \(A \) is \(G_\delta \)-dense in the Tychonoff cube \(\Gamma^\tau \), we have \(\pi_L(A) = \Gamma^L \), which evidently implies that \(f \) can be continuously extended over \(\Gamma^\tau \). We also see that every continuous function \(f: A \to \mathbb{R} \) is bounded since \(\Gamma^\tau \) is compact. Hence \(A \) is pseudocompact. We apply this argument to \(A = M \) and conclude that \(M \) is pseudocompact. Thus, Claim 1 holds.

However, since \(M \) is a pseudocompact topological group, \(\beta M \) is also a topological group by the Comfort-Ross theorem [4]. But \(\Gamma^\tau \) is not a topological group, for example because it has the Fixed-Point Property by Brouwer’s Theorem. (A similar argument was also used in [3]).

We repeat a problem posed in [3]: can every compact topological group be split into two homeomorphic and homogeneous parts?

Again, \(\tau \) be an uncountable cardinal. The referee remarked that our arguments actually prove a stronger result: If \(X \) is a compact space of countable weight such that \(X^\omega \) is not a topological group, and if \(\mathcal{E} \) is a cover of \(X^\tau \) by subspaces that are each homeomorphic to a topological group (not necessarily the same one), then \(|\mathcal{E}| \geq \tau^+ \). The proof is identical to the one above, except for the fact that we need an argument to conclude that \(X^\tau \) is not a topological group. But, as the referee noted, this is a direct consequence of Ridderbos [6, Theorem 2.3].

References

