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Let τ be an uncountable cardinal. We prove that if A is a cover of the Tychonoff 
cube Iτ such that |A | ≤ τ , then some element A ∈ A is not homeomorphic to a 
topological group.
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1. Introduction

If X is a space, then 
{
{x} : x ∈ X

}
is a cover of X by |X|-many spaces that are homeomorphic to a 

topological group. One naturally wonders whether one can do better than this triviality.
Every finite-dimensional compact metrizable space without isolated points can be covered by a finite 

family consisting of topological copies of the space of irrational numbers. Hence each such space can be 
covered by a finite family of subspaces, each homeomorphic to a topological group. For the Hilbert cube 
Q = Iω this is also true, but requires nontrivial results from infinite-dimensional topology. In fact, Q can be 
covered by two topological copies of the countable infinite product of lines. One of these copies is s = (0, 1)ω. 
The other one comes from the following observation. There is a homeomorphism f of Q sending its pseudo-
boundary into its pseudo-interior. Hence f−1(s) is a topological copy of s containing the pseudo-boundary 
of Q. For details, see van Mill [5, §6.5].
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For non-metrizable Tychonoff cubes, the situation is dramatically different.

Theorem 1.1. Let τ be an uncountable cardinal. If E is a cover of the Tychonoff cube Iτ by subspaces that 
are each homeomorphic to a topological group (not necessarily the same one), then |E | ≥ τ+.

So under the Generalized Continuum Hypothesis, it follows that for uncountable τ , the Tychonoff cube 
Iτ cannot be covered by a family of fewer than 2τ subspaces, each homeomorphic to a topological group. 
We do not know whether this can be proved without additional set theoretical assumptions.

We use some ideas in our recent paper Arhangel’skii and van Mill [3].

2. Preliminaries

All topological spaces under discussion are assumed to be Tychonoff.
We use standard notation. If B is a set and λ is a cardinal number, then [B]≤λ denotes the collection 

{A ⊆ B : |A| ≤ λ}.
Let λ be an infinite cardinal. We say that a subset B of a space X is a Gλ-subset of X provided there 

exists a family U of open subsets of X such that |U | ≤ λ and B =
⋂

U . A subspace D of X is called 
Gλ-dense in X provided that D intersects every nonempty Gλ-subset of X.

Observe that since λ is assumed to be infinite, each nonempty Gλ-subset of X contains a nonempty 
closed Gλ-subset.

A Gω-dense set is usually called Gδ-dense.
Let τ be an uncountable cardinal, and consider the Tychonoff cube Iτ . If A ⊆ τ and f : A → I, then

B(A, f) = {x ∈ Iτ : (∀α ∈ A)(xα = f(α))}.

Then B(A, f) is a closed Gλ-subset of Iτ , where λ = |A| · ω. Observe that if λ ≤ τ and B is a nonempty 
Gλ-subset of Iτ , then there are a subset A ∈ [τ ]≤λ and an f ∈ IA such that B(A, f) ⊆ B. Moreover, B(A, f)
is a closed Gλ-subset of Iτ and hence of B.

We will use the trivial fact that if D is a Gλ-dense subset of a space X, and S is a nonempty Gλ-subset 
of X, then D ∩ S is Gλ-dense in S.

3. The construction

Now let τ be an uncountable cardinal, and let E be a cover of Iτ such that |E | ≤ τ .

Lemma 3.1. There are E ∈ E , λ and A ∈ [τ ]λ, where ω ≤ λ < τ , and f ∈ IA such that E ∩ B(A, f) is a 
Gλ-dense subset of B(A, f).

Proof. Assume that this is not true. Enumerate E as {Eα : α < τ} (repetitions permitted). By transfinite 
induction on α < τ , we will construct a subset Aα of τ of size at most |α| ·ω, and an element fα ∈ IAα such 
that

(1) if α′ < α < τ , then Aα′ ⊆ Aα and fα�Aα′ = fα′ ,
(2) B(Aα, fα) ∩Eα = ∅.

By assumption, E0 is not Gω-dense in Iτ , hence there are a subset A0 ∈ [τ ]ω and a function f0 ∈ IA0

such that E0 ∩ B(A0, f0) = ∅. Assume that we completed the construction for all α′ < α, where α < τ . 
Put A =

⋃
α′<α Aα′ and f =

⋃
α′<α fα′ , respectively. Then ω ≤ λ = |A| ≤ |α| · ω < τ . By assumption, 

Eα ∩ B(A, f) is not Gλ-dense in B(A, f). Hence there is a nonempty Gλ-subset F of B(A, f) such that 
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Eα ∩ F = ∅. Then, clearly, F is a Gλ-subset of Iτ . Hence there are A′ ∈ [τ ]≤λ and f ′ ∈ IA
′ such that 

B(A′, f ′) ⊆ F ⊆ B(A, f). Clearly, A ⊆ A′ and f ′�A = f . Hence by putting Aα = A′ and fα = f ′, we satisfy 
our inductive requirements. This completes the transfinite construction.

Now put A =
⋃

α<τ Aα and f =
⋃

α<τ fα. There exists x ∈ Iτ such that

∀α ∈ A : xα = f(α).

Then, by construction, x /∈
⋃

E , which contradicts the fact that E covers Iτ . �
Lemma 3.2. Let λ be an infinite cardinal, and assume that X is a Gλ-dense subset of Y . Then for every 
subset A of X which is a Gλ-subset of X, there is a Gλ-subset S of Y such that A ⊆ S ⊆ A (here ‘closure’ 
means closure in Y ), and S ∩X = A.

Proof. Let U be a family of at most λ open subsets of X such that A =
⋂

U . For every U ∈ U , pick an 
open subset V (U) of Y such that V (U) ∩X = U . Put S =

⋂
U∈U V (U). Then, clearly, S is a Gλ-subset of 

Y , A ⊆ S, and S ∩X = A. Assume that there exists an element p ∈ S \A. Then S ∩ (Y \A) is a nonempty 
Gλ-subset of Y which misses X, which contradicts the fact that X is Gλ-dense in Y . �

The following lemma is well-known and its proof is left to the reader (or see [3, Lemma 3.1]).

Lemma 3.3. Let G be a topological group. If S is a Gδ-subset of G containing the neutral element e of G, 
then there is a closed subgroup N of G such that

(1) N ⊆ S,
(2) N is a Gδ-subset of G.

After these preliminary observations, we will present the proof of Theorem 1.1.
By Lemma 3.1, there exist E ∈ E , an infinite cardinal λ < τ and A ∈ [τ ]λ such that F = E ∩ B(A, f)

is Gλ-dense in B(A, f). We claim that E is not a topological group. Striving for a contradiction, let us 
assume that E is a topological group. Since E is homogeneous, we assume without loss of generality that 
the neutral element e of E belongs to F .

Since B(A, f) is a Gλ-subset of Iτ , F is a Gλ-subset of E. Hence by Lemma 3.3 there is a closed subgroup 
N of E such that N is a Gλ-subset of E which is contained in F . Hence N is a Gλ-subset of F . By Lemma 3.2, 
there is a Gλ-subset S of B(A, f) such that N ⊆ S ⊆ N (here ‘closure’ is closure in B(A, f) and hence in 
Iτ ). Observe that S is a Gλ-subset of Iτ .

Since e ∈ S ⊆ B(A, f), we may consequently pick a subset A0 ∈ [τ ]λ and a function f0 ∈ IA0 such that 
e ∈ B(A0, f0) ⊆ S ⊆ N ⊆ B(A, f). Observe that A ⊆ A0 and f0�A = f . Since B(A0, f0) is a Gλ-subset of 
Iτand F = E∩B(A, f) is Gλ-dense in B(A, f), it follows that F0 = E∩B(A0, f0) is Gλ-dense in B(A0, f0). 
Now pick a closed subgroup N0 of E such that N0 is a Gλ-subset of E which is contained in F0.

Continuing in this way recursively, we construct:

(1) subsets A0 ⊆ A1 ⊆ · · · of τ , each of size λ,
(2) functions fn : An → I for n < ω, such that fn�An−1 = fn−1,
(3) closed subgroups N0 ⊇ N1 ⊇ · · · of E which are Gλ-subsets of E while moreover

B(A0, f0) ⊇ N0 ⊇ B(A1, f1) ⊇ N1 ⊇ · · · .

Put M =
⋂

n<ω Nn. Then M is a closed subgroup of E and is a Gλ-subset of E. Moreover, put P =
⋃

n<ω An

and g =
⋃

fn, respectively. Then M ⊆ B(P, g). Observe that
n<ω
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E ∩B(P, g) = E ∩
⋂

n<ω

B(An, fn) =
⋂

n<ω

Nn = M.

It is clear that P is of the size λ and that M is a Gλ-dense subset of B(P, g). Notice that B(P, g) is a 
non-metrizable Tychonoff cube since λ < τ . We see that M is a topological group which is Gδ-dense in 
a non-metrizable Tychonoff cube. This will lead to a contradiction: in Claim 1 we will show that some 
Tychonoff cube is the Čech-Stone-compactification of M , and then we will show that this is impossible.

Claim 1. The space M is pseudocompact, and some Tychonoff cube Iκ is the Čech-Stone compactification 
βM of M .

To prove Claim 1, we need to use a factorization result of Arhangel’skii [1], the key feature of which 
is that it concerns continuous functions on dense subspaces of products of separable metrizable spaces [2, 
Corollary 1.7.8]. It implies that every continuous realvalued function on a dense subset of a Tychonoff 
cube depends on countably many coordinates. Thus if A is a Gδ-dense subset of some Tychonoff cube Iτ , 
then for every continuous function f : A → R there is, by Corollary 1.7.8 in [2], a countable subset L of 
τ and a continuous function g : πL(A) → R, where πL : Iτ → IL is the projection mapping, such that 
g(πL(a)) = f(a) for all a ∈ A. However, since A is Gδ-dense in the Tychonoff cube Iτ , we have πL(A) = IL, 
which evidently implies that f can be continuously extended over Iτ . We also see that every continuous 
function f : A → R is bounded since Iτ is compact. Hence A is pseudocompact. We apply this argument to 
A = M and conclude that M is pseudocompact. Thus, Claim 1 holds.

However, since M is a pseudocompact topological group, βM is also a topological group by the Comfort-
Ross theorem [4]. But Iτ is not a topological group, for example because it has the Fixed-Point Property 
by Brouwer’s Theorem. (A similar argument was also used in [3]).

We repeat a problem posed in [3]: can every compact topological group be split into two homeomorphic 
and homogeneous parts?

Again, τ be an uncountable cardinal. The referee remarked that our arguments actually prove a stronger 
result: If X is a compact space of countable weight such that Xω is not a topological group, and if E is 
a cover of Xτ by subspaces that are each homeomorphic to a topological group (not necessarily the same 
one), then |E | ≥ τ+. The proof is identical to the one above, except for the fact that we need an argument 
to conclude that Xτ is not a topological group. But, as the referee noted, this is a direct consequence of 
Ridderbos [6, Theorem 2.3].
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3–21, 246, English translation: Trans. Mosc. Math. Soc. 47 (1984) 1–22.

[2] A.V. Arhangel’skii, M.G. Tkachenko, Topological groups and related structures, in: Atlantis Studies in Mathematics, vol. 1, 
Atlantis Press, World Scientific, Paris, 2008.

[3] A.V. Arhangel’skii, J. van Mill, Splitting Tychonoff cubes into homeomorphic and homogeneous parts, Topol. Appl. 275 
(2020) 107018.

[4] W.W. Comfort, K.A. Ross, Pseudocompactness and uniform continuity in topological groups, Pac. J. Math. 16 (1966) 
483–496.

[5] J. van Mill, Infinite-Dimensional Topology: Prerequisites and Introduction, North-Holland Publishing Co., Amsterdam, 
1989.

[6] G.J. Ridderbos, Group structures and rectifiability in powers of spaces, Bull. Pol. Acad. Sci., Math. 55 (2007) 357–363.

http://refhub.elsevier.com/S0166-8641(20)30132-2/bibF5159E9391EF9574B09D6F32E103A244s1
http://refhub.elsevier.com/S0166-8641(20)30132-2/bibF5159E9391EF9574B09D6F32E103A244s1
http://refhub.elsevier.com/S0166-8641(20)30132-2/bib058E20793FCD372AB8FB6753529DE859s1
http://refhub.elsevier.com/S0166-8641(20)30132-2/bib058E20793FCD372AB8FB6753529DE859s1
http://refhub.elsevier.com/S0166-8641(20)30132-2/bib9627998521BA63558DB44D399CE80F81s1
http://refhub.elsevier.com/S0166-8641(20)30132-2/bib9627998521BA63558DB44D399CE80F81s1
http://refhub.elsevier.com/S0166-8641(20)30132-2/bib40F1464C2A1184F9B90ED5A810C72BC4s1
http://refhub.elsevier.com/S0166-8641(20)30132-2/bib40F1464C2A1184F9B90ED5A810C72BC4s1
http://refhub.elsevier.com/S0166-8641(20)30132-2/bib46BD1EAC02F1477C377FD7ACCA737796s1
http://refhub.elsevier.com/S0166-8641(20)30132-2/bib46BD1EAC02F1477C377FD7ACCA737796s1
http://refhub.elsevier.com/S0166-8641(20)30132-2/bib5FFD7F52868E2C812331DEFE50F739BFs1

	Covering Tychonoff cubes by topological groups
	1 Introduction
	2 Preliminaries
	3 The construction
	References


