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The pinning down number pd(X) of a topological space X is the smallest cardinal 
κ such that for every neighborhood assignment U on X there is a set of size κ that 
meets every member of U . Clearly, pd(X) ≤ d(X) and we call X a pd-example 
if pd(X) < d(X). We denote by S the class of all singular cardinals that are not 
strong limit. It was proved in [6] that TFAE:

(1) S �= ∅;
(2) there is a 0-dimensional T2 pd-example;
(3) there is a T2 pd-example.

The aim of this paper is to produce pd-examples with further interesting topological 
properties like connectivity or being a topological group by presenting several 
constructions that transform given pd-examples into ones with these additional 
properties.
We show that S �= ∅ is also equivalent to the existence of a connected and locally 
connected T3 pd-example, as well as to the existence of an abelian T2 topological 
group pd-example.
However, S �= ∅ in itself is not sufficient to imply the existence of a connected T3.5
pd-example. But if there is μ ∈ S with μ ≥ c then there is an abelian T2 topological 
group (hence T3.5) pd-example which is also arcwise connected and locally arcwise 
connected. Finally, the same assumption S \c �= ∅ even implies that there is a locally 
convex topological vector space pd-example.
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1. Introduction

The pinning down number pd(A ) of a family of sets A is defined to be the smallest cardinality of a set 
that intersects every non-empty member of A . For a topological space X, the pinning down number of X, 
abbreviated pd(X), is defined as follows:

pd(X) = sup
{
pd(U ) : U = {Ux : x ∈ X} is a neighborhood assignment on X

}
.

Clearly, c(X) ≤ pd(X) ≤ d(X). Here c(X) and d(X) denote the cellularity and density of X, respectively.
The cardinal function pd(X) has been introduced recently, under different names, by Aurichi and Bella in 

[2] and independently by Banakh and Ravsky in [3]. The latter showed among other things that if |X| < ℵω, 
then pd(X) = d(X), [3, Theorem 5.2].

The Weak Generalized Continuum Hypothesis (abbreviated WGCH) is the statement that 2κ is a finite 
successor of κ for any cardinal κ, i.e. in symbols: (∀ κ)(2κ < κ+ω). Clearly, WGCH is equivalent to the 
statement that every singular cardinal is strong limit. Answering some problems raised in [3], the following 
was proved recently in Juhász, Soukup and Szentmiklóssy [6, Theorem 1.2]:

Theorem 1.1. The following statements are equivalent:

(1) WGCH;
(2) d(X) = pd(X) for every T2 space X;
(3) d(X) = pd(X) for every 0-dimensional T2 space X.

Let us call the topological space X a pd-example if pd(X) < d(X) and denote by S the class of all 
singular cardinals that are not strong limit. Thus Theorem 1.1 says that (0-dimensional) T2 pd-examples 
exist iff S �= ∅. The aim of this paper is to examine what is needed to obtain T2, T3, or T3.5 pd-examples 
with the additional properties of connectivity and/or homogeneity. Here is our first main result:

Theorem 1.2. TFAE with the negation of the statements in Theorem 1.1, in particular with S �= ∅:

(I) There is a connected and locally connected T3 pd-example;
(II) there is an abelian T2 topological group pd-example.

It is conspicuous that this result does not provide us with a connected T3.5 pd-example. In fact, we 
shall show in Corollary 3.6 that under suitable assumptions on cardinal arithmetic we have S �= ∅ but no 
connected T3.5 pd-example exists. However, our second main theorem says that if there is μ ∈ S with μ ≥ c

then there is a connected T3.5 pd-example and, in fact, much more is true.

Theorem 1.3. If there is μ ∈ S with μ ≥ c then there is an abelian T2 topological group pd-example which is 
also arcwise connected and locally arcwise connected.

Of course, any locally convex topological R-vector space is an abelian T2 topological group which is 
arcwise connected and locally arcwise connected. Thus our third main result is actually a strengthening of 
Theorem 1.3. Still, we decided to present the two results separately because their proofs are based on two 
very different constructions that are both interesting in their own rights.

Theorem 1.4. If there is μ ∈ S with μ ≥ c then there is a pd-example which is a locally convex topological 
R-vector space.
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On the other hand, we shall show in 2.10 that if Shelah’s strong hypothesis (in short: SSH) holds then 
already the existence of a connected T3.5 pd-example implies that there is μ ∈ S with μ ≥ c. Consequently, 
under SSH the converses of both 1.3 and 1.4 are also valid.

We thank the referee for several corrections and useful suggestions that improved the presentation of this 
paper.

2. Preliminary observations and definitions

If X is any space then τ(X) denotes its topology and τ+(X) = τ(X) \{∅}. We also put 	(X) = min{|G| :
G ∈ τ+(X)} and call X neat if 	(X) = |X|.

First in this section we collect some facts that will be important later when we calculate the pinning 
down numbers of various spaces.

Lemma 2.1. Let X be a space and let U ⊆ τ+(X) with |U | ≤ 	(X). Then there is a neighborhood assign-
ment on X that contains U in its range, hence pd(U ) ≤ pd(X).

Proof. Since every nonempty open subset of X has size at least 	(X) and |U | ≤ 	(X), by a trivial 
transfinite recursion, it is possible to pick for every U ∈ U a point xU ∈ U such that for distinct U, V ∈ U

the points xU and xV are different. Put A = {xU : U ∈ U }. Then xU �→ U is a ‘partial’ neighborhood 
assignment on A which can be extended to the required global neighborhood assignment on X. �
Corollary 2.2. Let X be a neat space with pd(X) ≥ ω and κ ≤ pd(X) be a cardinal such that |Xκ| = |X|. 
Then pd(Xκ) = pd(X).

Proof. Since X is a continuous image of Xκ, we clearly have pd(X) ≤ pd(Xκ). To prove the converse 
inequality, let U : Xκ → τ(Xκ) be any neighborhood assignment. We may clearly assume that each U(y)
belongs to the standard base for the product topology on Xκ. This means that for every y ∈ Xκ there are 
a finite set of indices F (y) ⊆ κ and for all α ∈ F (y) open sets Uy

α ∈ τ(X)+ such that

U(y) = {z ∈ Xκ : (∀α ∈ F (y))(zα ∈ Uy
α)}.

Now put

U = {Uy
α : y ∈ Xκ, α < κ}.

Then |U | ≤ |X|κ = |X| = Δ(X), hence by Lemma 2.1 we have pd(U ) ≤ pd(X). Let A be a subset of X
of size pd(X) that meets every member of U . Fix p ∈ X and put

σ = {y ∈ Xκ : (∃F ∈ [κ]<ω)(∀α ∈ F )(yα ∈ A) & (∀α /∈ F )(yα = p)}.

Then |σ| =
∣∣[A]<ω

∣∣ = |A| = pd(X) and for every y ∈ X we have σ ∩ U(y) �= ∅. Hence we are done. �
The following obvious result will play an essential role in our constructions.

Corollary 2.3. For every neat T2 space X and for every 0 < n < ω we have pd(Xn) = pd(X).

But can the assumption of neatness of X be dropped here? Clearly yes if pd(X) = d(X), hence a 
counterexample is a T2 pd-example. And in fact, the existence of a T2 pd-example, that we know is equivalent 
to S �= ∅, does yield a counterexample.
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Example 2.4. If S �= ∅ then there is a 0-dimensional T2 space X such that pd(X2) > pd(X).

Proof. If μ ∈ S then there is a cardinal λ satisfying cf(μ) ≤ λ < μ and 2λ > μ. The construction 
theorem [6, Theorem 3.3], in fact a simplified version of it, then yields a 0-dimensional T2 space Y such that 
pd(Y ) ≤ λ < d(Y ) = μ and w(Y ) ≤ 2λ.

Let Z denote the Cantor cube of weight 2λ. We claim that pd(Y × Z) = μ. Then the topological sum 
X = Y ⊕ Z is the space we are looking for. Indeed, pd(Y ) ≤ λ and pd(Z) = d(Z) ≤ λ obviously imply 
pd(X) ≤ λ, while pd(X2) ≥ μ = pd(Y × Z) holds because Y × Z is an open subspace of X2.

Now, let B be a base of Y of size ≤ 2λ and consider the collection

V = {B × Z : B ∈ B} ⊂ τ+(Y × Z).

Then |V | = |B| ≤ 2λ and we have Δ(Y ×Z) = Δ(Z) = 2λ, hence Lemma 2.1 implies pd(Y ×Z) ≥ pd(V ). 
But if A ⊂ Y × Z and |A| < μ then the projection P of A to Y is not dense in Y , hence there is a B ∈ B

with B ∩ P = ∅. Consequently, (B × Z) ∩A = ∅ as well, hence we have pd(V ) ≥ μ. �
Note that any neat T2 space that is not a singleton is infinite, consequently if X is such a space then 

d(Xω) = d(X). On the other hand, our next example shows that pd(X) < pd(Xω) may hold for a neat 
T2 space X. This also shows that the assumption |Xκ| = |X| cannot be dropped from Lemma 5.4 either. 
Again, this space must be a T2 pd-example.

Example 2.5. It is consistent that there is a neat 0-dimensional T2 space X such that pd(X) < pd(Xω).

Proof. By [6, Theorem 3.3] again, it is consistent that there is a neat 0-dimensional T2 pd-example X such 
that ℵω = |X| < w(X) ≤ c. But then Xω is not a pd-example because w(Xω) = w(X) ≤ c = Δ(Xω), hence 
pd(Xω) = d(Xω) = d(X) > pd(X). �

It is obvious that, for any space X, if Y is dense open in X then d(X) = d(Y ). It is natural to ask if 
this also holds with pd instead of d. Of course, if X ⊃ Y form a counterexample to this then Y must be a 
pd-example. Even though it will not be used in our later constructions, we present below such an example 
that is by no means trivial.

Example 2.6. It is consistent that there is a T3.5 space X with a dense open subspace Y such that pd(Y ) <
pd(X).

Proof. By [6, Theorem 3.3], it is consistent that there is a 0-dimensional neat T2 space Z such that pd(Z) =
ω < d(Z), and by [6, Theorem 4.9] we have |Z| = 	(Z) < 2pd(Z) = c. Hence Z has at most 2c many 
cozero-sets. Let B denote the collection of all nonempty cozero-sets in Z.

We claim that we may assume without loss of generality that Z is nowhere separable. For let A denote a 
maximal pairwise disjoint collection of nonempty open separable subsets of Z. Then since c(Z) ≤ pd(Z) = ω, 
A is countable. Hence any nonempty open subset V of Z that misses 

⋃
A is nowhere separable and clearly 

has the property that pd(V ) = ω.
Consider the space Y = ω × Z, its Čech-Stone compactification βY , and put

X = Y ∪
{
p ∈ βY : p /∈

⋃

n<ω

{n} × Z
}
.

(Here closures are taken in βY .) Then each {n} × Z is clopen in X, hence Y is dense open in X. Clearly, 
pd(Y ) = ω and we claim that pd(X) > ω.
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Striving for a contradiction, assume that pd(X) = ω. For every S ∈ [ω]ω and f ∈ BS , let V (f) be 
the largest open subset of βY such that V (f) ∩ Y =

⋃
n∈S{n} × f(n). We claim that V (f) ∩ X has size 

at least 2c. Indeed, for every n ∈ S let Zn be a nonempty zero-set in Z that is contained in f(n). Then ⋃
n∈S{n} ×Zn is a zero-set in Y that is disjoint from the zero-set Y \ V (f). Hence these two zero-sets have 

disjoint closures in βY . For every n ∈ S, pick pn ∈ Zn. Then V (f) contains the closure of the discrete and 
closed subset P = {(n, pn) : n ∈ S} of Y . Observe that P is homeomorphic to βω and has therefore size 2c. 
Finally, P \ P is contained in X and so indeed V (f) ∩X has size at least 2c.

By a simple transfinite induction we can consequently pick points z(f) ∈ V (f) ∩ X such that for all 
S, T ∈ [ω]ω, f ∈ BS and g ∈ BT , if V (f) ∩X �= V (g) ∩X, then z(f) �= z(g). Since pd(X) = ω, there is a 
countable subset A of X which meets every V (f) ∩X.

Next observe that X \Y is the Čech-Stone remainder of the noncompact, locally compact and σ-compact 
space 

⋃
n∈ω {n} × Z. Hence, as is well-known, the density of X \ Y is uncountable (it follows from the 

existence of an uncountable almost disjoint family of infinite subsets of ω that even the cellularity of X \ Y
is uncountable, [11, p. 121]). A moments reflection shows that there is an infinite subset S of ω and an 
element f ∈ BS such that (V (f) ∩X) ∩ (A ∩ (X \ Y )) = ∅. Since Z is nowhere separable, for every n ∈ S

we may pick an element Bn ∈ B such that Bn ⊆ f(n) \A. Let g ∈ BS denote the function n �→ Bn. Then 
(V (g) ∩X) ∩A = ∅, which is a contradiction. �

We end this section with a few simple but useful results.

Lemma 2.7. Let A be any cover of the space X. Then pd(X) ≤
∑

{pd(A) : A ∈ A }.

Proof. Let U : X → τ(X) be a neighborhood assignment on X. Then, for every A ∈ A , the function 
VA : A → τ(A) defined by VA(a) = U(a) ∩ A is a neighborhood assignment on A, hence pd({U(a) : a ∈
A}) ≤ pd(A). The rest is obvious. �

It is immediate from Lemma 2.7 that pd(X × Y ) ≤ |Y | · pd(X) holds for any product X × Y , hence 
pd(X×Y ) = pd(X) if |Y | ≤ pd(X). The following result yields a similar implication in which d(Y ) ≤ pd(X)
is sufficient instead of |Y | ≤ pd(X).

Lemma 2.8. Let X and Y be spaces such that d(Y ) ≤ pd(X) and |Y | ≤ Δ(X) = |X|. Then pd(X × Y ) =
pd(X).

Proof. Let (x, y) �→ U(x,y) ×V(x,y) be a neighborhood assignment on X×Y such that U(x,y) (resp. V(x,y)) is 
an open neighborhood of x in X (resp. y in Y ). Consider the collection U = {U(x,y) : x ∈ X, y ∈ Y }. Then, 
by our assumptions, |U | ≤ |X| = 	(X), hence by Lemma 2.1 there is a set B ∈ [X]≤pd(X) that meets 
every member of U . Let D ⊆ Y be dense such that |D| ≤ pd(X). Then (B ×D) ∩ (U(x,y) × V(x,y)) �= ∅ for 
all (x, y) ∈ X ×Y and |B×D| ≤ pd(X), hence we conclude pd(X ×Y ) ≤ pd(X). But pd(X ×Y ) ≥ pd(X)
holds because X is the continuous image of X × Y . �

The following proposition is just Lemma 2.2 from [6]. It is added here because it will be used quite 
frequently.

Proposition 2.9 ([6, Lemma 2.2]). Every pd-example X has a neat open subspace Y that is also a pd-example.

We may combine this proposition with some other results of [6] to obtain the result that we promised at 
the end of section 1.

Corollary 2.10. Under SSH the existence of a connected T3.5 pd-example implies that there is μ ∈ S with 
μ ≥ c.



6 I. Juhász et al. / Topology and its Applications 283 (2020) 107347
Proof. Assume that SSH holds and X is a connected T3.5 pd-example. It is well-known that then Δ(X) ≥ c. 
By Proposition 2.9 there is a neat open subspace Y ⊆ X that is also a pd-example. Then clearly we have

|Y | = Δ(Y ) ≥ Δ(X) ≥ c.

By [6, Theorem 3.5] and the remark made after it SSH implies that every neat pd-example has singular 
cardinality. In particular, then |Y | must be singular. Since Y is a T2 pd-example, then [6, Theorem 3.1]
implies that |Y | cannot be strong limit, hence we have both |Y | ∈ S and |Y | ≥ c. �

A couple of remarks are of order here. First, note that in Corollary 3.6 below we formulate some simple 
cardinal arithmetic conditions that imply S �= ∅ but μ < c for all μ ∈ S. Secondly, we note that large 
cardinals, hence going beyond ZFC, are needed to refute SSH.

3. Proof of Theorem 1.2 part (I): connected pd-examples

In [5], de Groot associated to every T1 space X a certain extension λX which he called the superextension
of X. We will briefly describe his construction.

A system of sets L is called a linked system if any two of its members meet. A maximal linked system
(or mls) on X is a system of closed subsets of X which is maximal with respect to being linked. We denote 
the collection of all mls’s on X by λX. For any A ⊆ X we write

A+ = {M ∈ λX : (∃M ∈ M )(M ⊆ A)}.

We then take the collection

{A+ : A is closed in X}

as a closed subbase for the topology of λX. With this topology, λX is a (super)compact T1-space that 
contains X as a subspace, hence λX is an extension of X. In fact, the function i : X → λX defined by

i(x) = {x}+ = {A ⊆ X : A is closed and x ∈ A}

is an embedding of X into λX. We identify each point x ∈ X with the mls i(x). The closure of X in λX is 
the familiar Wallman compactification of X.

(V0) ([10, II.1.6)]) The collection {U+ : U ∈ τ(X)} is a subbase for the open subsets of λX.

A defining set for M ∈ λX is a subset S of X with the following property: for every M ∈ M there exists 
M ′ ∈ M such that M ′ ⊆ M ∩ S. An mls M ∈ λX is called finitely generated (or an fmls) if it has a finite 
defining set. The subspace of λX consisting of all fmls’s is denoted by λf (X).

Clearly, i(x) is an fmls whenever x ∈ X, having {x} as defining set. Thus we have X ⊆ λf (X).
We shall need the following results that were proved for λf (X) by Verbeek [10].

(V1) ([10, IV.3.4(iii)]) If X is T2 then X is closed in λf (X).
(V2) ([10, IV.3.4(v)+(vi)]) If X is T2 then so is λf (X). Similarly for T3.5.
(V3) ([10, IV.3.4(viii)]) If X is connected then λf (X) is both connected and locally connected.
(V4) ([10, III.2.5(b)]) λf (X) can be represented as the countable union of subspaces each of which is a 

continuous image of some finite power of X.
(V5) ([10, III.4.3(iv)]) d(X) = d(λf (X)).
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We shall need the fact that if X is T3 then so is λf (X). This is not stated explicitly in Verbeek [10], 
hence we provide a (simple) proof.

Lemma 3.1. If X is T3 then so is λf (X).

Proof. Let M ∈ λf (X), and let G ⊆ λf (X) be open such that M ∈ G. In addition, let S be a finite 
defining set for M . Since G is open, by (V0) there is a finite collection U of open subsets of X such that 
M ∈

⋂
U∈U U+ ⊆ G. For every U ∈ U , there exists F (U) ⊆ U ∩ S such that M ∈

⋂
U∈U F (U)+. For 

every U ∈ U let V (U) be an open subset of X such that F (U) ⊆ V (U) ⊆ V (U) ⊆ U . (Here we use that X
is T3.) Then 

⋂
U∈U V (U)

+
is a closed neighborhood of M in λf (X) that is contained G. �

Lemma 3.2. For any T2 space X we have pd(X) ≤ pd(λf (X)). If, in addition, X is neat then pd(X) =
pd(λf (X)).

Proof. We first prove that pd(X) ≤ pd(λf (X)). This is trivial if X is finite because then λX is discrete, so we 
assume that X is infinite. Note that then λf (X) and hence pd(λf (X)) are also infinite. Let U : X → τ(X)
be any neighborhood assignment on X. Define V : X → τ(λf (X)) by V (x) = U(x)+. Extend V to a 
neighborhood assignment W on λf (X) by putting W (x) = V (x) for x ∈ X and W (M ) = λf (X) \ X for 
M ∈ λf (X) \X. Then there is a subset A of λf (X) that meets every element of the collection {V (x) : x ∈ X}
and has size pd(λf (X)). For every M ∈ A let F (M ) be a finite defining set for M . Put

B =
⋃

{F (M ) : M ∈ A}.

Then |B| ≤ ω·|A| = |A|, and we claim that B meets U(x) for each x ∈ X. Indeed, take any M ∈ A ∩U(x)+. 
This means that there is a subset G of F (M ) such that G ∈ M and G ⊆ U(x). Hence ∅ �= G ⊆ U(x) ∩B, 
and this completes the proof.

Now assume that X is also neat. First observe that then pd(Xn) = pd(X) for every n < ω by Corol-
lary 2.3. Hence we get pd(λf (X)) ≤ pd(X) applying (V4) and Lemma 5.1. �

We now describe a very general version of the well-known ‘cone’ construction that can be used to obtain 
connectifications of spaces in a natural way. The input of the construction consists of an arbitrary topological 
space X and an infinite connected T1 space P with a distinguished point p ∈ P . The output is the space 
Z = Z(X, P, p) whose underlying set is

(
X × (P \ {p})

)
∪ {p},

where, of course, p /∈ X × (P \ {p}). The topology of Z is defined as follows: Basic neighborhoods of points 
of X × (P \ {p}) in Z are just the standard product neighborhoods. A basic neighborhood of p in Z has the 
form

(
X × (U \ {p})

)
∪ {p},

where U is any neighborhood of p in P . It is easy to check that this is indeed a topology. It is also 
straightforward to show for every point q ∈ P \ {p} that X ×{q} is a closed homeomorphic copy of X in Z
and that for every x ∈ X the subspace ({x} ×P \ {p}) ∪ {p} is a homeomorphic copy of P in Z, hence Z is 
connected. We leave it to the reader to check these facts as well as the following proposition.

Proposition 3.3. If both X and P are T2 (or T3, or T3.5) then so is Z(X, P, p).
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The following lemma provides us with a procedure that transforms any T2 (resp. T3) pd-example into a 
connected and locally connected T2 (resp. T3) pd-example. This, of course, will complete the proof of part 
(I) of Theorem 1.2.

Lemma 3.4.

(1) Let X be an infinite neat T2 space and P be a countably infinite connected T2-space. Then for any 
p ∈ P , the T2 space Y = λf (Z(X, P, p)) is connected and locally connected, moreover d(X) = d(Y ) and 
pd(X) = pd(Y ).

(2) If X is an infinite neat T3 space and P is a separable connected T3-space of cardinality ω1 then for any 
p ∈ P the T3 space Y = λf (Z(X, P, p)) is connected and locally connected, moreover d(X) = d(Y ) and 
pd(X) = pd(Y ).

Proof. For (1), fix a countably infinite connected T2-space P and a point p ∈ P . (The existence of such a 
space P was first proved by Urysohn [9].) Then Z = Z(X, P, p) is connected, T2 and, since P is countable, 
we clearly have d(X) = d(X × P ) = d(Z).

Next we show that pd(Z) = pd(X). It is obvious that pd(Z) = pd(X × (P \ {p})). But by Lemma 2.8
and because X a continuous image of X × (P \ {p}), we have pd(X) = pd(X × (P \ {p})). Since X is neat 
and P is countable it is obvious that Z is neat as well.

The superextension Y = λf (Z) is a connected and locally connected T2 space by (V1) and (V3). Moreover, 
d(λf (Z)) = d(Z) = d(X) by (V5). Since Z is neat, we get by the above and by Lemma 3.2 that pd(X) =
pd(Z) = pd(λf (Z)), hence we are done.

For (2) we have to do a little more work. It is well-known that there is a connected T3 space of 
size ω1. This is the smallest such cardinality possible since every T3 countable space is 0-dimensional. 
An example is Hewitt’s Condensed Corkscrew and there are others. For details, see Steen and Seebach 
[8, p. 111].

However, for our construction we need a separable connected T3 space P of size ω1. Luckily for us, it 
was recently proved by Ciesielski and Wojciechowsk [4, Theorem 8] that there is such a space. Observe that 
then P is neat. For let us assume that it contains a countable nonempty open subset U . Then it contains 
by regularity a nonempty open subset V such that V ⊆ U . Hence V is a countable regular space, hence 
normal, and so it is 0-dimensional. But then V contains a nonempty subset C which is clopen in V . But 
this C would be clopen in P . This argument actually yields that for every non-singleton connected T3 space 
X we have Δ(X) ≥ ω1.

Now, as in (1), consider Z = Z(X, P, p) for some p ∈ P . Since both X and P are neat, it is not difficult 
to check that Z is neat as well. Since P is separable, we obviously have d(X) = d(X × P ) = d(Z).

We next show that pd(Z) = pd(X). If X is countable then X × P is separable, hence so is Z. But then 
pd(Z) = pd(X) = ω. If |X| ≥ ω1 then, since |P | = ω1 and P is separable, we may apply Lemma 2.8 to 
obtain pd(X × (P\{p})) = pd(X). But we also have pd(Z) = pd(X × (P\{p})), hence we are done.

Now, the space Y = λf (Z) is as we want by following the same argumentation as in part (1). We, of 
course, have to use that λf (Z) is T3 by Lemma 3.1. �

This completes the proof of part (I) of Theorem 1.2. The following results explain why T3 cannot be 
replaced in it with T3.5.

Theorem 3.5. Assume that WGCH holds from the cardinal κ on, i.e. 2λ < λ+ω for all λ ≥ κ. Then for every 
T2 pd-example X we have Δ(X) < κ+ω. If, in addition, GCH holds in the interval [κ, κ+ω), i.e. 2λ = λ+

for all λ with κ ≤ λ < κ+ω, and X is T3 then we even have Δ(X) ≤ κ.
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Proof. Assume, on the contrary, that Δ(X) ≥ κ+ω. We may also assume, without any loss of generality, 
that X is neat because, by Proposition 2.9, we can replace X with its open subspace Y that is a neat 
pd-example and, of course, satisfies Δ(Y ) ≥ Δ(X).

But then |X| = Δ(X) = μ+n, where μ ≥ κ+ω is a limit and hence a strong limit cardinal. This, however, 
contradicts [6, Theorem 3.1] which says that in this case pd(X) = d(X).

To see the second part, assume that X is any T3 pd-example. Again we may also assume, without any 
loss of generality, that X is neat, hence, by the first part, we have

pd(X) < d(X) ≤ |X| = Δ(X) < κ+ω.

By [6, Theorem 4.8] d(X) < 2pd(X) holds for every T3 space X. Thus pd(X) ≥ κ and our cardinal arithmetic 
assumptions would imply d(X) < 2pd(X) = pd(X)+, a contradiction. Hence we actually have pd(X) < κ. 
But then we also have 2pd(X) ≤ 2κ = κ+, while by [6, Theorem 4.9] any T3 pd-example X also satisfies 
Δ(X) < 2pd(X). Hence we indeed have Δ(X) ≤ κ. �

Since for every non-singleton connected T3.5 space X we have Δ(X) ≥ c, we immediately obtain the 
following.

Corollary 3.6. If c = κ+ > ℵω then S �= ∅, in fact ℵω ∈ S. But if, in addition, WGCH holds from κ on and 
GCH holds in the interval [κ, κ+ω), then there is no connected T3.5 pd-example.

Let us remark that the assumptions of Corollary 3.6 are satisfied in a generic extension obtained by 
adding κ+ Cohen reals to a model of GCH for any κ ≥ ℵω.

If X is any T3.5 space with |X| = Δ(X) ≥
∣∣[0, 1]

∣∣ = c, then clearly the ordinary cone Z = Z(X, [0, 1], 1)
is a connected T3.5 space that is neat and, by Lemma 2.8 satisfies both pd(Z) = pd(X) and d(Z) = d(X). 
Consequently, then Y = λf (Z) is a connected and locally connected T3.5 pd-example if X is a pd-example. 
Now, the existence of such an X follows from S \ c �= ∅ (see the first paragraph in the proof of Example 2.4). 
However, we shall see later that this same assumption gives us much stronger T3.5 pd-examples.

4. Proof of Theorem 1.2 part (II): topological group pd-examples

The idea of the proof of part (II) of Theorem 1.2 is very simple: We show that if X is a neat T3.5 pd-
example then A(X), the free abelian topological group on X is a pd-example as well. Now let us see the 
details.

Free topological groups: If X is a T3.5 space, then F (X) and A(X) denote the free topological group and 
the free abelian topological group on X. That is, F (X) is a topological group containing (a homeomorphic 
copy of) X such that

(1) X generates F (X) algebraically,
(2) every continuous function f : X → H, where H is any topological group, can be extended to a continuous 

homomorphism f̄ : F (X) → H.

Similarly for A(X). The existence of these groups was proved by Markov [7]. See Arhangel’skii and 
Tkachenko [1, Chapter 7] for details and references. It is known that

(FG1) ([1, Theorem 7.1.13]) X is closed in F (X) as well as A(X),
(FG2) ([1, Theorem 7.1.5]) F (X) and A(X) are T3.5 (being T2 topological groups),
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(FG3) ([1, Theorem 7.1.13]) F (X) as well as A(X) can be represented as a countable union of subspaces 
each of which is a continuous image of some finite power of X.

The first part of the following crucial result is probably well-known.

Proposition 4.1. Let X be infinite and T3.5. Then d(X) = d(F (X)) = d(A(X)) and if X is neat, then 
pd(X) = pd(F (X)) = pd(A(X)).

Proof. We will only check this for F (X), the proof for A(X) is similar. That d(F (X)) ≤ d(X) is a direct 
consequence of (FG3). Now let D be dense in F (X). Every element of D\{e}, where e is the neutral element 
of F (X), can be written uniquely in the form

d = xr1
1 xr2

2 · · ·xrn
n , (†)

where n ≥ 1, ri ∈ Z \ {0}, xi ∈ X, and xi �= xi+1 for every i = 1, 2, . . . , n−1. Let E be the set of all points 
x ∈ X that appear in the expressions (†). We claim that E is dense in X. Indeed, assume that this is not 
true, and fix a continuous function f : X → R such that f(E) ⊆ {0} and f(x) = 1, for some x ∈ X \E. We 
can extend f to a continuous homomorphism f̄ : F (X) → R. Then f̄(D) ⊆ {0}, but f̄ is not constant. This 
is clearly a contradiction. Hence d(X) ≤ d(F (X)).

Now assume that X is neat. Then pd(Xn) = pd(X) for every n < ω (Corollary 2.3). Hence by (FG3) 
and Lemma 2.7 we get pd(F (X)) ≤ pd(X). For the converse inequality, let U : X → τ+(X) be any 
neighborhood assignment on X. For every x ∈ X, let fx : X → [0, 1] be continuous such that fx(x) = 1
and fx(X \ U(X)) ⊆ {0}. Consider the continuous homomorphism f̄x : F (X) → R that extends f . Put 
V (x) = f̄−1

x ((0, 2)). Then V : X → τ+(F (X)) is a neighborhood assignment, which can be extended to a 
full neighborhood assignment by simply putting V (y) = F (X) for every y ∈ F (X) \ X. Now let B be a 
subset of F (X) of size at most pd(F (X)) meeting every set of the form V (x), for x ∈ X. We can write 
every b ∈ B \ {e} uniquely in the form

b = yr11 yr22 · · · yrnn , (‡)

where n ≥ 1, ri ∈ Z \ {0}, yi ∈ X, and yi �= yi+1 for every i = 1, 2, . . . , n−1. Let F be the set of all y’s that 
appear in the expressions (‡). Then, clearly, |F | ≤ pd(F (X)). We claim that F ∩U(x) �= ∅ for every x ∈ X. 
Indeed, striving for a contradiction, assume that F ∩ U(x) = ∅ for some x ∈ X. Then fx(F ) ⊆ {0}, and so 
f̄x(B \ {e}) ⊆ {0}. But this is a contradiction, since B \ {e} meets V (x) = f̄−1

x ((0, 2)). So we conclude that 
pd(X) ≤ pd(F (X)), as desired. �

To prove part (II) of Theorem 1.2, we simply have to recall that, by Theorem 1.2 and Proposition 2.9, if 
S �= ∅ then there is a neat 0-dimensional T2, hence T3.5 pd-example. Then we may apply Proposition 4.1 to 
obtain from X the T2 abelian topological group pd-example A(X).

5. Proof of Theorem 1.3: connected topological group pd-examples

We have seen in the previous section that if X is a neat T3.5 pd-example then the free (abelian) topological 
group over X is a pd-example as well. In fact, what we showed was that this construction preserves the 
values of both pd(X) and d(X). To obtain a proof of Theorem 1.3, we compose this construction with a 
procedure due to Hartman and Mycielski that, in turn embeds any (abelian) T2 topological group G in a 
larger (abelian) T2 topological group G• that is pathwise connected and locally pathwise connected. Under 
certain conditions this procedure also preserves the values of both pd(G) and d(G) and, for an appropriate 
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neat T3.5 pd-example X, then A(X)• is a pathwise connected and locally pathwise connected abelian T2
topological group pd-example.

We now describe the Hartman-Mycielski construction, following its presentation in Arhangel’skii and 
Tkachenko [1, 3.8.1], and then prove a few new results about it that will be needed. All topological groups 
we consider are assumed to be T2.

Let G be a topological group with neutral element e and with group operation written multiplicatively. 
G• is defined to be the set of all step functions f : J = [0, 1) → G such that, for some sequence 0 = a0 <

a1 < · · · < an = 1, the function f is constant on [ak, ak+1) for every k = 0, . . . , n−1. Define a binary 
operation ∗ on G• by (f ∗ g)(x) = f(x) · g(x) for all f, g ∈ G• and x ∈ G. Then every f ∈ G• has a unique 
inverse in G•, defined by f−1(x) = (f(x))−1. Then (G•, ∗) is a group with identity e•, where e•(r) = e for 
each r ∈ J . It is also easy to see that G can be identified with a subgroup of G• via x �→ x•, where x•(r) = x

for every r ∈ J .
Let V be a neighborhood of e in G, and for every ε > 0, put

O(V, ε) = {f ∈ G• : μ({r ∈ J : f(r) /∈ V }) < ε},

here μ denotes Lebesgue measure. The O(V, ε) are the neighborhoods of the neutral element e• of G• that 
generate its group topology. The following facts are known:

(HM1) ([1, 3.8.2]) G• is a topological group and is pathwise connected and locally pathwise connected.
(HM2) ([1, 3.8.3]) The function iG : G → G• defined by iG(x) = x• is a topological isomorphism of G onto 

a closed subgroup of G•.
(HM3) ([1, 3.8.8(e)]) d(G•) ≤ d(G).

We next prove that in (HM3) one actually has equality.

Lemma 5.1. d(G) ≤ d(G•).

Proof. Let D be dense in G•, and put E =
⋃

f∈D f(J). Since the range of every element of D is finite, 
|E| = |D|. We claim that E is dense in G. If not, let V be an open neighborhood of e and let x ∈ G be 
such that xV ∩ E = ∅. The nonempty open subset x• ∗ O(V, 12 ) of G• meets D, say in the point f . Let 
g ∈ O(V, 12 ) be such that f = x• ∗ g. Clearly, range(g) ∩ V �= ∅, say g(t) ∈ V . Then f(t) ∈ E, but also 
f(t) = x•(t)g(t) = xg(t) ∈ xV ⊆ G \E. This is a contradiction. �
Corollary 5.2. d(G) = d(G•).

To obtain conditions under which we also have pd(G) = pd(G•) we first make a little detour.

Lemma 5.3. If the infinite T3.5 space X is neat then so are both A(X) and F (X).

Proof. We prove this for F (X), the proof for A(X) being entirely similar. First observe that by (FG3) from 
section 4, we have |F (X)| = |X|. Let U be any open subset of F (X) containing the neutral element of F (X). 
Fix x ∈ X, and observe that xU contains x, hence xU ∩X is a nonempty open subset of X. This gives us 
that |U | ≤ |F (X)| = |X| on one hand and |X| = |xU ∩X| ≤ |U | on the other, hence we are done. �

The following is our crucial result concerning the Hartman-Mycielski construction.

Lemma 5.4. If G is neat and |G| ≥ c then G• is neat and pd(G•) = pd(G).
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Proof. That G• is neat follows by the same argument as in the proof of Lemma 5.3. The assumption |G| ≥ c

ensures that we have |G| = |G•|.
Let U : G → τ(G) be a neighborhood assignment on G. For every x ∈ G we have then a neighborhood 

Vx of the neutral element e of G such that xVx ⊆ U(x). Observe that V : G → τ(G•) defined by V (x) =
x• ∗ O(Vx, 12 ) is a partial neighborhood assignment on G• (note that we identify x with x•). Let A be a 
subset of G• of size pd(G•) such that A ∩ V (x) �= ∅ for every x ∈ G and put B =

⋃
f∈A f(J). Then 

|B| ≤ |A| because A is infinite and f(J) is finite for all f ∈ A. Now take an arbitrary point x ∈ G and let 
f ∈ A be such that f ∈ V (x) = x• ∗ O(Vx, 12 ). There is g ∈ O(Vx, 12 ) such that f = x• ∗ g. Clearly, then 
range(g) ∩ Vx �= ∅, say g(t) ∈ Vx. But then f(t) = x(t)g(t) ∈ xVx ⊆ U(x), hence B meets U(x). This proves 
that pd(G) ≤ pd(G•). Note that this part only used that G is infinite. In the proof of the reverse inequality, 
however, the assumption |G| ≥ c that ensures |G| = |G•| will play an essential role.

Let U : G• → τ(G•) be a neighborhood assignment on G•. For every f ∈ G• we may then take a 
neighborhood Vf of e in G and an εf > 0 such that f ∗O(Vf , εf ) ⊆ U(f). Consider the collection

V = {xVf : f ∈ G•, x ∈ G}

of open subsets of X which, using |G| ≥ c, has size at most |G|. Since G is neat, V can be pinned down by 
an infinite set D ⊂ G of size at most pd(G). Now let S be the set of all g in G• for which there exist for 
some n rational numbers 0 = b0 < b1 < · · · < bn−1 < bn = 1 and elements d0, . . . , dn−1 ∈ D such that g
takes the constant value dk on [bk, bk+1) for every k = 0, . . . , n−1. Clearly, we have then |S| = |D|.

For any fixed f ∈ G• there exist numbers 0 = a0 < a1 < ... < an = 1 such that the function f is 
constant xk on [ak, ak+1) for each 0 ≤ k < n. We may then choose rational numbers b1, . . . , bn−1 such that 
ak ≤ bk < ak+1 for each 1 ≤ k < n and 

∑n−1
k=1(bk − ak) < εf . Put b0 = 0 and bn = 1. For every 0 ≤ k < n, 

we can choose a point yk ∈ D ∩ f(ak)Vf , and then define an element g ∈ S by letting g(r) = yk for each 
r ∈ [bk, bk+1), 0 ≤ k < n. We claim that then g ∈ f ∗ O(Vf , εf ). To see this, it suffices to prove that the 
function h : J → G defined by h(t) = f(t)−1g(t) belongs to O(Vf , εf ), but this is clear from the easily checked 
fact that {r ∈ J : h(r) /∈ Vf} ⊂

⋃n−1
k=1 [ak, bk). Thus we have shown that S meets f ∗ O(Vf , εf ) ⊂ U(f) for 

all f ∈ G•, proving that pd(G•) ≤ pd(G). �
Corollary 5.5. Let X be a neat T3.5 space such that |X| ≥ c. Then X admits a closed embedding into a T3.5
topological group G such that

(1) d(X) = d(G),
(2) pd(X) = pd(G),
(3) G is neat,
(4) G is pathwise connected and locally pathwise connected.

In particular, if X is a neat T3.5 pd-example of size ≥ c then A(X)• is a pathwise connected and locally 
pathwise connected abelian topological group pd-example.

Now, [6, Theorem 3.3] implies that if there is μ ∈ S with μ ≥ c then there is a neat 0-dimensional T2, 
hence T3.5 pd-example of size ≥ c, completing the proof of Theorem 1.3.

6. Proof of Theorem 1.4

For every infinite T3.5 space X one can define the free locally convex R-vector space L(X) on X. This is 
a space with similar properties as the free groups that we considered in section 4. The space L(X) contains 
X as a closed subspace and at the same time X forms an R-vector space basis for L(X). Moreover, the 
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following defining property holds: every continuous mapping f from X to a locally convex R-vector space 
E can be extended to a continuous linear operator f̄ : L(X) → E. The existence and uniqueness of L(X)
was proved by Markov in [7].

We can treat L(X) in almost the same way as we treated the free topological groups F (X) and A(X). 
There is one important difference however: the statement (FG3) should be replaced by the following.

(FLC3) L(X) can be represented as the countable union of subspaces each of which is a continuous image 
of some finite power of X ×R.

So, to use Lemma 2.8 to conclude pd(X) = pd(X ×R) we need |X| = Δ(X) ≥ c.

Proposition 6.1. Let X be an infinite T3.5 space. Then d(X) = d(L(X)) and if, in addition, X is neat and 
|X| ≥ c then pd(X) = pd(L(X)).

Proof. That d(L(X)) ≤ d(X) is a direct consequence of (FLC3). The proof that d(X) ≤ d(L(X)) is 
completely analogous to the proof that d(X) ≤ d(F (X)) in Proposition 4.1. Now assume that X is neat 
and that |X| ≥ c. Then pd(X × R) = pd(X) by Lemma 2.8. Since X × R is clearly neat, we have by 
Corollary 2.3 that pd((X × R)n) = pd(X × R) = pd(X) for every 0 < n < ω. Hence again by (FLC3) 
we get pd(L(X)) ≤ pd(X). That pd(X) ≤ pd(L(X)) follows exactly as in the proof of Proposition 4.1 for 
F (X). �

Hence if there is a T3.5 pd-example X such that pd(X) ≥ c then L(X) is a locally convex R-vector space 
that is also a pd-example. Such a space X exists by the construction given in [6, Theorem 3.3], provided 
that there is a cardinal μ ∈ S with μ ≥ c. The proof of Theorem 1.4 is thus completed.
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