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1. Introduction

In this note, space means separable metric space. Let X and Y be spaces with involutions σ and τ , 
respectively. We say that a map f : (X, σ) → (Y, τ) is equivariant provided that for every x ∈ X, τ(f(x)) =
f(σ(x)).

Let σQ, σ�2 and σR∞ be the standard involutions of Q, �2 and R∞, respectively, given by the formula 
x �→ −x. Here Q is the Hilbert cube 

∏∞
n=1[−1, 1]n, �2 is separable Hilbert space and R∞ is the countable 

infinite product of real lines.
An involution on a space is called based-free if it has a unique fixed-point. Anderson asked in 1966 whether 

all based-free involutions on Q are conjugate. This formidable and classical problem which motivated the 
results in the present note as well as in its predecessor [12], is still unsolved. For more information on it, see 
Wong [14] and Berstein and West [4].

* Corresponding author.
E-mail addresses: j.vanMill@uva.nl (J. van Mill), west@math.cornell.edu (J.E. West).
URL: http://staff.fnwi.uva.nl/j.vanmill/ (J. van Mill).
https://doi.org/10.1016/j.topol.2021.107968
0166-8641/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.topol.2021.107968
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2021.107968&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:j.vanMill@uva.nl
mailto:west@math.cornell.edu
http://staff.fnwi.uva.nl/j.vanmill/
https://doi.org/10.1016/j.topol.2021.107968
http://creativecommons.org/licenses/by/4.0/


2 J. van Mill, J.E. West / Topology and its Applications 311 (2022) 107968
In an earlier version of this note, we proved that (Q, σQ) is universal for the class of all compact spaces 
with a based-free involution. That is, for every compact space X with based-free involution τ , there exists 
an equivariant embedding i : (X, τ) → (Q, σQ). We are indebted to the referee for pointing out that this 
result was proved earlier by Antonyan in [3, Corollary 2]. He also provided us with a simple and direct proof 
of this which we include here with his permission (see Theorem 3.3).

The compactness of X is essential in Antonyan’s result, since, as we will show here, there does not exist 
an equivariant embedding (�2, σ�2) → (Q, σQ). We will also show that (�2, σ�2) is universal for all spaces with 
based-free involutions. And, if the space under consideration is Polish, i.e., complete, then the embedding 
can be chosen to be a closed embedding. The same results are not true for (R∞, σR∞): there does not exist 
an equivariant embedding (�2, σ�2) → (R∞, σR∞).

For background on infinite-dimensional topology, see [5], [6] and [10,11].

2. Preliminaries

If f : X → X is a function, then Fix(f) denotes its fixed-point set. We let ι : [−1, 1] → [−1, 1] denote 
the standard reflection.

By s we denote 
∏∞

n=1(−1, 1)n. Moreover, σs denotes the standard involution on s. Clearly, the pairs 
(R∞, σR∞) and (s, σs) are topologically conjugate.

Let 0 be the point in s all coordinates of which are 0.
It is a consequence of a result in Engelking [8] that for every space X and homeomorphism f of X there 

exists a compactification bX of X such that f can be extended to a homeomorphism f̄ : bX → bX. Observe 
that if f is an involution, then so is f̄ . This consequence of Engelking’s theorem can also be proved rather 
easily by using Wallman compactifications. For background, see [11, §A.9]. We use these compactifications 
to prove the following result that will be important later on.

Theorem 2.1. Let X be a space with involution τ . Then

(1) X has a compactification bX such that τ can be extended to an involution τ̄ : bX → bX.
(2) If (X, τ) is based-free, then the following statements are equivalent:

(a) There is a compactification bX of X such that τ can be extended to a based-free involution τ̄ : bX →
bX.

(b) The unique fixed-point � of τ has arbitrarily small neighborhoods U in X such that X \ U can be 
covered by a finite collection F of closed subsets of X such that for every F ∈ F , τ(F ) ∩ F = ∅.

Proof. As we already noted, (1) follows from [8]. Alternatively, one can use the method of proof of (2).
For (2), first observe that (a) ⇒ (b) is trivial. For if � is the unique fixed-point of τ̄ , then it is the 

unique fixed-point of τ . If U is a small open neighborhood of � in bX, then for every p ∈ bX \ U has the 
property that τ(p) �= p. Hence the existence of the family F follows from a straightforward compactness 
argument. For (b) ⇒ (a), let {Un : n ∈ N} be a neighborhood base for � in X such that for every n, 
there exists a finite family Fn of closed subsets of X such that X \ Un ⊆

⋃
Fn and for every F ∈ Fn we 

have τ(F ) ∩ F = ∅. The countable collection {Un : n ∈ N} ∪
⋃∞

n=1 Fn of closed subsets of X can by [11, 
A.9.1] be extended to a Wallman base G0. The collection G0 ∪ τ(G0) (here τ(G0) denotes {τ(G) : G ∈ G0}) 
can by the same result be extended to a Wallman base G1. Continue in this way recursively, and obtain 
Wallman bases G0 ⊆ G1 ⊆ · · · ⊆ Gn ⊆ · · · such that G =

⋃∞
n=0 Gn is a Wallman base (trivial from the 

definition of a Wallman base, [11, p. 494]) which is invariant under τ . Now let bX be the corresponding 
Wallman compactification ω(X, G ). Since G is τ -invariant, it is easy to see that τ can be extended to a 
homeomorphism τ̄ : bX → bX. (See e.g., [11, p. 189 lines 1-3, and Exercise A.9.4].) Now let p be any point 
of bX different from �. There exists n such that p /∈ Un, where the closure is taken in bX. Consider the 
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collection Fn. The point p has to be in the closure in bX of an element F of Fn since Fn is finite. But the 
disjoint sets F and τ(F ) belong to the Wallman base G and hence F and τ(F ) have disjoint closures in bX, 
[11, A.9.4]. Since τ̄(p) is in the closure of τ(F ) in bX, this shows that p is not a fixed-point of τ̄ . In other 
words, τ̄ is based-free. �
Corollary 2.2. For every space X with based-free involution σ, there exists a Polish space Y with based-free 
involution τ such that (X, σ) can be equivariantly embedded in (Y, τ). Moreover, if the unique fixed-point �
of σ satisfies the condition in Theorem 2.1(b), then Y can be chosen to be compact.

Proof. Let � be the unique fixed-point of σ, and let bX and σ̄ be such as in Theorem 2.1(1). Put F =
Fix(σ̄) \ {�}, and Y = bX \ F . Then Y and τ = σ̄�Y are clearly as required. The second statement is 
obvious from Theorem 2.1(2). �
3. The compact case

We will now present the argument of the referee for the universality of (Q, σQ).

Lemma 3.1. Let X a compact space with involution τ . Then for every closed τ -invariant subset A of X and 
x ∈ X \ A, there is an equivariant map ϕ : (X, τ) → ([−1, 1], ι) such that ϕ(A) = 0 and ϕ(x) �= 0 (and 
hence ϕ(τ(x)) �= 0).

Proof. Pick an arbitrary t ∈ (0, 1], and define f : {x, τ(x)} ∪ A → [−1, 1] by f(x) = t, f(τ(x)) = −t and 
f(a) = 0 for every a ∈ A. By Tietze’s theorem, we can extend f to a continuous function f̄ : X → [−1, 1]. 
Define ϕ : X → [−1, 1] by ϕ(z) = f̄(z)−f̄(τ(z))

2 . Then ϕ is equivariant, ϕ(x) = t > 0, and since A is 
τ -invariant, ϕ(A) = 0. �
Corollary 3.2. Let X a compact space with based-free involution τ . Then for all distinct points x and y in 
X, there is an equivariant map ϕ : (X, τ) → ([−1, 1], ι) such that ϕ(x) �= ϕ(y).

Proof. Let � denote the unique fixed-point of τ , and let x, y ∈ X be distinct. Then x = � or x = τ(y) or 
x /∈ {�, y, τ(y)}. In all cases we are done by Lemma 3.1. �

So if X is a compact space with a based-free involution τ , then the equivariant maps (X, τ) → ([−1, 1], ι)
separate the points of X. A standard reduction argument shows that countably many of such maps are 
sufficient to separate the points of X. The diagonal product of these functions yields the desired equivariant 
embedding (X, τ) → (Q, σQ). This completes the proof of the following result.

Theorem 3.3 (Antonyan [3]). Every compact space with a based-free involution admits an equivariant em-
bedding in (Q, σQ).

We now use the method in the proof of Lemma 3.1 to prove a generalization for later use. The pseudo-
boundary, B(Q), of Q is 

⋃∞
i=1({−1, 1}i × Πj �=i[−1, 1]j).

Proposition 3.4. Let X be a compact space with involution τ . Let S be a nonempty invariant Gδ-subset of 
X such that S ∩ Fix(τ) = ∅. Then there is an equivariant map f : (X, τ) → (Q, σQ) having the following 
properties:

(1) f−1({0}) = Fix(τ),
(2) f−1(B(Q)) = X \ (S ∪ Fix(τ)),
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(3) f�S : S → f(S) is a homeomorphism.

Proof. Clearly, Y = X \ (S ∪Fix(τ)) is σ-compact and τ -invariant. Since τ is fixed-point free on Y , we can 
write Y as 

⋃∞
n=1 Cn, where each Cn is compact and Cn ∩ τ(Cn) = ∅.

For every n ∈ N and x ∈ X \ (Cn ∪ τ(Cn) ∪ Fix(τ)), let Un
x be an open neighborhood of x in X such 

that Un
x ∩ τ(Un

x ) = ∅,

Un
x ∪ τ(Un

x ) ⊆ X \ (Cn ∪ τ(Cn) ∪ Fix(τ))

and diam(Un
x ) < 1

n . For every n, there is a countable subset Xn of X \ (Cn ∪ τ(Cn) ∪ Fix(τ)) such that

⋃
{Un

x : x ∈ Xn} = X \ (Cn ∪ τ(Cn) ∪ Fix(τ)).

Let {An : n ≥ 0} be a partition of N into infinite sets. Moreover, let π0 : A0 → N be a surjection, and 
for n ≥ 1, let πn : An → {n} ×Xn be a surjection.

For every n ∈ A0, let fn : X → [−1, 1] be a continuous map having the following properties: f−1
n ({1}) =

Cπ0(n), f−1
n ({−1}) = τ(Cπ0(n)) and fn(Fix(τ)) = 0. As in the proof of Lemma 3.1, define ψn : X → [−1, 1]

by ψn(z) = fn(z)−fn(τ(z))
2 . Then ψn is equivariant, ψ−1

n ({1}) = Cπ0(n), and ψ−1
n ({−1}) = τ(Cπ0(n)). To 

prove that ψ−1
n ({1}) = Cπ0(n), first note that ψn(Cπ0(n)) = 1. If p ∈ X is such that ψn(p) = 1, then 

fn(p) − fn(τ(p)) = 2 and so fn(p) = 1. It follows similarly that ψ−1
n ({−1}) = τ(Cπ0(n)).

Pick an arbitrary t ∈ (0, 1]. For n ∈ N and x ∈ Xn, let fn
x : X → [−t, t] be a continuous map such 

that (fn
x )−1({t}) = Un

x , (fn
x )−1({−t}) = τ(Un

x ) and fn
x (Fix(τ)) = 0. Define ϕn

x : X → [−t, t] by ϕn
x(z) =

fn
x (z)−fn

x (τ(z))
2 . Then ϕn

x is equivariant, and, as above, (ϕn
x)−1({t}) = Un

x and (ϕn
x)−1({−t}) = τ(Un

x ).
Define f : (X, τ) → (Q, σQ) in the standard way by

f(z)m =
{
ψm(z) (m ∈ A0),
ϕn
x(z) (m ∈ An with n ≥ 1, and πn(m) = (n, x)).

Then f is equivariant and we claim that it satisfies (1) through (3).
For (1), first observe that f(Fix(τ)) = 0. Next, assume that z ∈ X \Fix(τ). First assume that z ∈ Cn for 

certain n ∈ N. Pick m ∈ A0 such that π0(m) = n. By construction, f(z)m = ψm(z) = 1 since z ∈ Cπ0(m). 
Next assume that z ∈ S. There exists x ∈ X1 such that z ∈ U1

x . But then for m ∈ A1 with π1(m) = (1, x)
we have f(z)m = ϕ1

x(z) = t > 0. Hence, indeed, f−1({0}) = Fix(τ).
For (2), pick an arbitrary z in some Cn. There is m ∈ A0 such that π0(m) = n. Then f(z)m = ψm(z) = 1, 

hence f(z) ∈ B(Q). Conversely, take an arbitrary z ∈ X \
⋃∞

n=1 Cn. If m ∈ N \ A0, then f(z)m = ϕn
x(z)

for some n and x and hence by construction, |f(z)m| ≤ t < 1. Let m ∈ A0. Now ψ−1
m ({1}) = Cπ0(m), and 

ψ−1
m ({−1}) = τ(Cπ0(m)) and since z /∈ Cπ0(m) ∪ τ(Cπ0(m)), we get f(z)m ∈ (−1, 1). Hence f(z) ∈ s. We 

conclude that, indeed, f−1(B(Q)) = X \ (S ∪ Fix(τ)).
For (3), we will first show that g = f�S : S → f(S) is one-to-one. To this end, pick arbitrary distinct 

z0, z1 ∈ S. Pick n so large that 2
n < d(z0, z1). There exists x ∈ Xn such that z0 ∈ Un

x . Since diam(Un
x ) < 1

n , 
z1 /∈ Un

x . If z1 ∈ τ(Un
x ), then t = ϕn

x(z0) �= ϕn
x(z1) = −t. Moreover, if z1 /∈ τ(Un

x ), then z1 /∈ Un
x ∪ τ(Un

x ), 
and hence by the above, t = ϕn

x(z0) �= ϕn
x(z1) < t. Hence if m ∈ An is such that πn(m) = (n, x), then 

f(z0)m �= f(z1)m.
To prove that g is a homeomorphism, it suffices to prove that for every x ∈ S we have that the set 

f−1({f(x)}) equals {x}. Assume that z ∈ X and x ∈ S are distinct while f(z) = f(x). By we just proved 
z /∈ S, and there are two cases. Assume first that z ∈ Fix(τ). But then x ∈ Fix(τ) by (1) which contradicts 
our assumptions. Assume next that z /∈ Fix(τ). By (2) it consequently follows that f(z) ∈ B(Q) and hence 
f(x) ∈ B(Q). But this is impossible since f(S) ⊆ s, again by (2). �
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4. Universality of (s, σs)

In this section we will characterize for which spaces and based-free involutions, (s, σs) is universal.

Theorem 4.1. Let X be a space with based-free involution τ . The following statements are equivalent:

(1) The unique fixed-point � of τ has arbitrarily small neighborhoods U in X such that X \U can be covered 
by a finite collection of closed subsets F of X such that for every F ∈ F , τ(F ) ∩ F = ∅.

(2) (X, τ) can be equivariantly embedded in (s, σs).

Moreover, if X is Polish, then the embedding in (2) can be chosen to be a closed embedding.

Proof. Since (Q, σQ) is based-free, (2) ⇒ (1) follows by a trivial compactness argument. For (1) ⇒ (2), 
assume that � is the unique fixed-point of τ . We may assume by Corollary 2.2, that X is Polish (to prove 
all there remains simultaneously). Let (bX, ̄τ) be the compactification of X with based-free involution τ̄
that we get from Theorem 2.1. By Proposition 3.4, there is an equivariant map f : bX → Q such that 
f−1({0}) = Fix(τ̄) = {�} and f−1(B(Q)) = bX \ ((X \ {�}) ∪ {�}) = bX \ X. Hence f�X is a closed 
equivariant embedding of X into (s, σs). �

It is a natural question whether the condition (1) in this result is always satisfied. But it is not, in [12, 
p. 7331] it was shown that any equivariant compactification of (�2, σ�2) has fixed-points in its remainder. 
Hence, as was noted in [12], (�2, σ�2) can not be equivariantly embedded in (s, σs). In particular, it follows 
that the involutions on �2 and s are not conjugate, despite the fact that by Anderson [1], �2 and s are
homeomorphic. In other words, as the referee of [12] noted, there does not exist an odd homeomorphism 
�2 → s, that is, a homeomorphism α : �2 → s such that for every x ∈ �2, α(−x) = −α(x). Recently, 
the unpublished report of Wong [13] from 1972 came to our attention.1 It turns out that the question of 
whether there is an odd homeomorphism �2 → s is due to him [13, Question 4]. It was answered in [12] by 
the authors of the present note, unaware of the fact that it was asked as early as in 1972! Our result also 
answers Question 1 in [13] in the negative. There are also some universality results in [13], but they are of 
a different nature than ours.

Just for fun, we will now show by a direct argument that essentially can be found in [12], that (�2, σ�2)
does not satisfy condition (1) in Theorem 4.1. Indeed, consider the open ball U = {x ∈ �2 : ‖x‖ < 1

2}. 
Assume that F is a finite collection of closed subsets of �2 covering �2 \ U such that for every F ∈ F , 
F ∩σ�2(F ) = ∅. Then the sphere S = {x ∈ �2 : ‖x‖ = 1} is covered by F . Pick m so large that |F | −2 < m. 
The set

Sm = {(x1, . . . , xm+1, 0, 0, 0, · · · ) :
m+1∑
i=1

x2
i = 1}

is a copy of the m-sphere in S and G = {F∩Sm : F ∈ F} is a closed cover of Sm, no pair of points contains an 
antipodal pair. But this contradicts the Lusternik-Schnirelmann Theorem, [7, Chapter 16, Corollary 6.2(3)].

5. A ‘model’ for (�2, σ�2)

As was shown in the previous section, (s, σs) and (�2, σ�2) are very different. It looks simpler to study 
(s, σs) than (�2, σ�2) since it is so nicely placed in its equivariant compactification (Q, σQ). In this section, 

1 This report can be downloaded from the website of the Centre of Mathematics and Computer Science in Amsterdam: https://
ir .cwi .nl /pub /7452.

https://ir.cwi.nl/pub/7452
https://ir.cwi.nl/pub/7452
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we use the characterization theorem 2.7 from [12] to show that (�2, σ�2) can be placed as nicely in Q as 
(s, σs). As we saw in the previous section, the involution on Q for this must be different from σQ. But a 
slightly adapted one does work, as we will show here. Our ‘model’ for (�2, σ�2) will be used in the next 
section to show that (�2, σ�2) is universal for all spaces with a based-free involution.

Put Q̂ = Q × I and let the involution σQ̂ on Q̂ be defined by σQ̂ = σQ × 1I. Here 1I denotes the identity 
on I = [0, 1]. Let

M = ((s \ {0}) × I) ∪ {(0, 0)}.

Lemma 5.1. M ≈ �2.

Proof. Its complement is the capset (B(Q) ∪ {0}) × I) \ {(0, 0)} from which the result easily follows. For 
details, see [10, §6.5 and Exercises 1 and 2 therein]. �

It is trivial that σQ̂(M) = M . Let τ denote the restriction of σQ̂ to M .

Theorem 5.2. (�2, σ�2) and (M, τ) are topologically conjugate.

We will use the characterization theorem 2.7 in [12]: a based-free involution of a space E homeomorphic 
to �2 is topologically conjugate to (�2, σ�2) if and only if the fixed point � has a basis V1 ⊇ V 2 ⊇ V2 ⊇ V 3 ⊇
· · ·Vn ⊇ V n+1 ⊇ · · · of invariant (open) neighborhoods such that for infinitely many n, Vn is contractible 
and for infinitely many n, E \ V n is contractible.

Proof. Let U be a ‘small’ open contractible σQ-invariant neighborhood of 0 in Q. Then V = U × [0, t) is 
for suitable t > 0 a ‘small’ contractible open σQ̂-invariant neighborhood of (0, 0) in Q̂. Clearly, W = V ∩M

is contractible since V \M is a σ-Z-set in V and hence homotopically negligible, [10, 7.2.9]. Moreover, W
is τ -invariant. Now consider Ṽ = U × [0, t] and assume that t < 1. A moment’s reflection shows that the 
closure of W in M equals Ṽ ∩M . The set M \ Ṽ can be deformed onto (s \ {0}) ×{1}, which is contractible 
(use for example that {0} is a Z-set in s). Hence M \ Ṽ is contractible and we are done. �

So we conclude that (�2, σ�2) can be as conveniently placed in (Q̂, σQ̂) as (s, σs) in (Q, σQ). The pair 
(Q̂, σQ̂) is an equivariant compactification of (�2, σ�2). This implies among other things that the involution 
σ�2 seen as a homeomorphism on s (via any homeomorphism between �2 and s) is conjugate to a homeo-
morphism that extends to a homeomorphism on Q. Not all homeomorphisms on s share this property, see 
[9].

6. Universality of (�2, σ�2)

We will prove here the announced universality properties of (�2, σ�2) by using the ‘model’ (M, τ) described 
in §5.

Theorem 6.1. Let X be a space with based-free involution τ . Then (X, τ) can be equivariantly embedded in 
(�2, σ�2). Moreover, if X is Polish, then the embedding can be chosen to be a closed embedding.

By Corollary 2.2 it suffices to prove that for Polish X we can find a closed equivariant embedding.
So let X be a Polish space with based-free involution σ and denote the unique fixed-point of σ by �. 

By Theorem 2.1(1), there is a compactification bX of X such that σ can be extended to an involution 
σ̄ : bX → bX. By abuse of notation, we will denote σ̄ also by σ. Observe that Fix(σ) ∩X = {�}.
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Let � be any admissible metric on bX bounded by 1
2 . Then d(x, y) = �(x, y) + �(σ(x), σ(y)) is admissible 

as well, and σ is an isometry with respect to d. Moreover, d is bounded by 1. This is the metric on bX that 
we will use in the sequel.

Put S = X \ {�}. By Proposition 3.4, there is an equivariant map f : (bX, σ) → (Q, σQ) such that 
f−1({0}) = Fix(σ), f−1(B(Q)) = bX \ (S ∪ Fix(σ)), and f�S : S → f(S) is a homeomorphism. Observe 
that

f(bX) ∩ s = f(S) ∪ {0} = f(X),

and g = f�X is one-to-one and continuous. But it is not necessarily a homeomorphism. For if Fix(σ) contains 
more than one point, then there is a sequence (xn)n in X which converges to an element p ∈ Fix(σ) \ {�}
(simply use that X is dense in bX). Hence the sequence (xn)n is closed and discrete in X, but (f(xn))n
converges to 0 in f(X). Hence g is in that case not a homeomorphism.

Observe that f(X) is closed in s and σs-invariant. Define ϕ : X → M by ϕ(x) = (f(x), d(x, �)). Clearly, 
ϕ is continuous and one-to-one. We will check that ϕ is the required embedding.

Assume that ϕ(xn) → (p, q) in M for some sequence (xn)n in X. We will show that for some x ∈ X we 
have ϕ(x) = (p, q) and xn → x. This will show simultaneously that ϕ(X) is closed in M and ϕ : X → ϕ(X)
is a homeomorphism.

Indeed, since f(xn) → p, and f(X) is closed in s, there exists x ∈ X such that p = f(x). There are 
two cases. If x ∈ S = X \ {�}, then xn → x since f�S : S → f(S) is a homeomorphism. And then, 
d(xn, �) → d(x, �) and so (p, q) = limn→∞(f(xn), d(xn, �) = (f(x), d(x, �)) = ϕ(x). Assume next that x = �

and so p = 0. If xn → �, then f(xn) → 0, d(xn, �) → 0 and so (p, q) = (0, 0) = ϕ(x). So it remains to check 
what happens if xn �→ �. Hence we may assume without loss of generality that for some ε > 0 we have that 
d(xn, �) ≥ ε for every n. Now ϕ(xn) = (f(xn), d(xn, �)) → (0, q) and q ≥ ε. Hence (p, q) /∈ M , which is a 
contradiction.

It remains to show that ϕ is equivariant. But this is easy. Indeed, if x ∈ X is arbitrary, then since σ is 
an isometry with respect to d,

ϕ(σ(x)) = (f(σ(x)), d(σ(x), �)) = (σQ(f(x)), d(x, �)) = τ(ϕ(x)),

as required.

Remark 6.2. In an earlier version of this note, we proved Theorem 6.1 by a different method. It was based 
on the negligibility results in Anderson, Henderson and West [2]. The proof presented here, which uses the 
argument of the referee that we mentioned earlier, is, in our opinion easier, more direct and transparent. 
For that reason we decided to present the present proof instead of the old one. The results in §§4 and 5 of 
the present note are new compared to the results in the earlier version.

References

[1] R.D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Am. Math. Soc. 72 (1966) 
515–519.

[2] R.D. Anderson, D.W. Henderson, J.E. West, Negligible subsets of infinite-dimensional manifolds, Compos. Math. 21 (1969) 
143–150.

[3] S.A. Antonyan, On based-free compact Lie group actions on the Hilbert cube, Mat. Zametki 65 (2) (1999) 163–174 (in 
Russian); English transl.: Math. Notes 65 (1–2) (1999) 135–143.

[4] I. Berstein, J.E. West, Based free compact Lie group actions on Hilbert cubes, in: Proc. Sympos. Pure Math., vol. XXXII, 
Amer. Math. Soc., Providence, R.I., 1978, pp. 373–391.

[5] C. Bessaga, A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, Monografie Matematyczne, vol. 58, PWN—
Polish Scientific Publishers, Warsaw, 1975.

[6] T.A. Chapman, Lectures on Hilbert cube manifolds, in: Expository Lectures from the CBMS Regional Conference Held at 
Guilford College, October 11–15, 1975, in: Regional Conference Series in Mathematics, vol. 28, American Mathematical 
Society, Providence, R. I., 1976.

http://refhub.elsevier.com/S0166-8641(21)00386-2/bibC69EDA933E2FB81155DDE0B55DE5E22Fs1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bibC69EDA933E2FB81155DDE0B55DE5E22Fs1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bibD9034BD1DE401BD92315DA15F7C60F4Fs1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bibD9034BD1DE401BD92315DA15F7C60F4Fs1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bibCED0A6361446D44E84842D407DB212C6s1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bibCED0A6361446D44E84842D407DB212C6s1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib6E1576B07F5FBBBE7F090516BE478866s1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib6E1576B07F5FBBBE7F090516BE478866s1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib5CFDB867E96374C7883B31D6928CC4CBs1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib5CFDB867E96374C7883B31D6928CC4CBs1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib8F08AF9B294DC9744358D47B9F994A2As1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib8F08AF9B294DC9744358D47B9F994A2As1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib8F08AF9B294DC9744358D47B9F994A2As1


8 J. van Mill, J.E. West / Topology and its Applications 311 (2022) 107968
[7] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
[8] R. Engelking, Sur la compactification des espaces métriques, Fundam. Math. 48 (1960) 321–324.
[9] J. van Mill, A homeomorphism on s not conjugate to an extendable homeomorphism, Proc. Am. Math. Soc. 105 (1989) 

250–253.
[10] J. van Mill, Infinite-Dimensional Topology: Prerequisites and Introduction, North-Holland Publishing Co., Amsterdam, 

1989.
[11] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland Publishing Co., Amsterdam, 2001.
[12] J. van Mill, J.E. West, Involutions of �2 and s with unique fixed points, Trans. Am. Math. Soc. 373 (2020) 7327–7346.
[13] R.Y.T. Wong, Involutions on the Hilbert spheres and related properties in (I−D) spaces, in: Rapport Mathematisch 

Centrum (Amsterdam) ZN, vol. 50, 1972, pp. 1–22.
[14] R.Y.T. Wong, Periodic actions on the Hilbert cube, Fundam. Math. 83 (1974) 203–210.

http://refhub.elsevier.com/S0166-8641(21)00386-2/bibCC764B2A930F1286FD9B78C8DD57716As1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib0B47D466970862BC39C140438013920Bs1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib7B75F697953738FAEA32417FD6B0FA4Cs1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib7B75F697953738FAEA32417FD6B0FA4Cs1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib46BD1EAC02F1477C377FD7ACCA737796s1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib46BD1EAC02F1477C377FD7ACCA737796s1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib28CAD3487DBD231D345ADDF0D004D0AEs1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib09CD81D3D70ACF658A6E917FA03215DFs1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib2B85B6B6565CA9984223D69B9155E125s1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib2B85B6B6565CA9984223D69B9155E125s1
http://refhub.elsevier.com/S0166-8641(21)00386-2/bib6B26015451F054FA25255DB266FD6AB5s1

	Universal based-free involutions
	1 Introduction
	2 Preliminaries
	3 The compact case
	4 Universality of (s,σs)
	5 A ‘model’ for (l2,σl2)
	6 Universality of (l2,σl2)
	References


