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DENSE TOPOLOGICAL GROUPS IN PAROVIČENKO
SPACES

A. V. ARHANGEL’SKII AND J. VAN MILL

Abstract. We show that the statement ‘the Čech-Stone remain-
der of the discrete space ω contains a dense subspace which is
(homeomorphic to) a topological group’ is not a statement of ZFC.
We also discuss the question of whether this result can be extended
to Parovičenko spaces.

1. Introduction

All topological spaces under discussion are assumed to be Tychonoff. A
space X is called a Parovičenko space if

(P1) X is a zero-dimensional compact space without isolated points
with weight c,

(P2) every two disjoint open Fσ-subsets have disjoint closures, and
(P3) every nonempty Gδ in X has nonempty interior.

Moreover, X is called an F -space, [14], if each cozero-set in X is C∗-
embedded in X. A normal space is an F -space if and only if X satisfies
(P2), [21, 1.1.2(b)]. And, a space that satisfies (P3) is usually called an
almost P -space.

Parovičenko [22] showed that under the Continuum Hypothesis (abbre-
viated: CH), every Parovičenko space is homeomorhic to ω∗, the Čech-
Stone-remainder βω \ ω of the countable discrete space ω. In fact, CH is
equivalent to the statement that every Parovičenko space is homeomor-
phic to ω∗, [9].
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The space ω∗ is widely studied in set theory and set theoretic topology.
In recent years, there was a lot of interest in the algebraic structure of βω
and ω∗. The space ω∗ is not a topological group, for example because each
compact topological group satisfies the countable chain condition while
ω∗ has cellularity c. But it is a compact right topological semigroup. For
details, see e.g. [16]. The question of whether it is homogeneous was first
answered in the negative under CH in [23], and later in ZFC in [13] (see
also [20]).

If X is a compact subspace of ω∗ then it is (homeomorphic to) a topo-
logical group if and only if it is finite. Such an X would be a closed sub-
space of ω∗ satisfying the countable chain condition and hence it would
be extremally disconnected (abbreviated: ED), [21, 1.2.2], and hence fi-
nite by [12]. There are many subspaces of ω∗ that are topological groups,
even uncountable ones. There exists a pairwise disjoint family consist-
ing of nonempty open subsets of ω∗ of cardinality c. Consequently, ω∗

contains a discrete topological group of cardinality c.
These considerations prompt an interesting problem: does there exist

an infinite crowded subspace of ω∗ which is (homeomorphic to) a topologi-
cal group? Here a space is called crowded if it contains no isolated points.
We will show that the affirmative answer to this question follows from
(unpublished) work of van Douwen. He proved that if X is a P -space of
weight κ, then X can be embedded in the projective cover E(2κ) of 2κ,
and hence in β(2κ), see [10, §4]. This prompts the question of whether
there exists a dense subspace of ω∗ which is a topological group. Under
CH, this question has an affirmative answer. In [6, 3.5] it was shown that
(under CH), the subspace of ω∗ consisting of all the P -points of ω∗, is
homeomorphic to the space X = 2ω1 with the Gδ-topology, which is a
topological group. We will show that the statement ‘ω∗ contains a dense
topological group’ which follows from CH, is not a statement of ZFC. In
fact, we will show that the existence of a dense topological group in ω∗

implies the existence of a P -point in ω∗. Hence our conclusion follows
from the famous Shelah P -point Independence Theorem, [25].

2. The main result

If X is a space, then Xδ denotes X with the topology generated by the
Gδ-subsets of X. Our basic space of interest here is G = (2ω1)δ, where
2ω1 is the Cantor cube of weight ω1. This space was studied earlier, see
e.g., [17] and [7]. It is clear that G is a P -space as well as a (Boolean)
topological group.

We will first discuss the question how the subspaces of ω∗ look like
that are (homeomorphic to) topological groups. As we pointed out in §1,
ω∗ contains a discrete subspace of size c, which is obviously a topological
group. So the question becomes interesting (and nontrivial) for the case
of crowded subspaces.
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Now consider the group G from above. It has weight c (= 2ω) and
hence can be embedded in 2c. By van Douwen’s result quoted in §1, G
embeds in the projective cover (absolute) of 2c which in turn embeds in
βω by [11] (for details, see Remark 2 in [10]). Hence, G embeds in ω∗.

We now turn to dense subspaces.
If x is a P -point of X, then we call x nice if the character of x in X

equals the π-character of x in X.
The following lemma is well-known, its proof is included for the sake

of completeness.

Lemma 2.1. Let G be a topological group. Then for every neighborhood
U of the neutral element e of G there is a Gδ-subgroup S of G that is
contained in U .

Proof. Let U0 be a symmetric open neighborhood of e that is contained
in U . For every n < ω, let Un+1 be a symmetric open neighborhood of e
such that U2

n+1 ⊆ Un. Then S =
⋂

n<ω Un is clearly as required. □

The following lemma may also be known, but we do not know a refer-
ence.

Lemma 2.2. Any dense subspace of an almost P -space is an almost P -
space.

Proof. Let X be almost P , and let Y be dense in Y . If S is a Gδ-subset
of Y containing the point y ∈ Y , then there is a Gδ-subset T of X such
that S = T ∩ Y . By assumption, S contains a nonempty open subset U .
Hence S contains the nonempty open (in Y ) subset U ∩ Y . Observe that
we used that Y is dense to ensure that U ∩ Y ̸= ∅. □

Theorem 2.3. Let Y be a dense subspace of an almost P -space X. If Y
is a topological group, then every point of Y is a nice P -point of X.

Proof. For every n, let Un be an open neighborhood in Y of the neutral
element e of Y . By Lemma 2.1, there is a Gδ-subgroup S of Y such that
e ∈ S ⊆

⋂
n<ω Un. Lemma 2.2 gives us that S has nonempty interior in

Y . But this means that S is open being a subgroup of Y . Hence e is a
P -point of Y which has the additional property that its character and its
π-character in Y agree (since Y is a topological group). Since Y is dense
in X, it consequently follows that e is a nice P -point in X. □

If τ is an infinite cardinal and X is a space, then A is a Gτ subset of X
if A is the intersection of at most τ open subsets of X. If every nonempty
Gτ subset of X has nonempty interior, then we say that X is an almost
Pτ -space.
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Suppose now that the almost Pτ -space X contains a dense in X topo-
logical group G. Then the neutral element e of G is a Pτ -point of X. The
proof is practically the same as proof of Theorem 2.3 and so we leave it
to the reader.

So being a P -space is a necessary condition for a topological group to
have a compactification which is an almost P -space. It is natural to ask
whether this is also sufficient. It is not, for example because no compacti-
fication of a countable infinite discrete group is an almost P -space. On the
other hand, the Alexandroff one-point compactification of an uncountable
discrete group is an almost P -space. Thus, we are left with the following
question: is it true that every non-discrete topological group, which is a
P -space, is homeomorphic to a dense subspace of some compact almost
P -space? Let us show that the answer is in the negative. First observe
that no noncompact Lindelöf space has a compactification which is an al-
most P -space. Hence no non-discrete Lindelöf topological group which is
a P -space has a compactification which is an almost P -space. That such
a group exists is well-known. An example is the free topological group
of the one-point Lindelöffication of an uncountable discrete space. For
details, see e.g. [1]. We will show in Theorem 3.1 below that the topolog-
ical group G from above does have a compactification which is an almost
P -space in ZFC. In §1 we observed that under CH, the space ω∗ is such a
compactification.

We conclude from Theorem 2.3 that if there is a dense subspace of ω∗

which is a topological group, then there exist nice P -points in ω∗. But
more can be concluded.

Corollary 2.4. If a finite product of copies of ω∗ has a dense subspace
which is a topological group, then ω∗ contains a nice P -point.

Proof. An arbitrary finite product of almost P -spaces is again almost P .
Hence, if a finite product X of copies of ω∗ contains a dense subspace
which is a topological group, then X contains a nice P -point which in
turn implies that ω∗ contains a nice P -point. □

It is convenient to introduce the following statement, where κ ≥ 1 is a
cardinal number:

(∗)κ The product of κ copies of ω∗ contains a dense subspace which is
a topological group.

Under CH, any product of copies of ω∗ contains a dense subspace which
is a topological group since ω∗ does. Hence CH implies (∗)κ for all κ ≥ 1.
But for finite κ, (∗)κ is not a theorem of ZFC by the famous Shelah P -point
Independence Theorem, [25], and Corollary 2.4.



DENSE TOPOLOGICAL GROUPS IN PAROVIČENKO SPACES 283

No infinite product of nontrivial spaces is almost P . Hence the ar-
gument that was used in the proof of Corollary 2.4, does not apply for
infinite products of copies of ω∗. This prompts the following question.
Question 2.5. Is it consistent that (∗)κ fails for some cardinal κ ≥ ω?

By the result in [6, 3.5] mentioned above we have that CH must fail in
any model where the answer to this question is affirmative.

We finish this section by outlining an approach that could be useful
for answering this. In the Bell-Kunen model from [4], c = ℵω1

> ω1 and
every point in ω∗ has π-character ω1. We do not know whether in this
model, ω∗ contains a dense subspace which is a topological group. If such
a subspace exists, it consists by Theorem 2.3 of P -points of character ω1.
It is known that such points in ω∗ can exist, [19, VIII, Al0] (see also [15]).

Let (∗∗) denote the following statement:

(∗∗) All points in ω∗ have character c but π-character less than c.

Observe that it is known that ω∗ contains points of character c, [18].
But there are models in which not all points in ω∗ have character c, [19,
VIII, Al0] (see also [15]). Clearly, (∗∗) fails under CH. This prompts the
following question.
Question 2.6. Is it consistent that (∗∗) holds?
As usual, if κ is a cardinal number, then cf(κ) denotes its cofinality.
In set theoretic language, our question boils down to asking whether it
is consistent that d ≤ r ≤ cf(c) < u = c and every ultrafilter having π-
character< c. This reformulation uses the result of Aubrey [3] stating that
r = u if r < d, as well as the fact that there always exists an ultrafilter of
π-character cf(c), [4]. (We are indebted to the referee for this observation.)

We think this problem is of independent interest. If a model such as
in Question 2.6 exists, it would give by Theorem 2.3 another reason why
it cannot be shown that ω∗ contains a dense topological group in ZFC.
And maybe this model will shed light upon Question 2.5, as the following
result shows.
Theorem 2.7. Under (∗∗), (∗)κ fails for every κ such that 1 ≤ κ < cf(c).

Proof. Let X =
∏

i∈I Xi, where 1 ≤ |I| < cf(c) and for every i ∈ I,
Xi ≈ ω∗. Striving for a contradiction, assume that X contains a dense
subspace G which is a topological group. Since G is dense in X, and in
a topological group the character of each point equals its π-character, X
contains a point x whose character and π-character agree. We will show
that this is impossible. The character of x is obviously c. Moreover, by
assumption, for each i ∈ I, the π-character κi of xi is less than c. Since
1 ≤ |I| < cf(c), this means that κ = supi∈I κi < c. A moment’s reflection
shows that the π-character of x is at most κ. But since κ < c, this is a
contradiction. □
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Since cf(c) > ω, we get

Corollary 2.8. Under (∗∗), (∗)ω fails.

As we noted above, in [4] it was shown that there exists a point in
ω∗ with π-character at least cf(c). It consequently is a natural question
of whether every Parovičenko space contains a point of π-character at
least cf(c). We were only able to answer this question for the important
class of Parovičenko spaces consisting of all the Čech-Stone-remainders
X∗ of noncompact, zero-dimensional, locally compact spaces X of weight
at most c (see e.g. [24, Proposition 3.37] and [21, Theorem 1.2.5]).

Theorem 2.9. Let X be a locally compact, noncompact (and zero-dimen-
sional) space (of weight at most c). Then (the Parovičenko space) X∗

contains a point with π-character at least cf(c).

Proof. By [8, Lemma 1.1(A)], there are an open subspace U of X∗, a
copy H of ω∗ in U , and an open retraction r : U → H. From this, and
the result from [4] just quoted, we obviously get what we want. □

Question 2.10. Does every Parovičenko space contain a point with π-
character at least cf(c)?

3. The topological group G

If α < ω1 and f ∈ 2α, then [f ] denotes the set {g ∈ 2ω1 : g↾α = f}.
We let S denote the set of all successor ordinals in ω1.

Theorem 3.1. The space G has a compactification bG which is an almost
P -space. Moreover, bG is zero-dimensional and has weight c.

Proof. First note that X = 2ω1 is homeomorphic to Y = Kω1 , where
K = 2ω. Hence Xδ and Yδ are homeomorphic spaces. We prove the
theorem for G = Yδ.

Let B denote the standard clopen base for Yδ. That is, B = {[f ] : f ∈
Kα, α < ω1}. Consider the following subcollection of B:

C = {[f ] : f ∈ Kα, α ∈ S}.
It is clear that C is a clopen base for Yδ as well.

Now let D denote the Boolean algebra generated by C . We claim that
its Stone space is the compactification bG of G that we are looking for.
Let A and B be countable subsets of S. For every α ∈ A and β ∈ B, pick
countable Fα ⊆ Kα and Gβ ⊆ Kβ such that

(†) P = {[f ] : f ∈ Fα, α ∈ A} ∪ {G \ [g] : g ∈ Gβ , β ∈ B}
has the finite intersection property. We will show that P has nonempty
intersection. At the end of the proof we will verify that this suffices.
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We start with some preliminary remarks. If f, f ′ ∈ Fα are distinct for
some α ∈ A, then [f ] ∩ [f ′] = ∅, which is absurd. Hence if Fα ̸= ∅ then
it consists of a single element, say fα. Hence we are in fact dealing with
a collection of the form:

(‡) P = {[fα] : α ∈ A} ∪ {G \ [g] : g ∈ Gβ , β ∈ B}.

Assume first that A = ∅. Pick a point x ∈ K which is not in the
range of any g, where g ∈ Gβ , β ∈ B. Then the function g : ω1 → K with
constant values x is in

⋂
g∈Gβ ,β∈B G \ [g]. Next assume that B = ∅. In

this case there is nothing to prove, since any function in Kω1 that extends⋃
α∈A fα is in the intersection of the system P.
Hence we may assume without loss of generality that both A and B

are nonempty.
Let γ = supA, and pick fγ ∈ Kγ such that [fγ ] =

⋂
α∈A[fα]. We will

show that some extension of fγ belongs to
⋂

P.
Pick β ∈ B and an arbitrary g ∈ Gβ .

Claim 1. For every γ0 ∈ A, fγ0
is not an extension of g.

Indeed, if for some γ0 ∈ A, fγ0
extends g, then [fγ0

] ⊆ [g] and so [fγ0
] ∩

(G \ [g]) = ∅. But this contradicts the fact that any two members of P
meet.

Assume first that β ≤ γ. If β = γ, then γ is a successor since β is
and hence γ ∈ A. Therefore, fγ ̸= g by Claim 1. If β < γ and if fγ is
an extension of g, then for some β < γ0 ≤ γ, where γ0 ∈ A, fγ0

is an
extension of g. This is impossible by Claim 1. In either case, fγ is not an
extension of g so that [fγ ] ⊆ G \ [g], which means that we can ignore β.

We are left with the case that γ < β. Pick δβ < ω1 such that δβ+1 = β.
Then γ ≤ δβ , hence fγ is undefined at the point δβ , in contrast to g.
Let xβ be any point in K which does not belong to the (countable) set
{g(δβ) : g ∈ Gβ}.

Define φ : γ ∪ {δβ : (β ∈ B)& (γ < β)} → K as follows:

φ(α) =

{
fγ(α) (α < γ),

xβ (β ∈ B, γ < β, α = δβ),

and let ψ : ω1 → K be any extension of φ. Then ψ is in the intersection
of (‡).

Now we check that what we proved suffices. Indeed, let T be a count-
able collection of open subsets of bG such that T =

⋂
T be nonempty,

and pick t ∈ T . There is a countable subcollection W of D such that

t ∈
⋂

W∈W

W ⊆ T.
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Fix a member W ∈ W . It has the form
⋃

i∈F

⋂
j∈GWij , where for every

i ∈ F and j ∈ G, Wij is of the form [f ] for certain f ∈ Kα, α ∈ S, or
G \ [g] for certain g ∈ Kβ , β ∈ S. Collect all such [f ]’s that have the
property that t ∈ [f ] and all such G \ [g]’s that have the property that
t ∈ G \ [g]. Together they form a system P such as in (†), and for that
P we have

t ∈
⋂

P∈P

P ⊆ T.

We showed that
⋂

P is nonempty and hence clopen in G since G is a
P -space. But this clearly implies that T has nonempty interior in bG. □

Theorem 3.2. The space G has a compactification bG which is an F -
space. Moreover, bG is zero-dimensional and has weight c.

Proof. As we argued in §2, there is an embedding i : G→ ω∗. Since every
closed subspace of a compact F -space is an F -space, [21, Lemma 1.2.2],
the closure of i(G) is as required. □

Under CH, ω∗ is a Parovičenko compactification of G (hence this com-
pactification satisfies the conclusions of both Theorems 3.1 and 3.2). We
do not know whether CH is essential in this result.

Question 3.3. Does there exist a Parovičenko compactification of G in
ZFC? A Parovičenko space containing a dense subspace which is a topo-
logical group?

4. Possible generalizations

In the last decade there was a lot of focus on natural generalizations of
the concept of a topological group. These include coset spaces, paratopo-
logical and semitopological groups, etc. For details, see e.g. [1]. In the
light of our results, these generalizations leave many interesting problems
open. We will not discuss them here, we will only concentrate on coset
spaces.

Recall that a coset space is a space homeomorphic to a space of the
form G/H, where G is a topological group and H is a closed subgroup of
it. The class of coset spaces is much larger than the class of topological
groups and includes for example all locally compact homogeneous spaces
that are separable and metrizable. For details, see e.g. [2].

It is natural to ask whether the existence of a dense subspace of ω∗ that
is a coset space also implies the existence of a P -point. But it does not,
as a simple counterexample demonstrates. Indeed, for every permutation
π : ω → ω, let βπ : βω → βω denote its Čech extension. For a point
p ∈ ω∗ let

τ(p) = {βπ(p) : π ∈ Sω}
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denote its type, [13]. It is not difficult to see that for every p ∈ ω∗, τ(p) is
a dense subspace of ω∗. It is also homogeneous. Hence it is a coset space,
being zero-dimensional and homogeneous, [5].

Question 4.1. Suppose that κ is a cardinal number such that κ ≥ c. Is it
true in ZFC that Gκ can be topologically embedded in the product of κ
copies of ω∗ as a dense subspace?

Remark 4.2 (Added on March 3, 2020). After this paper was written,
we noted that a result identical to our Theorem 2.3 was proved indepen-
dently in the recent preprint k-Markov and k-tactic for NONEMPTY in
the Choquet Game by S. Önal and S. Soyarslan.
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