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ABSTRACT

It is an interesting, maybe surprising, fact that different dense subspaces

of even “nice” topological spaces can have different densities. So, our

aim here is to investigate the set of densities of all dense subspaces of a

topological space X that we call the double density spectrum of X and

denote by dd(X).

We improve a result from [1] by showing that dd(X) is always ω-closed

(i.e., countably closed) if X is Hausdorff.

We manage to give complete characterizations of the double density

spectra of Hausdorff and of regular spaces as follows.

Let S be a non-empty set of infinite cardinals. Then

(1) S = dd(X) holds for a Hausdorff space X iff S is ω-closed and

supS ≤ 22
min S

;

(2) S = dd(X) holds for a regular space X iff S is ω-closed and

supS ≤ 2minS .

We also prove a number of consistency results concerning the double

density spectra of compact spaces. For instance:

(i) If κ = cf(κ) embeds in P(ω)/fin and S is any set of uncount-

able regular cardinals < κ with |S| < minS, then there is a com-

pactum C such that {ω, κ}∪S ⊂ dd(C), moreover λ /∈ dd(C) when-

ever |S|+ ω < cf(λ) < κ and cf(λ) /∈ S.

(ii) It is consistent to have a separable compactum C such that dd(C)

is not ω1-closed.

1. Introduction

The density d(X) of a topological space X , i.e., the minimum cardinality of

a dense subspace of X , is one of the most important and thoroughly studied

topological cardinal functions. One important feature of it is that it is not

monotone, that is we may have d(Y ) > d(X) for a subspace, even for a dense

subspace, Y of X . The aim of this paper is to investigate for a given space X

the set of densities of all its dense subspaces, that we call the double density

spectrum of X .

For any space X we shall denote by D(X) the family of all dense subspaces

of X . (We shall also use the notation D(τ) instead of D(X) where τ is the

topology of X .) Thus

dd(X) = {d(D) : D ∈ D(X)}
will denote the double density spectrum ofX . We shall also useN (X) (orN (τ))

to denote the family of all nowhere dense subsets of X .
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Of course, we have d(X) = min dd(X) and the double density spectrum had

implicitly appeared in the definition of the cardinal function δ(X) = sup dd(X)

that was previously studied, in chronological order, in [6], [1], and [4]. Clearly,

we have dd(X) ⊂ [d(X), δ(X)] for any space X .

We are going to say that the space X is d-stable if for every U ∈ τ+(X) we

have d(U) = d(X), where τ+(X) denotes the family of all non-empty open sets

in X . It is trivial that

{U ∈ τ+(X) : U is d-stable}

forms a π-base for X .

It is obvious that every D ∈ D(X) includes I(X), the set of all isolated points

of X . Consequently, if I(X) ∈ D(X) then

dd(X) = {d(X)} = {|I(X)|}.

Moreover, if I(X) /∈ D(X) and Y = X \ I(X), then every member of D(X) has

a dense subset of the form I(X) ∪D with D ∈ D(Y ), hence

dd(X) = {|I(X)|+ κ : κ ∈ dd(Y )}.

Consequently, if we know the double density spectrum of every crowded

space, we may easily compute the double density spectrum of any space. There-

fore, in what follows, by space we shall always mean a crowded Hausdorff space.

We end this section by presenting two propositions in which some very simple

and basic but useful properties of the double density spectra of spaces are

collected.

Proposition 1.1: The following are satisfied for any space X .

(a) If Y ∈ D(X) then dd(Y ) ⊂ dd(X); if even Int(Y ) ∈ D(X), or equiva-

lently: X \ Y ∈ N (X), then dd(Y ) = dd(X).

(b) For every U ∈ τ+(X) we have dd(U) \ d(X) ⊂ dd(X).

(c) If X is d-stable then [X ]<d(X) ⊂ N (X).

Proof. The first part of (a) is trivial and the second follows from the fact

that D(Y ) = {D ∩ Y : D ∈ D(X)}. (b) holds because for any E ∈ D(U)

and D ∈ D(X) with |D| = d(X) we have E ∪ (D \ U) ∈ D(X). Finally, (c) is

just a reformulation of what d-stable means.
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Proposition 1.2: If X and Y are spaces with d(X) ≤ d(Y ) then

dd(X × Y ) ⊃ {κ ∈ dd(X) ∪ dd(Y ) : κ ≥ d(Y )}.
In particular, if d(X) = d(Y ) then dd(X × Y ) ⊃ dd(X) ∪ dd(Y ).

Proof. Indeed, this is because (i) D ∈ D(X) and E ∈ D(Y ) imply

D × E ∈ D(X × Y ),

and (ii) if F ∈ D(X × Y ) then πX [F ] ∈ D(X) and πY [F ] ∈ D(Y ).

2. Characterizing the double density spectra

What kind of sets of (infinite) cardinals may occur as the double density spec-

trum of a space? The aim of this section is to answer this natural question.

Since |X | ≤ 22
d(X)

holds for any Hausdorff space X and d(X) = min dd(X),

it is obvious that S = dd(X) implies supS ≤ 22
minS

. Moreover, if X is regular

then by δ(X) ≤ π(X) ≤ w(X) ≤ 2d(X) we even have

supS ≤ 2minS .

A set of cardinals is ω-closed if it contains the supremum of all its countable

subsets. Our next theorem yields a less obvious necessary condition for the

validity of S = dd(X).

Theorem 2.1: The double density spectrum dd(X) of any space X is ω-closed.

Proof. Assume that

S = {κn : n < ω} ∈ [dd(X)]ω,

then we have to show that κ = supS ∈ dd(X). We may, of course, assume

that κ /∈ S.

By part (b) of Proposition 1.1, κ ∈ dd(X) follows from κ ∈ dd(U) for

some U ∈τ(X). So, assume κ /∈ dd(U) for all U ∈ τ(X) and define for

each U ∈ τ+(X)

λ(U) = sup(κ ∩ dd(U)).

Clearly, the family

L = {U ∈ τ+(X) : ∀V ∈ τ+(U) (λ(V ) = λ(U))}
forms a π-base for X .
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If there is U ∈ L such that λ(U) = κ, then we may take a disjoint collection

{Vn : n < ω} ⊂ τ+(U) because X is both crowded and Hausdorff. But for

any n < ω, then λ(Vn) = λ(U) = κ implies that there is Dn ∈ D(Vn) with

κn < |Dn| < κ.

Obviously, then D =
⋃{Dn : n < ω} is a dense subset of V =

⋃{Vn : n < ω}
such that d(D) = |D| = κ, hence κ ∈ dd(V ).

The other possibility is that we have λ(U)<κ for all U ∈L. In this case we take

a maximal disjoint subcollection U of L and note that W = ∪U is dense open

in X . Consequently, part (a) of Proposition 1.1 implies S ⊂ dd(W ) = dd(X).

We clearly also have |U| ≤ d(X) < κ, hence sup{λ(U) : U ∈ U} = κ. Indeed,

if we had sup{λ(U) : U ∈ U} = μ < κ then we could choose n < ω such

that μ · |U| < κn < κ. But then there is D ∈ D(W ) with d(D) = κn and for

each U ∈ U we have d(D ∩ U) ≤ μ, which would imply d(D) ≤ μ · |U| < κn, a

contradiction.

Thus we may pick for all n < ω distinct, hence disjoint, Un ∈ U so that

κn<λ(Un)<κ. This again implies that there areDn∈D(Un) with κn< |Dn|<κ,

hence D =
⋃{Dn : n < ω} is a dense subset of U =

⋃{Un : n < ω} such

that d(D) = |D| = κ, similarly as above.

It turns out that the necessary condition of ω-closedness together with the ob-

vious cardinality restrictions mentioned above actually characterize the double

density spectra of Hausdorff and of regular spaces. Both characterization results

will make use of Cantor cubes. We recall that the Cantor cube Cμ = {0, 1}μ of

weight μ has density logμ; see, e.g., 5.4 of [3]. In particular, we have

d(C2κ) = log 2κ ≤ κ.

Theorem 2.2: Let S be an ω-closed set of infinite cardinals such thatminS = κ

and supS ≤ 22
κ

. Then there is a Hausdorff space X with S = dd(X).

Proof. The underlying set X of our promised space will be a dense subset of C2κ

with a topology τ that is finer than the subspace topology � on X inherited

from C2κ . For later use we note that � is CCC if X ∈ D(C2κ).

To get X , we first fix pairwise disjoint subsets {Xλ : λ ∈ S} of C2κ such

that |Xλ| = λ and Xλ is λ-dense in C2κ for each λ ∈ S. (The latter means

that |U ∩ Xλ| = λ for every non-empty open set in C2κ .) We can do this

because C2κ may be partitioned into 22
κ

dense subsets of size κ. Indeed, the
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cosets of a κ-sized dense subgroup of C2κ form such a partition. We then set

X =
⋃

{Xλ : λ ∈ S}.
On everyXλ we consider the topology τλ generated by all sets of the formG\A

where G ∈ � � Xλ and A ∈ [Xλ]
<λ. We then let

N = {N ⊂ X : ∀λ ∈ S (N ∩Xλ ∈ N (τλ))}.
Clearly, N is a proper ideal on X .

Finally, our topology τ on X is generated by all sets of the form U \ N

where U ∈ � and N ∈ N . Since ∅ ∈ N we then have � ⊂ τ , hence τ is

Hausdorff. It is also obvious that

N (τ � Xλ) = N (τλ) ⊃ [Xλ]
<λ

for all λ ∈ S. Consequently, for λ0 = minS we have N (τ) ⊃ [X ]<λ0 .

It immediately follows from our definitions that Xλ ∈ D(τ) and d(Xλ, τ) = λ

for each λ ∈ S, hence we have S ⊂ dd(X, τ) and

d(X, τ) = min dd(X, τ) = min S.

It remains to show that μ /∈ S implies μ /∈ dd(X, τ). As |X | = sup S, we may

also assume that d(X, τ) < μ ≤ sup S.

So, consider any τ -dense set D ∈ [X ]μ; we shall show that d(D, τ) < μ,

hence μ /∈ dd(X, τ). To see this, we first note that λ ∈ S with λ > μ im-

plies D ∩Xλ ∈ N (τλ), hence we have

D ∩
⋃

{Xλ : λ ∈ S \ μ} ∈ N .

But then D ∩⋃{Xλ : λ ∈ S \ μ} is τ -nowhere dense, hence the subset

E = D ∩
⋃

{Xλ : λ ∈ S ∩ μ}
of D is still τ -dense. So, if |E| < μ then we are done, hence we may assume

that |E| = μ.

Next we note that for any U ∈ �+ we have E∩U /∈ N , hence there is λ ∈ S∩μ
such that E ∩ U ∩Xλ is somewhere dense with respect to τλ, i.e.,

E ∩ U ∩Xλ /∈ N (τλ).

This in turn means that there is some V ∈ �+ with V ⊂ U such that E∩V ∩Xλ

is τλ-dense in V ∩Xλ.
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Consequently, if V is a maximal disjoint collection of those V ∈ �+ for which

there is some λ(V ) ∈ S∩μ such that E∩V ∩Xλ(V ) is τλ(V )-dense in V ∩Xλ(V ),

then W = ∪V ∈ D(X, �).

Since � is CCC, the family V is countable, hence

λ∗ = sup{λ(V ) : V ∈ V} ∈ S ∩ μ

because S is ω-closed and λ∗ ≤ μ /∈ S. Let us now put

Y =
⋃

{Xλ : λ ∈ S and λ ≤ λ∗}.
We claim that E ∩ Y is τ -dense in E, and hence in D.

Indeed, assume that U \N is any τ -basic set where U ∈ �+ and N ∈ N . Then

there is V ∈ V with U ∩ V �= ∅, hence the choice of λ(V ) and N ∩Xλ ∈ N (τλ)

imply that

E ∩ U ∩ V ∩Xλ(V ) \N �= ∅.
But Xλ(V ) ⊂ Y for all V ∈ V , hence E ∩ Y ∩ (U \N) �= ∅ as well. Since

|E ∩ Y | ≤ |Y | = λ∗ < μ,

we thus have d(D, τ) ≤ d(E, τ) ≤ λ∗ < μ, and the proof is completed.

The corresponding characterization of the double density spectra of regular

spaces will be immediate from our following result.

Theorem 2.3: If S is any ω-closed set of infinite cardinals such that minS = κ

and supS ≤ 2κ, then there is a dense subspace X of the Cantor cube C2κ of

weight 2κ with S = dd(X).

Proof. We first claim that it suffices to prove our theorem in the case in

which log 2κ = κ. Indeed, assume this and consider the case with log 2κ < κ.

We may then apply the previous case for the set S′ = {log 2κ} ∪ S and ob-

tainX ′∈D(C2κ ) such that S′=dd(X ′). Of course, we may also obtain Y∈D(C2κ )

such that dd(Y ) = {κ}, for instance take Y homeomorphic with Σ×D where Σ

is the σ-product in Cκ and D ∈ D(C2κ) with |D| ≤ κ. But then it is easy

to check that dd(X ′ ⊕ Y ) = S, while it is also obvious that the topological

sum X ′ ⊕ Y is homeomorphic to a dense subspace of C2κ .

So, assume d(C2κ) = log 2κ = κ and note that this implies

[C2κ ]
<κ ⊂ N (C2κ ).

We also fix D ∈ D(C2κ) with |D| = κ.
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To prepare for the construction of our promised space X , we introduce the

following definition. For every set of indices I ⊂ 2κ we denote by σ(I) the set of

all functions f ∈ {0, 1}I with |supp(f)| < ω, where supp(f) = {i ∈ I : f(i) = 1}.
Then we fix a disjoint family of sets {Iλ : λ ∈ S} such that Iλ ∈ [2κ]λ, and

for each λ ∈ S we let Kλ = 2κ \ Iλ. We then put

Xλ = {x ∈ C2κ : x � Iλ ∈ σ(Iλ) and ∃d ∈ D(x � Kλ = d � Kλ)}.
For every λ ∈ S and x ∈ Xλ we may then fix d(x, λ) ∈ D such that

x � Kλ = d(x, λ) � Kλ.

Finally, we define the dense subspace X of C2κ that we are looking for

by X =
⋃{Xλ : λ ∈ S}. Clearly, we have Xλ ∈ D(C2κ) with d(Xλ) = |Xλ| = λ,

moreover [Xλ]
<λ ⊂ N (C2κ) for all λ ∈ S. This easily implies S ⊂ dd(X ∩ U)

for any U ∈ τ+(C2κ). We claim that actually S = dd(X ∩ U) holds when-

ever U ∈ τ+(C2κ).

The proof of this claim is indirect, so assume that

μ = min
⋃

{dd(X ∩ U) \ S : U ∈ τ+(C2κ)}
is well defined. Note that we then have μ>κ. In what follows, we fix U∈τ+(C2κ)

with μ∈dd(X∩U). By definition, this means that there is Y∈D(X∩U)⊂D(U)

with d(Y ) = |Y | = μ.

Let us recall that the d-stable open sets form a π-base in any space. We

apply this to the space Y and take a maximal disjoint collection V ⊂ τ+(U)

such that Y ∩ V is d-stable for each V ∈ V .
We claim that there is a V ∈ V for which d(Y ∩ V ) = μ. Indeed, if we

have d(Y ∩ V ) < μ for some V ∈ V then d(Y ∩ V ) ∈ dd(X ∩ V ) and the

minimality of μ together imply d(Y ∩ V ) ∈ S. Consequently, as V is countable

and S is ω-closed, we cannot have d(Y ∩ V ) < μ for all V ∈ V because that

would imply

d(Y ) ≤
∑

{d(Y ∩ V ) : V ∈ V} = λ ∈ S

with λ < μ, contradicting that d(Y ) = μ.

The family E of the elementary open sets

[ε] = {x ∈ C2κ : ε ⊂ x}
forms a base for C2κ , with ε running through Fn(2κ, 2), the set of all finite

partial functions from 2κ to 2. So, if we fix ε ∈ Fn(2κ, 2) so that [ε] ⊂ V ∈ V



Vol. 255, 2023 DOUBLE DENSITY SPECTRUM 391

with d(Y ∩ V ) = μ then E = Y ∩ [ε] ∈ D([ε]) is d-stable with d(E) = |E| = μ.

This clearly implies [E]<μ ⊂ N (C2κ ).

Consequently, for all λ ∈ S we have E ∩Xλ ∈ N (C2κ). Indeed, if λ < μ this

follows from |Xλ| = λ < μ, as we have just seen, and if λ > μ then this follows

from |E| = μ < λ and [Xλ]
<λ ⊂ N (C2κ ).

For every point d ∈ D let us now define

Jd = {λ ∈ S : ∃ e ∈ E ∩Xλ (e � Kλ = d � Kλ)},
moreover let D0 = {d ∈ D : |Jd| ≥ ω} and D1 = D \D0.

If d ∈ D0 then we may pick distinct cardinals {λn : n < ω} ⊂ Jd and

points en ∈ E ∩ Xλn that “witness” λn ∈ Jd, i.e., en � Kλn = d � Kλn . But

for any basic neighborhood [d � a] ∈ E of d, where a ∈ [2κ]<ω, there are only

finitely many n with a ∩ Iλn �= ∅, hence we have en ∈ [d � a] for all but finitely
many n < ω. In other words, this means that the sequence {en : n < ω} ⊂ E

converges to d.

But this means that there is a subset E0 ⊂ E with

|E0| ≤ |D0| × ω ≤ κ < μ

such that D0 ⊂E0. Consequently, D0 is nowhere dense in C2κ because E0 is.

This, in turn, implies that there is ε1∈Fn(2κ) such that ε1⊃ε andD ∩ [ε1]⊂D1.

For every d ∈ D1 we have |Jd| < ω and for each λ ∈ Jd we may pick

e(d, λ) ∈ E ∩Xλ such that e(d, λ) � Kλ = d � Kλ. We shall now show that the

set

F = {e(d, λ) : d ∈ D1 and λ ∈ Jd} ⊂ E

is dense in E ∩ [ε1].

Indeed, for any η ∈ Fn(2κ, 2) with η ⊃ ε1 the set

Zη =
⋃

{E ∩Xλ : dom(η) ∩ Iλ �= ∅} ∈ N (C2κ).

So, we can pick x ∈ E ∩ [η] \ Zη and then x ∈ Xλ implies Iλ ∩ dom(η) = ∅,
hence d(x, λ) ∈ D ∩ [η] ⊂ D ∩ [ε1] ⊂ D1. But x is a witness for λ ∈ Jd(x,λ),

so f = e(d(x, λ), λ) ∈ F ∩ [η] because

f � dom(η) = d(x, λ) � dom(η) = x � dom(η).

But this yields the required contradiction that completes our indirect proof,

because |F | ≤ κ, and hence F is nowhere dense.

From this we immediately obtain the following characterization result.



392 I. JUHÁSZ ET AL. Isr. J. Math.

Corollary 2.4: The following statements are equivalent for a non-empty set S

of infinite cardinals:

(i) S is ω-closed and supS ≤ 2minS .

(ii) There is a 0-dimensional CCC space X with S = dd(X).

(iii) There is a regular space X with S = dd(X).

3. On the double density spectra of compact spaces

The aim of this section is to present what we know about the double density

spectra of compact (Hausdorff) spaces. Unfortunately, unlike for the classes of

Hausdorff or regular spaces, we do not have any full characterization in this case.

However, we do know that the criteria for regular spaces are not sufficient for the

class of compacta. Indeed, the main result of [4] says that π(X) = max dd(X)

holds for any compactum X . In particular, this implies that the double density

spectrum of a compact space always “admits a top”.

Of course, as δ(X) ≤ π(X) ≤ w(X) ≤ 2d(X) holds for a compactum X , there

are only problems if 2d(X) > d(X)+, i.e., if the GCH fails at κ = d(X). This

leads us to the following question.

Problem 3.1: Assume that 2κ > κ+. Is there a compact space X with d(X) = κ

and π(X) > κ+ such that κ+ /∈ dd(X), or at least such that dd(X) �= [κ, π(X)]?

We do not have a complete answer to these questions but we shall present

below interesting consistency results concerning them. These results suggest

that, at least consistently, we have a considerable amount of freedom about the

double density spectra of compact spaces.

We shall actually concentrate on the perhaps most interesting case of κ = ω,

i.e., the double density spectra of separable compact spaces. To do that, we

shall develop a general method of constructing σ-centered and 0-dimensional

spaces on [ω]ω from appropriate ideals on ω. The required separable compacta

will be just the compactifications of these “ideal spaces”.

So, in what follows, “ideal” will always mean an ideal on ω that contains all

finite subsets of ω.

Definition 3.2: For any finite sequence s ∈ 2<ω and I ⊂ ω we let

B(s, I) = {A ∈ [ω]ω : s ⊂ χA and A ∩ I ⊂ |s|},
where χA is the characteristic function of A and |s| is the length of s.



Vol. 255, 2023 DOUBLE DENSITY SPECTRUM 393

Now, fix an ideal I on ω, then we let τI denote the topology on [ω]ω generated

by

BI = {B(s, I) : s ∈ 2<ω and I ∈ I}.
It is not completely obvious but it is immediate from the next lemma that BI

is actually a base for τI .

Lemma 3.3: If B(s, I) ∩B(t, J) �= ∅, then
B(s, I) ∩B(t, J) = B(s ∪ t, I ∪ J).

Proof. Clearly, if B(s, I)∩B(t, J) �= ∅ then either s ⊂ t or t ⊂ s. By symmetry,

we may assume that s ⊂ t, hence s ∪ t = t. Now, it is again obvious that then

B(s, I) ∩B(t, J) = B(s, I) ∩B(t, I ∪ J) = B(s, I) ∩B(t, I) ∩B(t, J).

From this we get that

B(s, I) ∩B(t, I) �= ∅
as well. But for anyA ∈ B(s, I)∩B(t, I) and |s| ≤ k < |t| we then have k /∈ A∩I,
hence k ∈ I implies χA(k) = t(k) = 0. But this implies B(t, I) ⊂ B(s, I), and

so we can conclude that B(s, I) ∩B(t, J) = B(t, I ∪ J).

Note that {B(s, ∅) : s ∈ 2<ω} is just the standard base for the Baire space,

hence τI is Hausdorff, being finer than the Baire space topology.

It is also obvious that for every s ∈ 2<ω the collection {B(s, I) : I ∈ I} is

centered because I is an ideal, hence τI is σ-centered.

To see that τI is 0-dimensional, we shall show that evey member of its

base BI is also closed. Indeed, if A /∈ B(s, I) then either s � χA and then

for t = χA � |s| we have A ∈ B(t, ∅) and B(t, ∅) ∩ B(s, I) = ∅, or s ⊂ χA and

there is k ∈ A ∩ I \ |s|. In the latter case let t be any initial segment of χA

with |t| > k, then again we have B(t, ∅) ∩B(s, I) = ∅.
It follows then that the space XI = 〈[ω]ω, τI〉 does have compactifications,

and every compactification C of XI is separable because τI is σ-centered. Thus

we have min dd(C) = ω.

A subsetA ⊂ [ω]ω is called full if for everyA ∈ A and B =∗ A we haveB ∈ A.

In other words, A is full iff it is the union of =∗-equivalence classes.

We claim that π(XI) = cof(I). Indeed, this is because if A ⊂ I is full then

clearly

{B(s, I) : s ∈ 2<ω and I ∈ A}
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is a π-base for XI iff A is cofinal in I. If C is any compactification of XI we

thus have

π(C) = π(XI) = cof(I) = maxdd(C).

Next we are going to describe dd(XI); this is of interest because for any

compactification C of XI we have dd(XI) ⊂ dd(C). First we introduce some

new terminology.

A set A ⊂ [ω]ω is called I-avoiding if for every I ∈ I there is A ∈ A such

that A ∩ I = ∅. Clearly, if A is full, then A is I-avoiding iff for every I ∈ I
there is A ∈ A such that |A ∩ I| < ω.

Lemma 3.4: If A ⊂ [ω]ω is full then A ∈ D(XI) iff A is I-avoiding. Con-

sequently, if there is an I-avoiding full set A ⊂ [ω]ω such that |A| = λ but

no B ⊂ A with |B| < λ being I-avoiding, then λ ∈ dd(XI).

Proof. Clearly, if A is full then A is I-avoiding iff A ∩ B(s, I) �= ∅ for ev-

ery B(s, I) ∈ BI , hence iff A is dense in XI .
The second part follows because for every infinite B ⊂ A the full hull B∗ of B

has the same cardinality as B. Consequently, no B ⊂ A with |B| < λ is dense

in XI as B∗ isn’t.

Our next task is to find conditions that will ensure λ /∈ dd(C) for some

cardinal λ and compactification C of XI . We start with a definition.

Definition 3.5: A cardinal λ is said to be a strong caliber of the space X (in

symbols: λ ∈ scal(X)) if for every U ∈ [τ(X)]λ there is V ∈ [U ]λ such that

Int
(⋂

V
)
�= ∅.

The following simple but very useful proposition yields a condition for

λ /∈ dd(X).

Proposition 3.6: If cf(λ) ∈ scal(X) then λ /∈ dd(X).

Proof. We prove the contrapositive of our statement. So, assume that λ∈dd(X)

and D ∈ D(X) is such that |D| = λ and [D]<λ ∩ D(X) = ∅. Enumerate D

as D = {xα : α < λ} and let Fα = {xβ : β < α}. Then Uα = X \ Fα ∈ τ+(X)

and it is clear that for any cofinal subset S ⊂ λ we have Int(
⋂{Uα : α ∈ S}) = ∅

because
⋂{Uα : α ∈ S} ∩D = ∅. But this clearly implies cf(λ) /∈ scal(X).
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Although the definition of λ being a strong caliber of X uses τ(X), the fam-

ily of all open sets, it can obviously be replaced with any π-base of X . This

implies that if X is quasiregular, i.e., the family RO(X) of all regular open sets

in X forms a π-base of X , then for any Y ∈ D(X) we have scal(Y ) = scal(X).

Indeed, this follows from the fact that the map U �→ U ∩ Y is an isomorphism

between RO(X) and RO(Y ). In particular, this means that for every compact-

ification C of XI we have scal(C) = scal(XI). Consequently, cf(λ) ∈ scal(XI)
implies λ /∈ dd(C) by Proposition 3.6.

Now, it remains to find a condition on the ideal I that will imply λ ∈ scal(XI).
The following result yields us just such a condition. But first we need a new

piece of terminology. If λ is a cardinal, then we call the ideal I on ω weakly

λ-complete if for every A ∈ [I]λ there is B ∈ [A]λ with ∪B ∈ I.
Lemma 3.7: Let λ be a cardinal with cf(λ) > ω. If the ideal I on ω is weakly

λ-complete then λ ∈ scal(XI).

Proof. As noted above, it suffices to verify the requirements of λ ∈ scal(XI) for
members of the base BI of XI . Using cf(λ) > ω, however, any subfamily of BI
of size λ has a subfamily of the same size of the form {B(s, I) : I ∈ A}, with
all members having the same first coordinate s, moreover A ∈ [I]λ.

By our assumption, we may then find B ∈ [A]λ with ∪B = J ∈ I. But then

for every A ∈ B(s, J) and I ∈ B we have A∩ I ⊂ A∩J ⊂ |s|, hence A ∈ B(s, I)

as well. Consequently we have

B(s, J) ⊂
⋂

{B(s, I) : I ∈ B}.

In the rest of this section we are going to construct ideals such that their ideal

spaces and their (separable) compactifications will provide us with a wide vari-

ety of double density spectra. Of course, these will require that the continuum c

be very large.

Actually, we shall need a cardinal characteristic of the continuum to be large,

namely the smallest cardinal κ that does not embed in P(ω)/fin, which we shall

denote by n. In other words, n is the smallest cardinal such that there is no

mod finite strictly increasing sequence of that length in [ω]ω.

It is trivial that b+ ≤ n ≤ c+ and it is also well-known that MA im-

plies n = c+. On the other hand, Kunen proved in his PhD thesis that if one

adds any number of Cohen reals to a model of CH then n = b+ = ω2 holds in
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the generic extension, see IV.7.53 of [5]. We shall obtain interesting ideals, and

hence interesting separable compacta, when n is large.

In what follows, it will be useful have the notation � for the class of all

uncountable regular cardinals. Our next result is presented as a warm up, it is

actually a very special case of a later result but, we think, it is quite interesting

in itself.

Theorem 3.8: If κ ∈ n ∩ � then there is a separable compactum C of π-

weight κ such that κ ∩ � ⊂ scal(C). Consequently, ω < λ < κ and cf(λ) > ω

imply λ /∈ dd(C). So, if κ < ℵω then dd(C) = {ω, κ}.
Proof. Assume that 〈Aα : α < κ〉 is a mod finite strictly increasing sequence

in [ω]ω. We may assume that
⋃{Aα : α < κ} = ω, hence if I is the ideal

generated by {Aα : α < κ} then [ω]<ω ⊂ I. We claim that if C is any compact-

ification of XI then C is as required.

Since κ is regular, it is obvious that

π(C) = π(XI) = cof(I) = κ,

hence we have κ ∈ dd(C). Actually, we even have κ ∈ dd(XI) because the full

set

C = {ω \Aα : α < κ}∗

is clearly I-avoiding such that no subset of C of smaller size is I-avoiding.
Next we show that, for every λ as above, I is weakly λ-complete. Indeed,

λ < κ = cf(κ) implies that for every A ∈ [I]λ there is some α < κ such

that I ⊂∗ Aα for all I ∈ A. Then by cf(λ) > ω there is some a ∈ [ω]<ω such

that for B = {I ∈ A : I ⊂ a ∪ Aα} we have |B| = λ. Clearly, then ∪B ∈ I.
But then Lemma 3.7 implies λ ∈ scal(XI) = scal(C), hence λ /∈ dd(C) by

Proposition 3.6.

We do not know whether λ ∈ dd(C) holds for λ ∈ (ω, κ) with cf(λ) = ω. In

particular, what happens with ℵω if, say, κ = ℵω+1?

However, and we mention it just as a curiosity, we do know that dd(XI) = {κ}
if 〈Aα : α < κ〉 is a tower. Indeed, this means that for every A ∈ [ω]ω there is

an α < κ with |A ∩ Aα| = ω. So, if C ⊂ [ω]ω with |C| = |C∗| < κ then there

is an α < κ with |A ∩ Aα| = ω for all A ∈ C∗, hence by Lemma 3.4 we have

that C∗ is not dense in XI and so neither is C.
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Theorem 3.9: For every set S ⊂ n∩� there is a separable compactum C such

that

(i) π(C) = supS;

(ii) S ⊂ dd(C);

(iii) if μ ∈ � \ S with μ > |S| then μ ∈ scal(C), hence cf(λ) = μ implies

λ /∈ dd(C).

We are going to present two quite different proofs of this result. Our first

proof reduces it to Theorem 3.8.

Proof. We may apply Theorem 3.8 for every λ ∈ S to obtain a separable com-

pactum Cλ of π-weight λ such that λ ∩ � ⊂ scal(Cλ). We claim that the

product

C =
∏

{Cλ : λ ∈ S}
is as required. Since |S| ≤ c and the product of at most c separable spaces is

separable, C is a separable compactum. It is also clear that π(C) = supS.

We obtain (ii) because for every λ0 ∈ S we may apply Proposition 1.2

with X = Cλ0 and Y =
∏{Cλ : λ ∈ S \ {λ0}} to conclude that λ0 ∈ dd(C).

Finally, to verify (iii), we consider μ ∈ � \ S with μ > |S|. If μ > λ ∈ S

then π(Cλ) = λ trivially implies μ ∈ scal(Cλ), while for μ < λ ∈ S we

have μ ∈ scal(Cλ) by the choice of Cλ.

But it is straightforward to check that if a regular cardinal μ is a strong

caliber of every factor of the product of fewer than μ spaces then it is also a

strong caliber of the product as well. Thus we indeed have μ ∈ scal(C).

Our second proof produces a suitable ideal I on ω such that any compactifi-

cation C of XI is as required.

Proof. We shall actually produce an ideal I on ω with the following three

properties:

(a) cof(I) = supS.

(b) For every λ ∈ S there is an I-avoiding full set A ⊂ [ω]ω such that

|A| = λ but no B ⊂ A with |B| < λ is I-avoiding.
(c) If μ ∈ � \ S and μ > |S| then I is weakly μ-complete.

It easily follows from our earlier results that then any compactification C of XI
is as required. We leave it to the reader to check the details of this, and we

move to the definition of I.
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We first fix an almost disjoint family {Qλ : λ ∈ S} ⊂ [ω]ω; this is possible

because |S| ≤ supS ≤ c. Then, for each λ ∈ S, we pick a mod finite strictly

increasing λ-sequence {Qλ,α : α < λ} ⊂ [Qλ]
ω. Then we define I as the ideal

generated by Q = {Qλ,α : λ ∈ S, α < λ}. We may assume, without any loss of

generality, that ∪Q = ω, hence [ω]<ω ⊂ I.
Then (a) holds trivially. Item (b) holds because for every λ ∈ S the full

set Qλ = {Qλ \ Qλ,α : α < λ}∗ is I-avoiding with |Qλ| = λ and no R ⊂ Qλ

with |R| < λ is I-avoiding.
To see (c), we note first that for every I ∈ I there is a finite set aI ⊂ S

and a function fI with domain aI and with fI(λ) ∈ λ for each λ ∈ aI such

that I ⊂∗ ∪{Qλ,fI(λ) : λ ∈ aI}.
Now, assume that μ ∈ �\S with μ > |S|, moreover A ∈ [I]μ. By μ > |S| we

may then assume that for some fixed a ∈ [S]<ω we have aI = a for all I ∈ A.

Next, we may choose B ⊂ A with |B| = μ so that for every λ ∈ a ∩ μ there is a

fixed αλ < λ with fI(λ) = αλ whenever I ∈ I.
But for every λ ∈ a \ μ, since λ > μ is regular, we can fix αλ < λ such

that fI(λ) < αλ for all I ∈ B. This clearly implies that

I ⊂∗ J = ∪{Qλ,αλ
: λ ∈ a} ∈ I

whenever I ∈ B. Now, then there is some b ∈ [ω]<ω such that

C = {I ∈ B : I ⊂ J ∪ b}
also has size μ, hence I is indeed weakly μ-complete.

The following immediate corollary of Theorems 3.9 and 2.1 is, we think,

illuminating.

Corollary 3.10: Assume that n > ℵω. Then:

(1) for every a ∈ [ω]<ω there is a separable compactum C such that

dd(C) = {ω} ∪ {ωn : n ∈ a};
(2) for every a ∈ [ω]ω there is a separable compactum C such that

dd(C) = {ω} ∪ {ωn : n ∈ a} ∪ {ℵω}.
The above consistency results on the double density spectra of (separable)

compact spaces need that n be large, i.e., that “long” well-ordered sequences

embed into P(ω)/fin. However, it is well-known that in some sense any partial
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order embeds into P(ω)/fin, at least after passing to an appropriate generic

extension of the ground model. More precisely, for any poset Q = 〈Q,≤〉 there
is a CCC notion of forcing forcing P such that Q embeds into P(ω)/fin in the

generic extension V P. (We haven’t found a direct reference to this folklore

result, however it is an immediate consequence of items 2.5 and 2.7 of [2].)

It is not a surprise then that more complicated posets embedded in P(ω)/fin

yield us further interesting consistency results on the double density spectra of

(separable) compacta. Our next result well illustrates this.

Theorem 3.11: It is consistent to have a separable compact space C such

that dd(C), which of course is ω-closed, is not ω1-closed.

Proof. We first let

S = � ∩ ℵω1 \ {ω1} = {ωα+1 : 1 ≤ α < ω1}.
Then we consider the poset Q = 〈Q,≤〉, where Q = Π{λ : λ ∈ S} and

for x, y ∈ Q we have x ≤ y iff x(λ) ≤ y(λ) for all λ ∈ S. Next we move

from our ground model V to its generic extension V P, where P is a CCC notion

of forcing forcing such that Q embeds into P(ω)/fin in V P.

Warning: Q = (
∏{λ : λ ∈ S})V �= (

∏{λ : λ ∈ S})V P

!

From now on we work in V P, so we may fix a bijection h of Q into [ω]ω such

that for any x, y ∈ Q we have x < y iff h(x) ⊂∗ h(y). In what follows, we

shall write Ax instead of h(x). Not surprisingly, we let I be the ideal on ω

generated by {Ax : x ∈ Q}. We may assume, without any loss of generality,

that ∪{Ax : x ∈ Q} = ω, hence [ω]<ω ⊂ I.
We next show that S ⊂ dd(XI). Indeed, for every λ ∈ S and α < λ we

define xλ,α ∈ Q by putting xλ,α(λ) = α and xλ,α(μ) = 0 for all μ ∈ S \ {λ}.
Let us then define Bλ,α = ω \ Axλ,α

. Clearly, then Bλ = {Bλ,α : α < λ}∗
is an I-avoiding full set and we claim that no smaller sized subset of it is I-
avoiding. This follows from the fact that, as P is CCC, every subset of λ in V P

is covered by a subset of λ in V of the same size, and hence is bounded in λ.

So, we have λ ∈ dd(XI) by Lemma 3.4.

A very similar argument, using that P is CCC, yields that every subset R

of Q in V P with |R| ≤ ω1 is bounded in Q, i.e., there is y ∈ Q such that for

every x ∈ R we have x ≤ y. This, in turn, means that we have Ax ⊂∗ Ay for

all x ∈ R, hence we can find a finite a ⊂ ω with |{x ∈ R : Ax ⊂ a∪Ay}| = ω1 as

well. But this clearly implies that I is weakly ω1-complete, hence ω1 ∈ scal(XI).
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Now, if C is any compactification ofXI then, on one hand, we have S⊂dd(C),

and on the other ω1 ∈ scal(C). But the first item implies that ℵω1 is an

accumulation point of dd(C), while ℵω1 /∈ dd(C) by the second. Consequently,

dd(C) is indeed not ω1-closed.
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