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SOME REALCOMPACT SPACES

ALAN DOW, KLAAS PIETER HART, JAN VAN MILL, AND HANS VERMEER

Abstract. We present examples of realcompact spaces with closed
subsets that are C∗-embedded but not C-embedded, including one
where the closed set is a copy of N.

Introduction

The purpose of this note is to provide some examples of realcom-
pact (but not compact) spaces that have closed subspaces that are C∗-
embedded but not C-embedded, and, in particular, an example where the
closed subspace is a copy of the discrete space N of natural numbers�
what we henceforth call a closed copy of N.

The reason for our interest is that we are not aware of any such exam-
ples. For instance, the examples in [5] of C∗- but not C-embedded subsets
are not all closed and, when they are closed, the pseudocompactness of
the ambient space makes C-embedding impossible.

The only explicit question of this nature that we could �nd is in [7,
Question 1], which asks whether C∗-embedded subsets (not necessarily
closed) of �rst-countable spaces are C-embedded. In that case, there is
an independence result: There is a counterexample if b = s = c, and,
in the model obtained by adding supercompact many random reals, the
implication holds; see [1].

The more speci�c question of having a closed copy of N, that is, C∗-
embedded but not C-embedded, arises from an analysis of their position
in powers of the real line; see section 2 for an explanation.
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It is clear that our examples should be non-normal Tychono� spaces.
After some preliminaries, we brie�y discuss two classical examples, the
Tychono� and Dieudonné planks, and introduce a further plank J.

The latter is pseudocompact, but we modify it in two steps. The �rst
step yields a plank that is neither pseudocompact nor realcompact, and
the second step gives us our �rst example.

Our second example is constructed in section 5 and it contains a closed
copy of N that is C∗- but not C-embedded.

1. Preliminaries

We follow [4] and [5] as regards general topology and rings of continuous
functions. As is common, C(X) and C∗(X) denote the rings of real-valued
continuous and bounded continuous functions, respectively.

A subset A of a space X is C-embedded if every continuous function
f : A → R admits a continuous extension f̄ : X → R. It is C∗-embedded

if every bounded continuous function f : A → R admits a bounded con-
tinuous extension f̄ : X → R.

We de�ne a space X to be realcompact if it can be embedded into a
power of the real line as a closed subset. The most useful characterization
for this paper is that every zero-set ultra�lter with the countable inter-
section property has a non-empty intersection; see [4, Theorem 3.11.11].

1.1. Planks.

As noted above, our examples will be non-normal Tychono� spaces�
non-normal because we need a closed subset that is not C-embedded and
Tychono� because that is part of the de�nition of realcompactness.

There are various examples of such spaces, such as the Tychono�
plank T ([9] or [8, Example 87]), and the Dieudonné plank D ([2] or [8, Ex-
ample 89]). Both start with the product set X = (ω1 + 1)× (ω0 + 1) and
take the subset P = X \ {〈ω1, ω0〉} as the underlying set of the space. In
each case, P has the subspace topology where X has a product topology
induced by topologies on the factors. For T, one takes the order topolo-
gies on both ordinals. For D, one enlarges the order topology of ω1 + 1
by making all points of ω1 isolated.

We shall consider a third variation in section 3 below.

2. Context

We begin with the following proposition, which may be well-known but
bears repeating here because it shows that if one has a non-C-embedded
copy of N in a realcompact space, then that copy contains many in�nite
subsets that are C-embedded.
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Proposition 2.1. Let X be realcompact and A a subset whose closure

is not compact, then A contains a countably in�nite subset that is closed,

discrete, and C-embedded in X.

Proof. Take a point x0 in βX \X that is in the closure of A. Apply [4,
Theorem 3.11.10] to �nd a continuous function f : βX → [0, 1] such that
f(x0) = 0 and f(x) > 0 if x ∈ X. Because x0 is in the closure of A, we
can �nd a sequence 〈an : n ∈ N〉 in A such that 〈f(an) : n ∈ N〉 is strictly
decreasing with limit 0.

The set N = {an : n ∈ N} is closed and C-embedded in X. It is closed
as a locally �nite set of points. If g : N → R is given, then we can take a
continuous function h : (0, 1] → R such that h(f(an)) = g(an) for all n.
Then h ◦ f is a continuous extension of g. �

The space in section 5 illustrates Proposition 2.1 quite well. One can
point out very many in�nite C-embedded subsets of the non-C-embedded
copy of N explicitly. This proposition also shows why the initial planks in
section 3 are not realcompact: there are not enough C-embedded copies
of N.

2.1. Closed copies of N in other spaces.

Here, we collect a few natural questions that arise when one considers
C∗- and C-embedding of closed copies of N.

Suppose one has two closed copies, N1 and N2 say, of the space of
natural numbers in a Tychono� space X.

(1) If N1 and N2 are C-embedded, is their union C-embedded?
(2) If N1 and N2 are C∗-embedded, is their union C∗-embedded?
(3) If N1 is C-embedded and N2 is C∗-embedded, is their union C∗-

embedded?

Questions (1) and (3) have positive answers.
For question (3), one uses a continuous extension f : X → R of a

bijection between N1 and N to obtain a discrete family {Ox : x ∈ N1} of
open sets with x ∈ Ox for all x ∈ N1. Then, given a bounded function
g : N1 ∪N2 → R, one �rst takes a bounded extension ḡ : X → R of g �N2

and then modi�es ḡ on each Ox to obtain an extension of g.
The argument for question (1) is similar but easier because one can �nd

a single discrete family of open sets that separates the points of N1 ∪N2.
A counterexample to question (2) can be obtained by taking M. Kat¥-

tov's example [6, p. 88] of a pseudocompact space with a closed C∗-
embedded copy of N or see [4, Example 3.10.29]. The example is K =
βR \N∗, and the copy of N is just N itself. Take the sum of two copies of
this space, K× {0, 1}, and for every x ∈ K \ R, identify the points 〈x, 0〉
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and 〈x, 1〉. The copies N×{0} and N×{1} are both C∗-embedded in the
resulting quotient, but their union is not.

Below, we shall show that question (2) also has a negative answer in
the class of realcompact spaces.

2.2. Closed copies of N in powers of R.

The discrete space N is realcompact; hence, it admits many embed-
dings into powers of R as a closed and C-embedded set.

The speci�c question from the introduction is equivalent to the ques-
tion whether there is a closed copy of N in some power of R that is
C∗-embedded but not C-embedded. Indeed, the latter is a special case
of the former, and a positive answer to the former answers the latter by
embedding the example as a closed C-embedded copy into some power
of R; the copy of N is then not C-embedded in that power.

The di�erence between C- and C∗-embedding manifests itself also in
the way certain maps can be factored through partial products.

Assume �rst that N is C-embedded in a power of R, say Rκ. Then there
is a continuous function f : Rκ → R such that f(n) = n for all n ∈ N.
It is well-known that f factors through a countable subset of κ: There
are a countable subset I of κ and a continuous function g : RI → R such
that f = g ◦ π where π is the projection onto RI ; see [4, Problem 2.7.12].
Then the projection π[N] of N in RI is C-embedded and we see that every
function from N to R has an extension that factors through the partial
power RI .

Now assume N is C∗-embedded but not C-embedded in Rκ. Then
every bounded function from N to [0, 1] has a continuous extension to Rκ.
Such a continuous extension will then factor through a partial product
with countably many factors, but the set of factors will vary with the
function.

Indeed, assume that there is a single countable set I such that every
bounded function f : N → [0, 1] has a continuous extension that factors
through RI . Apply this to the function de�ned by f(n) = 2−n and take
a function g : RI → R such that f̄ = g ◦ π is a continuous extension,
where π is the projection onto RI . Then π is injective on N and π[N] is
relatively discrete in RI .

We also �nd that π[N] is C∗-embedded in the metric space RI and,
hence, closed. But then π[N] is C-embedded in RI and N is C-embedded
in Rκ.

Using the plank A from section 5, we obtain such a copy of N in a power
of R. The standard embedding of A in the power RC(A) yields a closed
C-embedded copy of A. The right-hand side R is a closed copy of N that
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is C∗-embedded in A and, hence, in RC(A), but not C-embedded in RC(A).
This then suggests the following question.

Question 2.2. What is the minimum cardinal κ such that Rκ contains
a closed copy of N that is C∗-embedded but not C-embedded?

Since Rω0 is metrizable and, as we shall see,
∣∣C(A)

∣∣ = c, we know
that ℵ0 < κ ≤ c. This means that the continuum hypothesis settles this
question, but there may be some variation under other assumptions.

Our answer to question (2) on page 207 produces, in the same way,
a closed copy of N in Rc that is not C∗-embedded. After we submitted
this paper, we were able to answer the analogue of Question 2.2: The
smallest cardinal κ such that Rκ contains a closed copy of N that is not
C∗-embedded is ℵ1. See [3] for a surprising (to us) variety of closed copies
of N in Rω1 that are not C∗-embedded.

3. The Plank J and a Variation

In our third variation of the idea of the plank, the topology on ω0 + 1
remains as it is and we let, from now on, ω1 + 1 carry the topology of the
one-point compacti�cation of the discrete space ω1, with ω1 the point at
in�nity.

In this case, we denote the resulting space by J. It is a minor variation
of [4, Example 2.3.36]; in the terminology of that book, J = A(ℵ1) ×
A(ℵ0) \ {〈x0, y0〉}, where we have speci�ed the underlying sets of the
factors explicitly.

As in the case of T and D, the top line T = ω1 × {ω0} and the right-
hand side R = {ω1} × ω0 cannot be separated by open sets in J. Hence,
their union is not C∗-embedded in the space J.

A more careful analysis of the continuous functions on J will reveal
that neither T nor R is C∗-embedded.

Indeed, let f : J → R be continuous. For each n ∈ ω0, the set {α ∈
ω1 : f(α, n) 6= f(ω1, n)} is countable. It follows that there is an α in ω1

such that f(β, n) = f(ω1, n) for all n and all β ≥ α. By continuity,
this implies that f(β, ω0) = f(α, ω0) for all β ≥ α. This shows that
the function 〈α, ω0〉 7→ α mod 2 (the characteristic function of the odd
ordinals), which is continuous on T , has no continuous extension to J.

If we let r = f(α, ω0), then it follows that limn→∞ f(ω1, n) = r. We
see that the function 〈ω1, n〉 7→ n mod 2, which is continuous on R, has
no continuous extension to J either.

This argument also shows that J is not realcompact; the co-countable
sets on the top line form a zero-set ultra�lter with the countable intersec-
tion property that has an empty intersection. Alternatively, use Proposi-
tion 2.1: No in�nite subset of R is C∗-embedded.
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The space J is not pseudocompact either; the diagonal {〈n, n〉 : n ∈ ω0}
is a clopen discrete subset.

3.1. Ensuring C∗-embeddedness.

To ensure that R is C∗-embedded, we change the second factor in our
product.

We let X = (ω1 + 1)× βω0 and P = X \ ({ω1} × ω∗0). The right-hand
side R remains unchanged, but the top line T now becomes ω1 × ω∗0 .

To see why this makes the right-hand side C∗-embedded, let f : R →
[0, 1] be continuous. Take the unique continuous extension of n 7→ f(ω1, n)
to βω0 and it on every vertical line {α}× βω0 to get an extension of f to
the plank P .

This does not make the right-hand side C-embedded; the analysis of
the continuous functions on J shows that, for any extendable function f ,
the function n 7→ f(ω1, n) should be extendable from ω0 to βω0 and,
hence, should be bounded.

When we adapt the analysis of continuous functions on J to continuous
functions on P , we obtain that the intersection of a zero-set with the top
line T contains a set of the form A(α,Z) = [α, ω1)×Z, where α ∈ ω1 and
Z is a zero-set of ω∗0 (and Z could be empty, of course).

Now take any point u in ω∗0 and let Zu be the family of zero-sets
of ω∗0 that contain u. Then {A(α,Z) : α ∈ ω1, Z ∈ Zu} generates a
zero-set ultra�lter with the countable intersection property that has an
empty intersection. Thus, the present plank is not realcompact. Again,
Proposition 2.1 applies as well: No closed copy of N (and there are many)
in R is C-embedded.

4. The Plank V

It should be clear that the fact that continuous functions on ω1 + 1
are constant on co-countable sets is the main cause that the two previous
examples are not realcompact. To alleviate that, we replace ω1 + 1 by
βω1, where ω1 still has the discrete topology. We take the product Π =
βω1 × βω0; our example is V = Π \ (ω∗1 × ω∗0). The top line and the
right-hand side now become T = ω1 × ω∗0 and R = ω∗1 × ω0.

4.1. The right-hand side R is C∗-embedded in V.

This is proved almost as in the case of the plank P .
Let f : R→ [0, 1] be continuous. Apply the Tietze-Urysohn extension

theorem to each horizontal line Hn to obtain a continuous extension fn :
Hn → [0, 1] of the restriction of f to ω∗1 × {n}.
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Next, for each α ∈ ω1, take the unique extension gα of the map 〈α, n〉 7→
fn(α, n) to {α} × βω0. The union of the maps gα and fn is an extension
of f to V.

4.2. The right-hand side R is not C-embedded in V.

De�ne f : R → R by f(x, n) = n. Assume g : V → R is a continuous
extension of f . For each n and k, the set

{α ∈ ω1 :
∣∣g(α, n)− n

∣∣ ≥ 2−k}

is �nite; hence, for each n, the set {α : g(α, n) 6= n} is countable. It
follows that there are co-countably many α ∈ ω1 such that g(α, n) = n
for all n. For each such α, the restriction of g to the compact set {α}×βω0

would be unbounded, which is a contradiction.

4.3. The space V is realcompact.

Let Z be a zero-set ultra�lter with the countable intersection property.
We show that its intersection is nonempty.

To begin, if for some n the clopen �horizontal line� Hn = βω1×{n} be-
longs to Z, then the compactness of this line implies that

⋂
Z is nonempty.

In the opposite case, the complements of the Hn belong to Z; the inter-
section of these complements is equal to the top line T . By the countable
intersection property, we �nd that every member of Z intersects T ; hence,
T ∈ Z.

For every subset A of ω1, the partial top line TA = A×ω∗0 is a zero-set as
it is the intersection of T with the clopen subset clA×βω0 of Π. It follows
that the family u = {A : TA ∈ Z} is an ultra�lter on ω1 that has the
countable intersection property. Because ω1 is not a measurable cardinal,
it is a principal ultra�lter. Let α ∈ ω1 be such that u = {A ⊆ ω1 : α ∈ A}.
Then the compact set {α} × ω∗0 belongs to Z and so

⋂
Z 6= ∅.

4.4. Comments.

The natural maps from βω1 onto ω1 + 1 and from βω0 onto ω0 + 1-
as-the-one-point-compacti�cation are perfect and irreducible. Hence, so
is the product map from Π onto (ω1 + 1) × (ω0 + 1). It follows that the
restriction of this map to V is perfect as well because V is the preimage
of J.

We have seen that J is not realcompact, so we have here a very simple
perfect map that does not preserve realcompactness.

We also note that V is extremally disconnected, and it is, in fact, the
absolute of J.
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5. Another Plank

In this section, we construct a realcompact space with a closed copy
of N that is C∗-embedded but not C-embedded.

We let D be the tree 2<ω with the discrete topology and we topologize
D ∪ 2ω so as to obtain a natural compacti�cation cD of D. If x ∈ 2ω,
then its nth neighbourhood U(x, n) will be the �wedge� above x � n:

U(x, n) = {s ∈ cD : x � n ⊆ s}.

Let e : βD → cD be extension of the identity map. This yields a partition
of D∗ into closed sets, indexed by 2ω; let Kx = {u ∈ D∗ : e(u) = x}.

To construct our plank, we take a point ∞ not in 2ω and topologize
C = 2ω ∪ {∞} by making every point of 2ω isolated and letting

{U :∞ ∈ U ∧ |C \ U | ≤ ℵ0}

be a local base at ∞.
Let us note that C has a property in common with the horizontal lines

in our planks above: For every continuous function f : C→ R, there is a
neighbourhood of ∞ (a co-countable set) on which f is constant.

We let A be the following subspace of C× βD:

A = (C×D) ∪
⋃
x∈2ω
{x} ×Kx.

We let R = {∞} × D denote the right-hand side of the plank. The top
line T =

⋃
x∈2ω{x}×Kx is not as smooth as in the other examples; every

point u of D∗ occurs just once in the top line when e(u) = x.

5.1. R is C∗-embedded.

This is as in the previous examples: R is even C∗-embedded in R ∪
(2ω × βD). Given f : R → [0, 1], let g : βD → [0, 1] be the �ech-Stone
extension of s 7→ f(∞, s) and then de�ne f̄ : A \ R → [0, 1] by f̄(x, u) =
g(u) (replicate g on each vertical line, but restrict it to {x} × (ω0 ∪Kx)
each time). Then f ∪ f̄ is a continuous extension of f .

5.2. R is not C-embedded.

Below, we show that A is realcompact, so Proposition 2.1 implies
that R has many in�nite C-embedded subsets. Therefore, the unbounded
function without continuous extension must be chosen with some care.

De�ne f(∞, s) = |s| (the length of s). Assume g : A→ R is a continu-
ous extension. As noted before, there is a neighbourhood U of∞ such that
g is constant on U×{s} for every s ∈ D. But, then, for every x ∈ U \{∞}
and n ∈ ω0, we have g(x, x � n) = g(∞, x � n) = f(∞, x � n) = n. Since
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Kx =
⋂
n clβD{x � i : i ≥ n}, this would imply that g(x, u) ≥ n for all n

when u ∈ Kx.

5.3. A is realcompact.

In the plank P in section 3, we used ω∗0 everywhere in the top line.
Combined with the fact that continuous functions were constant on a tail
on each horizontal line, this implied that P is not realcompact, mainly
because unbounded (to the right) zero-sets in the top line contain sets of
the form [α, ω1)×Z, where Z is a zero-set of ω∗0 . In the present example,
the disjointness of the Kx will provide us with a richer supply of zero-sets;
these will help ensure realcompactness of A.

Let Z be a zero-set ultra�lter on A with the countable intersection
property.

For each s ∈ D, the horizontal C× {s} is clopen, hence, a zero-set.
The continuous function f : A→ [0, 1], determined by setting f(x, s) =

2−|s| for all 〈x, s〉 ∈ C × D, has the top line T as its zero-set. Thus, we
obtain a partition of A into countably many zero-sets. It follows that one
of these sets must belong to Z.

If C×{s} ∈ Z, then either 〈∞, s〉 ∈
⋂
Z or there is a Z ∈ Z such that

∞ /∈ Z. But then Z is discrete and countable because {x ∈ C : 〈x, s〉 /∈ Z}
is open in C and contains ∞. Then Z determines a countably complete
ultra�lter on Z, which is �xed because |Z| is countable.

We are left with the case that T ∈ Z. Here is where we use the partition
{Kx : x ∈ 2ω} of D∗ to show that T may be split into zero-sets in many
ways.

We show that whenever A is clopen in the Cantor set 2ω, the union
Z(A) =

⋃
x∈A{x} ×Kx is a zero-set in A.

By compactness and zero-dimensionality of cD, we know there is a
continuous function f : cD → {0, 1} such that f [A] = {0} and f [2ω \A] =
{1}. (We assume both A and its complement are non-empty.)

We use f to de�ne F : A → {0, 1} by F (x, s) = f(s) if 〈x, s〉 ∈ C ×D
and F (x, u) = f(x) if u ∈ Kx.

The function F is continuous on A and we have Z(A) = T ∩ ZF , so
Z(A) is a zero-set of A. Using this, we build countably many pairs of
complementary zero sets in T . For every n ∈ ω, we let An = {x ∈ 2ω :
x(n) = 0} and Bn = {x ∈ 2ω : x(n) = 1}; these clopen sets determine
the zero-sets Z(n, 0) =

⋃
x∈An

{x} ×Kx and Z(n, 1) =
⋃
x∈Bn

{x} ×Kx,
respectively.

Since Z is a zero-set ultra�lter and T ∈ Z, we deduce that, for every n,
there is an element x(n) of {0, 1} such that Z(n, x(n)) ∈ Z. Thus, we
get an x ∈ 2ω such that {Z(n, x(n)) : n ∈ ω} is a subfamily of Z.
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Its intersection is equal to {x} × Kx and, because Z has the countable
intersection property, this compact set belongs to Z, and so

⋂
Z 6= ∅.

As mentioned before, Proposition 2.1 implies that R has many in�nite
C-embedded subsets. A lot of these can be pointed out explicitly.

For every x ∈ 2ω, the set Nx = {〈∞, x � n〉 : n ∈ ω} is C-embedded
in A. Given a function f : Nx → R, we extend it to R, �rst by setting
f̄(∞, s) = 0 for all other s. Then we extend f̄ horizontally: f̄(y, s) =
f̄(∞, s) for all y and s, except for y = x; we set f̄(x, s) = 0 for all s. Now
we can set f̄(t) = 0 for all t in the top line to get our continuous extension
to all of A.

In a similar fashion, every in�nite antichain in 2<ω yields an in�nite
C-embedded subset as well.

5.4. More answers.

We can use A and some variations to answer some of the questions
raised earlier in this paper.

5.4.1. The smallest power of R. The set C × D is dense in A, so every
member of C(A) is determined by its restriction to this set. Using the
fact that continuous functions on C are constant on co-countable sets, we
see that there are c many such restrictions. We conclude that C(A) has
cardinality c, as claimed in the discussion of Question 2.2.

5.4.2. The union of two closed C∗-embedded copies of N. We can use A
much like we used K to create a realcompact space with two closed C∗-
embedded copies of N whose union is not C∗-embedded. Take A× {0, 1}
and identify the points 〈t, 0〉 and 〈t, 1〉 for all t in the top line T . Then
R × {0} and R × {1} are still C∗-embedded in the resulting quotient
space, but their union is not; mapping 〈r, i〉 to i results in a bounded
function without a continuous extension. The proof that the quotient
space is realcompact is almost verbatim that of the realcompactness of A.
Note that the R × {0} and R × {1} are separated (neither intersects the
closure of the other), so their union is a closed copy of N that is not C∗-
embedded. The quotient space also has c many real-valued continuous
functions; hence, we also obtain a closed copy of N in Rc that is not C∗-
embedded. This copy is quite unlike the closed copies of N in Rω1 that
are constructed in [3].

5.4.3. Another closed copy of N that is not C∗-embedded. If we replace βD
by cD in A, then we obtain a realcompact plank where the right-hand side
is a closed copy of N that is not C∗-embedded.

The analogue of A is the following subspace of C× cD:

(C×D) ∪ {〈x, x〉 : x ∈ 2ω}.
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That this space is realcompact is shown exactly as for A. However, in
this space, the right-hand side R is not C∗-embedded.

Since 2ω is homeomorphic to its own square, it is relatively easy to
produce two disjoint open sets U and V in 2ω with a dense union and
whose common boundary F is homeomorphic to 2ω itself.

Via the map e : βD → cD, we can �nd a subset C of D such that
clU ⊆ clC and clV ⊆ cl(D \ C).

De�ne f : R → [0, 1] by f(∞, s) = χ(s), where χ is the characteristic
function of C. As before, given a continuous extension f̄ of f , we would
have a countable set B such that f̄(x, s) = f(∞, s) for all x ∈ 2ω \ B
and all s ∈ D. But then f̄ would not be continuous at 〈x, x〉 whenever
x ∈ F \B.
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