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Nowhere constant families of maps and
resolvability
István Juhász and Jan van Mill

Abstract. If X is a topological space and Y is any set, then we call a family F of maps from X to Y
nowhere constant if for every non-empty open set U in X there is f ∈ F with ∣ f [U]∣ > 1, i.e., f is not
constant on U. We prove the following result that improves several earlier results in the literature.

If X is a topological space for which C(X), the family of all continuous maps of X to R, is nowhere
constant and X has a π-base consisting of connected sets then X is c-resolvable.

1 Introduction

The question about how resolvable are crowded locally connected spaces has
been around for some time. Costantini proved in [1] that regular such spaces are
ω-resolvable. Actually, it is proved there that local connectedness can be weakened to
having a π-base consisting of connected sets. We simply call such spaces π-connected.

In [5], it is stated that Yaschenko proved that every crowded locally connected
Tykhonov space is c-resolvable, however, as far as we know, no proof of this has been
published.

Dehghani and Karavan claim in [2] that every crowded locally connected func-
tionally Hausdorff space is c-resolvable. They get this as a corollary of their more
general Theorem 2.6, in the proof of which, however, we found a gap, and we do
not know if this gap can be fixed. On page 88 of their paper, lines -7 and -6, they
claim that ⋃γ/=α Aγ = f −1(⋃γ/=α Dγ) is not closed in any nonempty connected open
subset V of U. But this can only be concluded in case the restriction of f to V is
not constant, and they only assume that some continuous function g ∶ V → R is not
constant.

It follows, however, from our results below that their Corollary 2.7 of Theorem 2.6
is correct. In fact, the following property weaker than being crowded and functionally
Hausdorff suffices: for every non-empty open set U, there is a continuous map of the
whole space to R that is not constant on U.

We are going to get this from a more general result that will make use of the
following concept.
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Definition 1.1 Let X be a topological space and Y any set. We call a family F of maps
from X to Y nowhere constant (NWC) if for every non-empty open set U in X, there
is f ∈ F with ∣ f [U]∣ > 1, i.e., f is not constant on U.

We note the trivial fact that any space that admits a NWC family of maps is
crowded, i.e., has no isolated points.

2 The results

We first present a very general result that connects NWC families of maps and
resolvability.

Theorem 2.1 Let F be a NWC family of maps of the topological space X to the set Y.
Moreover, B is a π-base of X and A is a disjoint family of subsets of Y such that, putting
B f = {B ∈ B ∶ ∣ f [B]∣ > 1} and U f = ⋃(B/B f ) for any f ∈ F, we have

∀ f ∈ F∀B ∈ B f ∀A ∈ A (A∩ f [B/U f ] ≠ ∅).

Then X is ∣A∣-resolvable.

Proof We are going to use transfinite recursion to produce a disjoint collection
{D(A) ∶ A ∈ A} of dense subsets of X.

To do that, we first introduce the following piece of notation. For f ∈ F, B ∈ B f ,
and A ∈ A, we let

S( f , B, A) = f −1[A] ∩ (B/U f ).

It follows from our assumptions that S( f , B, A) ≠ ∅.
We start our recursive construction by choosing f0 ∈ F such that B f0 ≠ ∅ and then

define

D0(A) = ⋃{S( f0 , B, A) ∶ B ∈ B f0}

for all A ∈ A. Then {D0(A) ∶ A ∈ A} is disjoint because D0(A) ⊂ f0
−1[A] for each A ∈

A, moreover B ∩ D0(A) ≠ ∅ whenever B ∈ B f0 and A ∈ A.
Now, assume that α > 0 and we have already defined fβ ∈ F and the family

{Dβ(A) ∶ A ∈ A} for all β < α, and consider

Bα = ⋃{B fβ ∶ β < α}.

If Bα = B, then our construction stops. Otherwise, we may pick fα ∈ F such that
B f α/Bα ≠ ∅. In this case, we define

Dα(A) = ⋃{Dβ(A) ∶ β < α} ∪⋃{S( fα , B, A) ∶ B ∈ B f α/Bα}

for each A ∈ A.
Note that we clearly have ⋃(B f α/Bα) ⊂ ⋂{U fβ ∶ β < α}, hence it may be verified

by straightforward transfinite induction that {Dα(A) ∶ A ∈ A} is disjoint, moreover,
we have B ∩ Dα(A) ≠ ∅ whenever A ∈ A and B ∈ B fβ with β ≤ α.
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Of course, this construction must stop at some ordinal α, in which case putting
D(A) = ⋃{Dβ(A) ∶ β < α} the disjoint family {D(A) ∶ A ∈ A} consists of dense sub-
sets of X because B ∩ D(A) ≠ ∅ for any B ∈ B and A ∈ A and B is a π-base of X. ∎

Now, we deduce from Theorem 2.1 our promised result concerning π-connected
spaces.

Corollary 2.2 If X is any π-connected space for which C(X), the family of all
continuous maps of X to R, is NWC then X is c-resolvable.

Proof To apply Theorem 2.1, we of course put Y = R and F = C(X). For B, we
choose a π-base of X consisting of connected sets, and let A be any disjoint collection
of dense subsets of R with ∣A∣ = c.

Note that for any f ∈ C(X) and B ∈ B f , we have ∣ f [B]∣ > 1, hence f [B] is a
nondegenerate interval in R, being a non-singleton connected subset of R, and thus
A∩ f [B] ≠ ∅ holds for all A ∈ A. Consequently, we shall be done if we prove the
following claim.

Claim For any f ∈ C(X) and B ∈ B f , we have

f [B] = f [B/U f ].

To see this, pick any t ∈ f [B] and note that B ∩ f −1(t) is a non-empty proper closed
subset of the connected subspace B. Properness follows from ∣ f [B]∣ > 1. Consequently,
the boundary Ht of B ∩ f −1(t) in B is non-empty. Also, we have Ht ⊂ B ∩ f −1(t), the
latter set being closed in B.

Now, take any B′ ∈ B/B f , then f [B′] = {t′} for some t′ ∈ R. If t′ ≠ t, then we have
B′ ∩ f −1(t) = ∅, hence B′ ∩Ht = ∅ as well. If, on the other hand, t′ = t, then B′ ∩ B
is in the interior of B ∩ f −1(t) in B, hence we have B′ ∩Ht = ∅ again. This, however,
means that Ht ∩U f = ∅, consequently, t ∈ f [Ht] ⊂ f [B/U f ], completing the proof
of the claim. ∎

A closer inspection of this proof reveals that we did not use the full force of
continuity for the members f of the NWC family F = C(X). What we used was that f
preserves connectedness for B ∈ B, i.e., f [B] is connected in R for B ∈ B, moreover,
that f −1(t) is closed in X for all t ∈ R.

3 Discussion and questions

Corollary 2.2 is clearly sharp in the sense that the cardinal c cannot be replaced with
anything bigger because there are very nice crowded and locally connected spaces
of cardinality c. The natural question arises, however, if such a space X is maximally
resolvable, i.e., Δ(X)-resolvable, where Δ(X) is the minimum cardinality of a non-
empty open set in X.

In a recent arXiv preprint [4], Lipin proved that if 2c = 2(c
+), then there is a locally

connected and pseudocompact Tykhonov space X such that Δ(X) > c but X is not
c+-resolvable. So, at least consistently, Corollary 2.2 is sharp in that sense as well.
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As we wrote in the Introduction, Costatini [1] proved that crowded π-connected
regular spaces are ω-revolvable. As usual, in his treatment regular implies T1. But his
proof actually works for all crowded π-connected quasi-regular spaces as well, without
the use of any additional separation axiom. Recall that a space is quasi-regular if for
every non-empty open U, there is a non-empty open V such that V ⊂ U . The only
slight modification we need is that in this case, the definition of crowded has to be
replaced by the following assumption: there is no finite indiscrete open subspace. For
T0-spaces, this assumption is clearly equivalent with the usual one, i.e., not having any
isolated points.

Hewitt [3] gave an example of a regular connected space X of cardinality ω1. Let
Y = λ f (X) be the superextension of X consisting of all finitely generated maximal
linked systems consisting of closed subsets of X. Then Y also has size ω1, since the
collection of all finite subsets of X has size ω1, moreover, Y is Hausdorff, connected
and locally connected (see [7, IV.3.4(v) and (viii)]).

We claim that Y is also regular and adopt the terminology of [7]. To prove this,
let m ∈ Y be arbitrary, and let A be a closed subset of Y not containing m. Let F ⊆ X
be a finite defining set for m, and let n = m↾F. There is a finite collection of open
subsets U of X such that m ∈ ⋂U∈U U+ ⊆ Y/A. For each U ∈ U, let NU ∈ n be such
that NU ⊆ U . By regularity of X, we may pick an open neighborhood VU of NU
whose closure is contained in U. Then ⋂U∈U V+U is a closed neighborhood of m that
misses A.

Hence Y is a connected, locally connected regular space which by Costantini’s
result is ω-resolvable. (In this special case, there is also a direct proof of this.) But
Y has cardinality ω1, hence it is not c-resolvable if the Continuum Hypothesis fails.
So, for crowded locally connected regular spaces, a positive answer to the following
question is the best we can hope for.

Problem 3.1 Let X be regular, crowded, and locally connected (respectively,
π-connected). Is Xω1-resolvable?

We cannot resist mentioning here that it is still a widely open question whether
non-singleton connected regular spaces are resolvable (see e.g., [6] for details and
references). This seems to be one of the most central open problems in the area.

We call a space X nowhere 0-dimensional if no non-empty open subspace of X is
0-dimensional. Clearly, any crowded locally connected, even π-connected, space is
nowhere 0-dimensional.

Assume that X is a nowhere 0-dimensional Tykhonov space. We may assume
that X is a subspace of RI for some set I. For every i ∈ I, let π i ∶RI → R be the ith
projection. Then, for every nonempty open subset U of X, there exists i ∈ I such that
π i(U) has nonempty interior. For otherwise U would be a subspace of a product of
0-dimensional spaces, and so would itself be 0-dimensional. Hence the collection of
projections P = {π i↾X ∶ i ∈ I} is NWC in a (very) strong sense. This observation lead
us to the following problem.

Problem 3.2 Is every nowhere 0-dimensional Tykhonov space resolvable
(ω-resolvable, c-resolvable)?
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