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Abstract. Let X and Y be locally compact, σ-compact spaces and let u ∈ X∗ and
v ∈ Y ∗. In this paper we will show that if Xu and Yv are lp-equivalent then u is ω-near
if and only if v is. This result does not necessarily hold for spaces that are not locally
compact and σ-compact. We will also show that if in addition X and Y are metrizable
and u and v are ω-near, then if Xu and Yv are lp-equivalent, ωû and ωv̂ are homeomorphic
for some ‘unique’ û, v̂ ∈ ω∗ ‘good’ for u and v. These results allow us to find an isomorphic
classification of function spaces Cp(αu), where α < ωω is a limit ordinal and u ∈ α∗. This
extends a result due to Gul’ko for α = ω. We will also indicate that the proof for this
isomorphic classification can only partly be extended for α ≥ ωω.

1. Introduction

All topological spaces in this paper are Tychonoff spaces.
For a space X we let C(X) denote the set of real-valued continuous functions on X. The

set C(X) endowed with the topology of point-wise convergence will be denoted by Cp(X).
This function space is a topological vector space and is a dense subspace of RX . Function
spaces with the topology of point-wise convergence have been widely investigated. An
extensive overview of what has been achieved can be found in the works of Arhangel’skii, [2]
and Tkachuk [18], [19], [20], [21]. In this paper the focus will be on linear homeomorphisms
between function spaces. Following Arhangel’skii, we define spaces X and Y to be lp-
equivalent if Cp(X) and Cp(Y ) are linearly homeomorphic. A topological property P
is defined to be lp-invariant if for lp-equivalent spaces X and Y we have that X has
property P if and only if Y has property P. For an overview of lp-invariant properties
and conditions for spaces to be lp-equivalent we refer to [6], [17] and [21].

Isomorphic classification results in linear spaces have a long history. Miljutin [15] proved
that all Banach spaces C(X), where X is any compact metrizable uncountable space, are
linearly homeomorphic. And Bessaga and Pelczyński [7] found an isomorphic classification
of all Banach spaces C(K), where K is any countable compact space. The aim of this
paper is to continue this line of investigation.

For a space X, let βX be its Čech-Stone compactifaction; put X∗ = βX \X, the (Čech-
Stone) remainder of X. For every u ∈ X∗ let Xu be the subspace X ∪ {u} of βX. In this
paper we will be particularly interested in ordinal spaces α < ω1 with the order topology,
and for every u ∈ α∗, in αu = α ∪ {u} ⊆ βα.
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If α < ω1 and u, v ∈ α∗, then a ‘trivial’ sufficient condition for Cp(αu) and Cp(αv) to
be linearly homeomorphic is that αu and αv are homeomorphic. In [12], it was shown by
Gul’ko that this ‘trivial’ condition is also necessary for α = ω.

Theorem 1.1. Let u, v ∈ ω∗. Then Cp(ωu) and Cp(ωv) are linearly homeomorphic if and
only if ωu and ωv are homeomorphic.

Homeomorphy between ωu and ωv can clearly be translated into purely combinatorial
properties of the ultrafilters u and v. Homeomorphy gives us a permutation of ω taking
one ultrafilter onto the other, and vice versa.

A natural question is whether a version of Gul’ko’s isomorphic classification can be
proved more generally for function spaces Cp(Xu). In particular for spaces Cp(αu), where
α < ω1 and u ∈ α∗. In Section 5, we will obtain such a classification for all limit ordinals
α < ωω. This isomorphic classification links to the results found in [4] for zero dimensional
locally compact separable metric spaces which obviously includes all limit ordinal spaces
α < ω1.

Our method of proof uses the fact that all points in α∗ are near α when α < ωω is a
limit ordinal (we will make this precise later). But this is not true if α ≥ ωω. This suggests
the following problem: if X and Y are spaces (not necessarily ordinal numbers), u ∈ X∗,
v ∈ Y ∗, Xu and Yv are lp-equivalent, then is u is ‘near’ X if and only if v is ‘near’ Y ? We
will demonstrate that this is true for locally compact σ-compact spaces, but in general it
is not true. We will also show that if in addition X and Y are metrizable and u is ‘near’
X and v is ‘near’ Y , then if Xu and Yv are lp-equivalent, ωû and ωv̂ are homeomorphic for
some unique û, v̂ ∈ ω∗ ‘good’ for u and v.

It will turn out that an isomorphic classification of function spaces Cp(αu), where ωω ≤
α < ω1 is out of reach, let alone a general isomorphic classification of function spaces
Cp(Xu). We will discuss partial results for limit ordinals greater than or equal to ωω and
we show that we run into all sorts of problems trying to generalize our results for these
ordinals.

The results presented here depend partly on a generalized version of a lemma by Gul’ko
in [12] (see Section 3). In addition we will make use of the Rudin-Froĺık (pre-)order of
ultrafilters, and a result in [13] by Hasumi on selections of upper semicontinuous functions
on extremally disconnected spaces.

2. Terminology

2.1. Generalities. By X ≈ Y we mean that X and Y are homeomorphic spaces.
We use standard notion with respect to ordinal exponentiation.
The symbol ⊕ denotes topological sum.
A subset A of a space X is bounded if for every f ∈ C(X), f(A) is a bounded subset

of R. If X is normal, then by the Tietze Extension Theorem, for closed A ⊆ X, A is
bounded if and only if A is pseudocompact if and only if A is countably compact. If X is
not normal, this need not hold (Engelking [11, 3.10.29]).
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For a space X and A ⊆ X we put Cp,A(X) = {f ∈ Cp(X) : f(A) = {0}}. We define A
to be Cp-zero embedded in X if Cp(X) is linearly homeomorphic to Cp,A(X)×Cp(A). The
following result is well-known (see V.370 in [21] and Proposition 2.3.2 in [6]).

Lemma 2.1. Let X be a normal space and let A be closed subset of X. Then if either

(a) A is a retract of X, or
(b) X is metrizable

then A is Cp-zero embedded and C∗-embedded in X.

2.2. Linear spaces. For convenience, we let E ∼ F denote that the linear spaces E and
F are linearly homeomorphic.

Let X and Y be spaces and let φ : Cp(X) → Cp(Y ) be a continuous linear function.
For y ∈ Y , the map ψy : Cp(X) → R defined by ψy(f) = φ(f)(y) is continuous and
linear. This means ψy ∈ L(X), the dual space of Cp(X). Since the evaluation mappings
ξx (x ∈ X) defined by ξx(f) = f(x) for f ∈ Cp(X) form a Hamel basis for L(X) (a proof
of this statement is not trivial), there are x1, . . . , xn ∈ X and λyx1 , . . . , λ

y
xn ∈ R \ {0} such

that ψy =
∑n

i=1 λ
y
xi
ξxi . This means that for every f ∈ Cp(X), φ(f)(y) =

∑n
i=1 λ

y
xi
f(xi).We

define the support suppφ(y) of y to be {x1, . . . , xn}. For B ⊆ Y , we denote
⋃
y∈B suppφ(y)

by suppφ(B) or supp(B). Note that if f, g ∈ Cp(X) coincide on supp(B), then φ(f) and
φ(g) coincide on B.

If φ is a linear homeomorphism, for every y ∈ Y we define θφ(y) = {x ∈ suppφ(y) :
y ∈ suppφ−1(x)}. Since y ∈ suppφ−1(suppφ(y)) (again, the proof of this is not trivial) we
have θφ(y) 6= ∅. Note that x ∈ θφ(y) if and only if y ∈ θφ−1(x). For B ⊆ Y , we define
θφ(B) =

⋃
y∈B θφ(y).

For more information on the support function and proofs of the above statements, we
refer to [6] or [17, Chapter 6].

In [1], Arhangel’skii proved the following basic result:

Lemma 2.2. Let X and Y be Tychonoff spaces and let φ : Cp(X)→ Cp(Y ) be a continuous
linear function. If A ⊆ Y is bounded, then supp(A) ⊆ X is bounded.

2.3. Čech-Stone compactifications. As we stated in §1, if X is a space, then βX and
X∗ denote its Čech-Stone compactification and remainder, respectively. If A ⊆ X is closed
and C∗-embedded in X, then the closure clβXA of A in βX is a compactification of A
which is equivalent to its Čech-Stone compactification βA (Engelking [11, 3.6.7]). This is
true for example if A is clopen in X or a retract of X. Moreover, if X is normal, then by
the Tietze Extention Theorem, there are no restrictions (Engelking [11, 3.6.8]). In these
cases, we will always identify βA and clβXA.

As we stated in §1, for every u ∈ X∗ let Xu be the subspace X∪{u} of βX. Assume X is
a space containing a point u such that X\{u} is dense in X and C∗-embedded. Then βX =
β(X\{u}) by Engelking [11, 3.6.1]. Hence (X\{u})u = X. As a consequence, the topology
of Xu can be characterized internally without referring to Čech-Stone compactifications.

For f : ω → ω, let βf : βω → βω be the Stone extension of f . That is, for every
ultrafilter u ∈ βω, βf(u) is the ultrafilter generated by {f(U) : U ∈ u}. The Rudin-
Keisler (pre-)order ≤RK on βω is defined as follows: for u, v ∈ βω, u ≤RK v if and only if
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there is a function f : ω → ω such that βf(v) = u. The following theorem is well-known,
see [8, Corollary 9.3] or [16, Theorem 3.1.1].

Theorem 2.3. Let u, v ∈ ω∗. Then u ≤RK v and v ≤RK u if and only if ωu and ωv are
homeomorphic.

Let X be a space and let D = {xi : i ∈ ω} ⊆ X be countably infinite, closed, discrete
and C∗-embedded in X. Then the closure clβXD of D in βX is βD which is canonically
homeomorphic to βω. In fact, if u ∈ clβXD, then {A ⊆ ω : u ∈ clβX{xi : i ∈ A}} is
an ultrafilter on ω and hence a point in βω. We denote this point by ũ. Now consider
Y = X ⊕ ω. Since ω is clopen in Y , for every u ∈ clβXD, the point ũ ∈ βω can be seen as
a point in βY . In fact, the map u 7→ ũ is a homeomorphism clβXD → βω ⊆ βY .

A point p ∈ X∗ is an ω-far point (of X) if for every countable closed discrete D ⊆ X,
p 6∈ clβXD. This notion is due to van Douwen [9] who showed that every non-compact
metrizable space without isolated points has such a point. Observe that if X = ω, then no
point of X∗ is far, hence the condition that the space has no isolated points is essential in
van Douwen’s result. A point p ∈ X∗ that is not ω-far is called ω-near.

3. On a result by Gul’ko and ω-near points

The next lemma is a generalization of a result by Gul’ko [12, Lemma 5] for X = Y = ω.
Gul’ko’s version of this lemma was used to prove his main result Theorem 1.1 in [12].

Lemma 3.1. Let X and Y be spaces with X normal. Let φ : Cp(X)→ Cp(Y ) be a linear
homeomorphism. Let B be a countably infinite discrete family of bounded subsets of X,
and let B =

⋃
B. Let A ⊆ Y be countable such that

(a) For every y ∈ A we have θφ(y) ∩B 6= ∅,
(b) Every F ⊆ A that is bounded in Y , is finite.

Then A is closed in Y .

Proof. Suppose that A is not closed in Y . Then there is v ∈ Y such that v ∈ A \ A.

Claim. If G ⊆ B is finite and G =
⋃

G then

(i) F = {y ∈ A : θφ(y) ∩G 6= ∅} is finite.
(ii) θφ(A) ∩G is finite.

Since G is bounded we have by Lemma 2.2 that suppφ−1(G) is a bounded subset of Y .
For (i), let y ∈ F and let xy ∈ θφ(y) ∩ G. Then y ∈ suppφ−1(xy) ⊆ suppφ−1(G). Hence
F ⊆ suppφ−1(G) and so F is a bounded subset of Y . Since F ⊆ A, we have by (b) that F
is finite.

Since F is finite by (i), for (ii) it suffices to observe that θφ(A) ∩G ⊆ suppφ(F ).

Since suppφ(v) is finite, there is a finite G ⊆ B such that supp(v) ∩ B ⊆ G =
⋃

G .
By (i) of the Claim, F = {y ∈ A : θφ(y) ∩G 6= ∅} is finite. Therefore we may assume that
supp(v) ∩B = ∅ (replace B by B \ G and A by A \ F ).

Since A is countable it follows that θφ(A) ⊆ suppφ(A) is countable. If θφ(A)∩B is finite,
then there is a finite G ⊆ B such that θφ(A) ∩ B = θφ(A) ∩ G, where G =

⋃
G . Since A
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is infinite we have a contradiction by (a) and (i) of the Claim. So θφ(A) ∩ B is countably
infinite.

Enumerate θφ(A) ∩ B as {xj : j < ω}, where xi 6= xj for i 6= j. Since B is a discrete
family of subsets of X we have by (ii) of the Claim that {xj : j < ω} is closed and discrete
in X. Therefore, since X is normal, for every j < ω there exists an open neighborhood Vj
of xj such that the collection {Vj : j < ω} is discrete and suppφ(v)∩

⋃
j<ω Vj = ∅ (use e.g.

the Tietze Extension Theorem).
Put A0 = B0 = ∅. For every 1 ≤ j < ω define

Bj = {xi : i ≤ j} and Aj = {y ∈ A : suppφ(y) ∩B ⊆ Bj}.

Then Bj ⊆ Bj+1 and so Aj ⊆ Aj+1,
⋃
j<ω Bj = B and

⋃
j<ω Aj = A. Since by (a),

Aj ⊆ {y ∈ A : θφ(y) ∩Bj 6= ∅} we have by (i) of the Claim that Aj is finite.

For j < ω we will define hj ∈ Cp(X) such that

(1) hj(X \ Vj) ⊆ {0},
(2) hj(suppφ(Aj) \ {xj}) ⊆ {0},
(3) for j > 0, φ(hj)(Aj−1) ⊆ {0},
(4) if Aj 6= ∅, then for every y ∈ Aj, |φ(

∑
i≤j hi)(y)| > 1.

Put h0 = 0. For some j > 0, assume that for k < j, hk satisfies (1) through (4). If
Aj \Aj−1 = ∅, let hj = 0. If Aj \Aj−1 6= ∅, then for y ∈ Aj \Aj−1, suppφ(y)∩B ⊆ Bj and
xj ∈ suppφ(y). Put C = suppφ(Aj) \ {xj}, and observe that C is finite since Aj is. Since
λyxj 6= 0 for every y ∈ Aj \ Aj−1, there clearly exists α ∈ R such that for every y in the

finite set Aj \ Aj−1,
|φ(
∑
i≤j−1

hi)(y) + λyxjα| > 1.

Let hj ∈ Cp(X) be such that hj(C∪(X \Vj)) ⊆ {0} and hj(xj) = α. Then for y ∈ Aj \Aj−1
we have

φ(hj)(y) =
∑
{λyxhj(x) : x ∈ suppφ(y)} = λyxjhj(xj) = λyxjα

and hence

|φ(
∑
i≤j

hi)(y)| = |φ(
∑
i≤j−1

hi)(y) + φ(hj)(y)| = |φ(
∑
i≤j−1

hi)(y) + λyxjα| > 1.

Moreover, if y ∈ Aj−1, then suppφ(y) ⊆ C, hence hj(y) = 0. Hence by (4) we have

|φ(
∑
i≤j

hi)(y)| = |φ(
∑
i≤j−1

hi)(y)| > 1.

and so hj satisfies (1) through (4).
Now define h : X → R by h =

∑
j<ω hj. Then h ∈ Cp(X) since the collection {Vj : j <

ω} is discrete. Since suppφ(v) ∩
⋃
j<ω Vj = ∅ we have by (2), h(suppφ(v)) = 0 and hence

φ(h)(v) = 0. For y ∈ Aj we have by (3) and (4) that |φ(h)(y)| = |φ(
∑

i≤j hi)(y)| > 1. Since⋃
j<ω Aj = A and v ∈ A \ A, φ(h) is not continuous at v, which is a contradiction. �



6 JAN BAARS AND JAN VAN MILL

In this section we address the natural question whether ‘being ω-near’ is lp-invariant. In
some cases, it is. The proof makes use of both Lemma 2.2 and Lemma 3.1.

Proposition 3.2. Let X and Y be a normal spaces, and suppose Y =
⋃
i<ω Yi, where each

Yi is pseudocompact and Yi ⊆ int(Yi+1) for i < ω. If u ∈ X∗ is ω-near, v ∈ Y ∗, and Xu

and Yv are lp-equivalent, then v is ω-near.

Proof. Assume that φ : Cp(Xu)→ Cp(Yv) is a linear homeomorphism. Let D be a countable
closed discrete subset of X such that u ∈ clβXD. For i < ω, let Fi = suppφ(Yi) ∩ D and
Gi = θφ−1(D) ∩ Yi. Note that Fi ⊆ Fi+1 and Gi ⊆ Gi+1 for i < ω. Assume that some Fi is
infinite. By normality of X, there is a continuous function f : X → R such that f(Fi) is
unbounded. Hence suppφ(Yi) is unbounded in X, which violates Lemma 2.2. Hence each
Fi is finite and so each suppφ−1(Fi) is finite as well. We will show that Gi ⊆ suppφ−1(Fi).
To this end, take an arbitrary y ∈ Gi. Pick d ∈ D such that y ∈ θφ−1(d). Then d ∈
θφ(y) ∩ D ⊆ Fi, so y ∈ suppφ−1(d) ⊆ suppφ−1(Fi), as required. From this we conclude
that each Gi is finite as well. Hence G =

⋃
i<ω Gi is countable. Pick an arbitrary y ∈ Y ,

and i < ω such that y ∈ Yi ⊆ int(Yi+1). Note that int(Yi+1) ∩ G is contained in the finite
set Gi+1 and hence y is not an accumulation point of G. So G is a countable closed and
discrete subset of Y .

For A ⊆ D infinite we have that A is not bounded in Xu. To see this, split A into two
disjoint infinite subsets, say A0 and A1. Since A0 and A1 are disjoint closed subsets of X
we have by normality of X that either u is not in the closure of A0, or not in the closure of
A1. So we may assume without loss of generality that A is closed in Xu. Let C be a closed
neighborhood of u in Xu which misses A. Again by normality of X, there is a continuous
function f : X → R such that f(C ∩ X) ⊆ {0} and f(A) is unbounded. This function
can be extended to a continuous function g : Xu → R by g ≡ f on X and g(u) = 0. This
implies that A is not bounded in Xu.

Since for every x ∈ D, θφ−1(x) 6= ∅, there is i < ω such that θφ−1(x) ∩ Yi 6= ∅ and hence
θφ−1(x)∩G 6= ∅. Since D is not closed in Xu and Y is normal, it now follows by Lemma 3.1
that {Gi : i < ω} is not discrete in Yv, i.e., v ∈ clβYG. �

Clearly every locally compact and σ-compact space X can be written as X =
⋃
i<ωXi,

where each Xi is compact and Xi ⊆ int(Xi+1) for i < ω. Moreover since every σ-compact
space is Lindelöf and hence normal, we now get:

Theorem 3.3. Let X and Y be locally compact, σ-compact spaces. Let u ∈ X∗ and v ∈ Y ∗
be such that Xu and Yv are lp-equivalent. Then u is ω-near if and only if v is.

In particular, Theorem 3.3 holds for the real line R. Since every countable ordinal
number is locally compact and σ-compact, we also have:

Theorem 3.4. Let α, γ < ω1 be limit ordinals. Let u ∈ α∗ and v ∈ γ∗ be such that αu and
γv are lp-equivalent. Then u is ω-near if and only if v is.

Recall that for a space X a point in X∗ is a remote point of X if it is not in the closure
clβXD of any nowhere dense subset D of X. Clearly every remote point is ω-far if X is
dense in itself. In light of Theorem 3.3, this suggests:



FUNCTION SPACES AND POINTS IN ČECH-STONE REMAINDERS 7

Question 3.5. Let X and Y be locally compact, σ-compact spaces. Let u ∈ X∗ and v ∈ Y ∗
be such that Xu and Yv are lp-equivalent. Is then u a remote point of X if and only if v is
a remote point of Y ?

Theorem 3.3 and Question 3.5 suggest the question whether similar results hold for all
spaces, or perhaps for all normal spaces. We will show that this unfortunately is not true.

Consider the space Q consisting of all rational numbers, and let Z denote the set of
integers. Let Y = Q × (Z × Z), and let σ : Z → Z be the shift σ(n) = n+1. Take
x ∈ Q, and let p be a limit point of {(x, 0, n) : n ∈ Z} in βY . Then p ∈ Y ∗ and is ω-
near. Define τ : Y → Y by τ(x, n,m) = (x, n+1,m). Then τ is a homeomorphism, hence
f = βτ : βY → βY is a homeomorphism. Put

Z = Y ∪ {fk(p) : k ∈ Z, k ≤ 0}.

Observe that if k0 6= k1 are in Z, then fk0(p) 6= fk1(p). Hence, f−1(Z) = Z \ {p}.
The space Z has the following properties:

(1) Z contains a dense copy of Y which is a topological copy of Q and so Z has no
isolated points and has countable π-weight.

(2) Z contains a point p such that Z \ {p} is C∗-embedded in Z, p is an ω-near point
of Z \ {p}, and, finally Z \ {p} is homeomorphic to Z.

Now we repeat a slightly different version of this construction with Z as building block
instead of Q. To this end, let S = Z × (Z × Z). Consider the clopen subspace T =
Z × {0} × Z of S. This subspace is dense in itself and clearly has countable π-weight. By
van Douwen [10], there is a remote point q ∈ T ∗. Observe that q ∈ S∗. Define η : S → S
by η(x, n,m) = (x, n+1,m). Then η is a homeomorphism, hence g = βη : βS → βS is a
homeomorphism. Put

T = S ∪ {gk(q) : k ∈ Z, k ≤ 0}.
Observe that if k0 6= k1 are in Z, then gk0(p) 6= gk1(p). Hence, g−1(T ) = T \ {q}.

The space T has the following properties:

(3) T contains the clopen copy of Z × {0} × {0} of Z, which we identify with Z,
(4) T contains a point q such that T \{q} is C∗-embedded in T , q is not in the closure of

any nowhere dense subset of T (hence is ω-far), and, finally T \{q} is homeomorphic
to T .

Now put P = T \ {p, q}. Then P is C∗-embedded in P ∪ {p}, hence Pp = T \ {q} ≈ T .
Also, p is an ω-near point of P . Similarly, P is C∗-embedded in P ∪ {q}, hence Pq =
T \ {p} ≈ T (this is so since Z is clopen in T , does not contain q and Z \ {p} ≈ Z).
Also, q is an ω-far point of P . This means that Pp ≈ T ≈ Pq, and so Cp(Pp) is linearly
homeomorphic to Cp(Pq), and p is an ω-near point of P while q is not.

4. More on ω-near points

As mentioned in the introduction, we are interested in classes of spaces X for which
Gul’ko’s Theorem 1.1 can be generalized. In this section we will present results for the
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class of locally compact σ-compact metrizable spaces amongst which are the real line R
and all limit ordinals α < ω1. We start with the following:

Lemma 4.1. Let X =
⋃
i<ωXi ⊕ ω and Y = Z ⊕ ω, where X and Z are normal spaces

and where each Xi is pseudocompact and Xi ⊆ int(Xi+1) for i < ω. Let u ∈ ω∗ ⊆ X∗

and v ∈ ω∗ ⊆ Y ∗. Let φ : Cp(Xu) → Cp(Yv) be a linear homeomorphism. Then F : ωv →
P(ωu), defined by F (n) = θφ(n) ∩ ω for n < ω and F (v) = {u}, is upper semicontinuous.
Moreover, {n < ω : F (n) 6= ∅} ≈ ωv.

Proof. Let U ⊆ ω ∪ {u} be open and let Z = {y ∈ ωv : F (y) ⊆ U}. Our aim is to show
that Z is open. If u /∈ U then v /∈ Z and hence there is nothing to prove. So assume that
u ∈ U , from which it follows that v ∈ Z. Put A = ωv \ Z and observe that it is contained
in ω. If A is finite then Z is open so we may assume without loss of generality that A is
infinite. Note that every subset of A that is bounded in Yv is finite.

For i < ω let Ai = suppφ−1(Xi) ∩ A and Bi = θφ(A) ∩ Xi. Since Xi is bounded in
Xu we have that suppφ−1(Xi) is by Lemma 2.2 bounded in Yv and hence Ai is finite. For
x ∈ Bi there is y ∈ A such that x ∈ θφ(y). But then y ∈ suppφ−1(x) ∩ A ⊆ Ai and hence
x ∈ suppφ(Ai). Therefore Bi ⊆ suppφ(Ai) and hence Bi is finite.

Let B = {Bi : i < ω} ∪ {{n} : n ∈ ωu \ U} and let B =
⋃

B. Then B is a countably
infinite family of finite subsets of X. Pick an arbitrary x ∈

⋃
i<ωXi, and i < ω such that

x ∈ Xi ⊆ int(Xi+1). Note that int(Xi+1) ∩ B is contained in the finite set Bi+1 and hence
x is not an accumulation point of B. So B is a countably infinite closed and discrete
family in Xu. Note that for n ∈ A we have F (n) ∩ B 6= ∅. Since F (n) ⊆ θφ(n) we have
θφ(n)∩B 6= ∅. From Lemma 3.1 it now follows that A is closed in Yv and hence Z = ωv \A
is open.

Let Z = {n < ω : F (n) 6= ∅} and assume that Z is closed and discrete. Then v ∈ ω \ Z.
Let B = {θφ(Z) ∩ Xi : i < ω} and let B =

⋃
B. As above we can show that B is a

countably infinite closed and discrete family in Xu. For n ∈ ω \Z we have F (n) = ∅ hence

θφ(n)∩B 6= ∅. From Lemma 3.1 it now follows that v /∈ ω \ Z, which is a contradiction. �

We need a result by Hasumi [13] on selections of certain upper semicontinuous functions
on extremally disconnected spaces and a well-known theorem on the Rudin-Keisler (pre-)
order on βω. A space X is extremally disconnected if disjoint open subsets of X have
disjoint closures. Note that for every u ∈ ω∗, ωu is extremally disconnected.

Theorem 4.2. (Hasumi [13]) Let X and Y be spaces with X extremely disconnected. Let
F : X → P(Y ) be an upper semicontinuous function such that for every x ∈ X, F (x) is
non-empty and compact. Then there exists a continuous function f : X → Y such that for
every x ∈ X, f(x) ∈ F (x) (i.e., f is a continuous selection for F ).

We now come to the following generalisation of Theorem 1.1.

Theorem 4.3. Let X =
⋃
i<ωXi ⊕ ω and Y =

⋃
i<ω Yi ⊕ ω, where X and Y are normal

spaces, Xi and Yi are pseudocompact, Xi ⊆ int(Xi+1) and Yi ⊆ int(Yi+1) for i < ω. Let
u ∈ ω∗ ⊆ X∗ and v ∈ ω∗ ⊆ Y ∗. If φ : Cp(Xu)→ Cp(Yv) is a linear homeomorphism, then
ωv ≈ ωu.
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Proof. By Lemma 4.1 we have that F : ωv →P(ωu) defined by F (n) = θ(n)∩ω and F (v) =
{u} is upper semicontinuous. Moreover by Lemma 4.1 we may assume that F (n) 6= ∅ for
all n < ω. Since ωv is extremely disconnected, by Theorem 4.2, there is a continuous
f : ωv → ωu such that f(v) = u. Hence u ≤RK v. Similarly, by applying the above for φ−1

instead of φ, we have v ≤RK u. And so by Theorem 2.3, ωu and ωv are homeomorphic. �

Our next result will be an important tool in the rest of this section.

Proposition 4.4. Let X be a normal space and let Y = X ⊕ ω. Let u ∈ D∗, where
D ⊆ X is countably infinite, closed, discrete, Cp-zero embedded and C∗-embedded in X.
Then Cp(Xu) ∼ Cp(Yũ).

Proof. Since D ≈ ω and D is Cp-zero embedded in X we have

Cp(X) ∼ Cp,D(X)× Cp(D) ∼ Cp,D(Y ).

Note that ωũ ≈ ω ⊕ ωũ, and so,

Cp(Yũ) = Cp(X ⊕ ωũ) ∼ Cp(X)× Cp(ωũ) ∼ Cp,D(Y )× Cp(ωũ)
∼ Cp,D(X ⊕ ω)× Cp(ωũ) ∼ Cp,D(X ⊕ ω ⊕ ωũ)
∼ Cp,D(X ⊕ ωũ) ∼ Cp,D(Yũ).

Since X is normal, there is a discrete family {Oi : i < ω} of open subsets of X such that
xi ∈ Oi for i < ω. Let h : X → [0, 1] be such that h ≡ 1 on D and h ≡ 0 on X \

⋃
i<ω Oi.

Let π : D → ω be the bijection xi 7→ i. Define φ : Cp,D(Yũ)→ Cp(Xu) by

φ(f)(x) =

 f(ũ) (x = u),
f(x) + f(π(xi)) · h(x) (x ∈ Oi for i < ω),
f(x) (x ∈ X \

⋃
i<ω Oi).

It is clear that φ(f) is continuous on (
⋃
i<ω Oi) ∪ (X \

⋃
i<ω Oi) and that φ is linear. Let

ε > 0. For i < ω and x ∈ Oi \ Oi we have φ(f)(x) = f(x) and h(x) = 0. Let U be an
open neighborhood of x ∈ X such that for every z ∈ U we have |f(z) − f(x)| < ε/2 and
|f(π(xi)) · h(z)| < ε/2. For z /∈ Oi we have |φ(f)(z)− φ(f)(x)| = |f(z)− f(x)| < ε/2. For
z ∈ Oi we have

|φ(f)(z)− φ(f)(x)| = |f(z) + f(π(xi)) · h(z)− f(x)|
≤ |f(z)− f(x)|+ |f(π(xi)) · h(z)| < ε

and hence φ(f) is continuous at x. To prove that φ(f) is continuous at u note that
there is V ⊆ ω such that V ∪ {ũ} is a neighborhood of ũ and for every i ∈ V we have
|f(i) − f(ũ)| = |f(π(xi)) − f(ũ)| < ε/4. Then π−1(V ) ∪ {u} is a neighborhood of u in
D ∪ {u}. For each i ∈ V there is, since f(xi) = 0 and h(xi) = 1, a neighborhood Ui ⊆ Oi

of xi in X such that for every z ∈ Ui we have |f(z)| < ε/2 and |f(π(xi)) · (1−h(z))| < ε/4.
Let U =

⋃
i∈V Ui. Then U ∪ {u} is a neighborhood of u in Xu. For every z ∈ Ui we have

|φ(f)(z)− φ(f)(u)| ≤ |f(z)|+ |f(π(xi)) · h(z)− f(ũ)|
≤ |f(z)|+ |f(π(xi))− f(ũ)|+ |f(π(xi)) · (1− h(z))|
< ε/2 + ε/4 + ε/4 = ε.
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Hence for every x ∈ U , |φ(f)(x)− φ(f)(u)| < ε, so φ(f) is continuous at u.
Define ψ : Cp(Xu)→ Cp,D(Yũ) by

ψ(g)(y) =


g(u) (y = ũ),
g(π−1(i)) (y = i for i < ω),
g(y)− g(π−1(i)) · h(y) (y ∈ Oi, i < ω),
g(y) (y ∈ X \

⋃
i<ω Oi).

By a similar reasoning as the one above, we find that ψ is continuous. Finally, ψ = φ−1

and so φ is a linear homeomorphism. Hence Cp(Xu) ∼ Cp,D(Yũ) ∼ Cp(Yũ), as required. �

Let X be a space. If there exists v ∈ ω∗ such that Xu and X⊕ωv are lp-equivalent, then
we say that v is good for u.

Proposition 4.5. Let X be metrizable and let u ∈ X∗. Then

(a) If u is ω-near, there is v ∈ ω∗ such that v is good for u.
(b) If X is locally compact and σ-compact and v1, v2 ∈ ω∗ are both good for u, then ωv1

and ωv2 are homeomorphic.

Proof. For (a), let D be a countable closed and discrete subset of X such that u ∈ clβXD.
By Lemma 2.1 we have that D is Cp-zero embedded and C∗-embedded in X. So (a) follows
from Proposition 4.4.

For (b), suppose v1 ∈ ω∗ and v2 ∈ ω∗ are both good for u. Then X ⊕ ωv1 and X ⊕ ωv2
are lp-equivalent and hence by Theorem 4.3, ωv1 is homeomorphic to ωv2 . �

Hence this proposition shows that if X is a locally compact, σ-compact metrizable space
and u ∈ X∗ is ω-near, then there is v ∈ ω∗ such that v is good for u, and that v is ‘unique‘.
We denote this unique v by û. Clearly every locally compact and σ-compact space X can
be written as X =

⋃
i<ωXi, where each Xi is compact and Xi ⊆ int(Xi+1) for i < ω.

Moreover every σ-compact space is Lindelöf and hence normal. Note that R and all limit
ordinals α < ω1 are locally compact, σ-compact and metrizable.

We now come to the main results in this section.

Theorem 4.6. Let X and Y be a locally compact σ-compact metrizable spaces and let
u ∈ X∗ and v ∈ Y ∗ be ω-near. If Xu and Yv are lp-equivalent, then ωû and ωv̂ are
homeomorphic.

Proof. By Proposition 4.5 we have that Xu and X ⊕ ωû are lp-equivalent and that Yv and
Y ⊕ ωv̂ are lp-equivalent. But then X ⊕ ωû and Y ⊕ ωv̂ are lp-equivalent and hence by
Theorem 4.3 it follows that ωû and ωv̂ are homeomorphic. �

Corollary 4.7. Let X be a locally compact σ-compact metrizable space and let u, v ∈ X∗
be ω-near. Then Xu and Xv are lp-equivalent if and only if ωû and ωv̂ are homeomorphic.

Corollary 4.8. Let u, v ∈ R∗ be ω-near. Then Ru and Rv are lp-equivalent if and only if
ωû and ωv̂ are homeomorphic.

Corollary 4.9. Let α < ω1 be a limit ordinal and let u, v ∈ α∗ be ω-near. Then αu and
αv are lp-equivalent if and only if ωû and ωv̂ are homeomorphic.
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5. Points in Čech-Stone remainders of ordinals

In this section we are particularly interested in spaces that are (homeomorphic to)
countable limit ordinals. Hence such spaces are locally compact and countable (hence
zero-dimensional and Lindelöf) and scattered. As we will show, some of these spaces have
ω-far points (observe that van Douwen’s result just quoted does not apply for this class
of spaces). We will concentrate on those α < ω1 having the property that all p ∈ α∗ are
ω-near.

The following trivial result ‘characterizes’ ω-near points in the situation we are interested
in.

Lemma 5.1. Let X be locally compact, zero-dimensional and Lindelöf. Then p ∈ X∗ is
ω-near iff X can be written as X =

⊕
i<ωXi, where each Xi is compact and for every

i < ω there exists xi ∈ Xi such that p is in the βX-closure of {xi : i < ω}.

Our aim is now to show that each point of α∗, where α is any limit ordinal smaller than
ωω, is ω-near. As usual, if X is a space, then X ′ denotes X \ {x : {x} is isolated in X}.

Lemma 5.2. Let X be a normal space such that each point of (X ′)∗ is ω-near. If X \X ′
is countable, then each point of X∗ is ω-near as well.

Proof. Let p ∈ X∗ be arbitrary. If p ∈ clβXX
′ = βX ′, then there is nothing to prove since

X ′ is closed in X. Hence we may assume that there is a closed neighborhood V of p in βX
such that V misses clβXX

′. Then V ∩ X is a closed, discrete and countable subset of X
that has p in its closure. �

Since each point of ω∗ is ω-near, by a simple inductive argument, the following is now
obvious.

Corollary 5.3. Let X be α, where α < ωω is a limit ordinal. Then each point in X∗ is
ω-near.

This result will allow us to derive a complete isomorphic classication of the function
spaces Cp(αu), where α < ωω and u ∈ α∗.

Things are not so easy if α ≥ ωω, as we will now demonstrate. We will show that all
such α have 2c ω-far points. Our result does not follow from van Douwen’s result quoted
earlier since ordinal numbers are not dense in themselves.

To start the construction, let K = ω + 1. For every n ∈ N, let Kn be the topological
sum of two copies of Kn. That is, Kn = Kn×{0, 1}. Let X =

⊕
n∈NKn. Observe that X

is homeomorphic to α = ωω. Let Z = {u ∈ X∗ : u is ω-far}. Note that Z has cardinality
at most 2c since βX has weight c.

Let π : X → N be the function that sends Kn onto {n} for every n. Since π is a perfect
map, its Stone extension g = βπ : βX → βω maps X∗ onto N∗.

For every x ∈ K and n ∈ N define Kx,n ⊆ Kn by

Kx,n = {(p, i) ∈ Kn : (i ∈ {0, 1}) ∧
(
(∃ j ≤ n)(pj = x)

)
}.

Note that Kx,n is a closed subset of Kn and hence of X.
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Consider the following collection F of closed subsets of X, where F ∈ F if and only if

(∀n ∈ N)(∃x ∈ K)(Kx,n ⊆ F ).

Let p ∈ N∗, A ∈ p and put XA =
⋃
n∈AXn ⊆ X. Finally, fix f : N → {0, 1} for the

time being. For every F ∈ F , define Ff =
⋃
n∈N(F ∩ (Kn × {f(n)})) ⊆ F . We define the

collection F (f, p) of closed subsets of X by

{Ff : F ∈ F} ∪ {XA : A ∈ p}.

Lemma 5.4. F (f, p) has the finite intersection property and
⋂

F (f, p) = ∅.

Proof. Let n,m ∈ N, F1, . . . , Fn ∈ F and A1, . . . , Am ∈ p. If A =
⋂m
j=1Aj, then A ∈ p

and XA =
⋂m
j=1XAj

. Let k ≥ n be such that k ∈ A. For each i ≤ n, pick xi ∈ K such
that Kxi,k ⊆ Fi ∩Kk. Let

x = (0, 0, . . . , 0︸ ︷︷ ︸
k−n

, x1, . . . , xn) ∈ Kk.

Then clearly (x, f(k)) ∈ Kk ⊆ X, and

(x, f(k)) ∈ (Kk × {f(k)}) ∩
n⋂
i=1

Kxi,k ∩XA ⊆
n⋂
i=1

Fi,f ∩
m⋂
j=1

XAj
,

which proves the first part of the lemma.
Let n ∈ N, x = (x1, . . . , xn) ∈ Kn and j ∈ {0, 1}. Pick x ∈ K \ {x1, . . . , xn}. Let

F = Kx,n ∪
⋃
m 6=nXm. Then F is closed in X and F ∈ F . Note that (x, j) /∈ Kx,n and

hence (x, j) /∈ Ff , which proves the second part of the lemma. �

Let Z(f, p) = {u ∈ X∗ : F (f, p) ⊆ u}. Then Z(f, p) is a closed subset of X∗. By
Lemma 5.4, Z(f, p) 6= ∅. Note that for every A ∈ p, π(XA) = A and for every F ∈ F ,
π(Ff ) = N. This implies π(F (f, p)) = {A : A ∈ p}, hence for every u ∈ Z(f, p) we have
g(u) = p. Therefore if p 6= q, then Z(f, p) ∩ Z(f, q) = ∅.

Lemma 5.5. Every u ∈ Z(f, p) is ω-far.

Proof. For every n ≥ 1 let Gn ⊆ Kn be a finite subset. For i ≤ n, let πni : Kn → K be
the projection onto the i-th factor of Kn. That is, if p = (p1, . . . , pn) ∈ Kn and j ∈ {0, 1},
then πni (p, j) = pi. Since

⋃
i≤n π

n
i (Gn) is finite and K is infinite, there is xn ∈ K such that

xn 6∈
⋃
i≤n π

n
i (Gn). Let F =

⋃
n∈NKxn,n. Then F is a closed subset of X and F ∈ F .

If F ∩
⋃
n∈NGn 6= ∅, then there is n ∈ N such that F ∩ Gn = Kxn,n ∩ Gn 6= ∅. Let

p = (p1, . . . , pn) ∈ Kn and j ∈ {0, 1} be such that (p, j) ∈ Kxn,n ∩ Gn. Then there is
i ≤ n such that pi = xn. But then xn = pi ∈ πni (Gn), which is a contradiction. So
F ∩

⋃
n∈NGn = ∅ and hence Ff ∩

⋃
n∈NGn = ∅ which proves the lemma. �

Split ω into countably many pairwise disjoint infinite sets, say {En : n ∈ N}, and let fn
be the characteristic function of En. Then, clearly, Z(fn, p) ∩ Z(fm, p) = ∅ provided that
n 6= m. For every n ∈ N there is, by Lemma 5.4, un ∈ Z(fn, p). Let Z(p) =

⋃
n∈N Z(fn, p)

and D = {un : n ∈ N}. Then Z(p) is a closed subset of X∗ and D is a countable discrete
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subset of Z(p). By Lemma 5.5 it follows that Z(p) ⊆ Z, hence Z(p) has cardinality at
most 2c.

Since X is a countable locally compact noncompact space, we have by Theorem 1.2.5
in [16] that X∗ is an F-space. Since Z(p) is a closed subspace of X∗ we have by Lemma
1.2.2(d) in [16] that Z(p) is an infinite compact F-space. The countable discrete subspace
D of Z(p) is C∗-embedded in it (see the proof of Corollary 3.4.2 in [16]) and hence its
closure D ⊆ Z(p) is homeomorphic to βN. Hence Z(p) has cardinality at least 2c. We
conclude that Z(p) and Z have cardinality 2c.

Corollary 5.6. Let q ∈ ω∗ and f : N → {0, 1}. Then for every u ∈ Z(f, q) there is
v ∈ Z(f, q) such that Cp(Xu) 6≈ Cp(Xv).

Proof. Observe that Xu being countable, Cp(Xu) is homeomorphic to a linear subspace of
R∞. Hence, as in the proof of Proposition 1 in [14], it follows that

{v ∈ Z(f, q) : Cp(Xu) ≈ Cp(Xv)}
has cardinality at most c. Hence the corollary follows by the above remarks. �

Corollary 5.7. Let α ≥ ωω be a limit ordinal. Then the set of ω-far points in α∗ has
size 2c.

Proof. Since α ≥ ωω, we can write α =
⊕∞

i=1Xi, where each Xi is a compact ordinal that
contains a closed copy Yi of ωi + 1. Let Y =

⊕∞
i=1 Yi. Then Y is a closed copy of ωω in α.

If u ∈ Y ∗ is ω-far then, since Y ∗ ⊆ α∗, u is also an ω-far point in α∗. �

Now we relate the previously discussed concepts to function spaces of ordinals.

Theorem 5.8. Let α, γ < ωω be limit ordinals, and let u ∈ α∗ and v ∈ γ∗. Then αu and
γv are lp-equivalent if and only if α and γ are lp-equivalent while moreover ωû and ωv̂ are
homeomorphic.

Proof. Since u and v are both ω-near by Corollary 5.3, we have by Proposition 4.5 that αu
and α⊕ ωû are lp-equivalent and, similarly, that γv and γ ⊕ ωv̂ are lp-equivalent.

Suppose αu and γv are lp-equivalent. Then α ⊕ ωû and γ ⊕ ωv̂ are lp-equivalent and
so by Theorem 4.3, ωû is homeomorphic to ωv̂. We will now check that α and γ are
lp-equivalent. Indeed, suppose φ : Cp(αu) → Cp(γv) is a linear homeomorphism. First,
assume that α = ω. If γ > ω, there is a closed copy K of ω + 1 in γ. By Lemma 2.2,
suppφ(K) is bounded in γv hence suppφ(K) finite. But then K ⊆ suppφ−1(suppφ(K)) is
finite. Contradiction. So γ = α = ω and hence α and γ are lp-equivalent. Second, assume
that ω < α < ωω. By the above we have ω < γ < ωω. But it then follows directly from
the classification results in [4] that α and γ are lp-equivalent.

Conversely, if α and γ are lp-equivalent and ωû and ωv̂ are homeomorphic, then α ⊕ ωû
and γ ⊕ ωv̂ are lp-equivalent. It consequently follows that αu and γv are lp-equivalent as
well. �

Of course this result does not say much if we do not know when limit ordinals below
ωω are lp-equivalent. Fortunately, there is a combinatorial characterization of when this
happens.
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Theorem 5.9 (Baars and de Groot [4]). Let ω ≤ α, γ < ω1. Then

a) α + 1 and γ + 1 are lp-equivalent if and only if max(α, γ) < [min(α, γ)]ω.
b) If α and γ are limit ordinals, then α and γ are lp-equivalent if and only if there are

sequences of ordinals (αi)i∈N and (γi)i∈N such that αi → α, γi → γ and for every
i ∈ N, αi + 1 and γi + 1 are lp-equivalent.

Hence Theorems 5.8 and 5.9 yield a complete isomorphic classification of the function
spaces Cp(αu), where α < ωω and u ∈ α∗.

Although Theorem 5.8 looks like a generalization of Gul’ko’s result (Theorem 1.1), it
actually is not.

Corollary 5.10. Let ω < α < ω1 be a limit ordinal. Then there are u, v ∈ α∗ such that
αu and αv are lp-equivalent but αu and αv are not homeomorphic.

Proof. Write α =
⊕

i<ωXi where each Xi is infinite and compact. For each i < ω, let

xi ∈ Xi be a non-isolated point. Pick u ∈ {x0, x1, . . .} \ {x0, x1, . . . } ⊆ α∗, and let v = û.
By Proposition 4.5, αu and α ⊕ ωv are lp-equivalent. Observe that α and α ⊕ ω are
homeomorphic, but αu and α⊕ ωv are not. Hence we are done. �

The results in this section suggest the question what happens if we consider ordinals
greater than or equal to ωω as well. We settle this in the following special case.

Theorem 5.11. Let α < ωω and γ ≥ ωω be limit ordinals. Then for every u ∈ α∗ and
v ∈ γ∗ we have that αu and γv are not lp-equivalent.

Proof. Suppose φ : Cp(αu) → Cp(γv) is a linear homeomorphism. Let K be a closed copy
of ωω + 1 ⊆ γ. By Lemma 2.2, suppφ(K) is bounded in αu, hence there is n < ω such
that suppφ(K) ⊆ (ωn + 1) ∪ {u}. Let L = (ωn + 1) ∪ {u}. Clearly K is a retract of γv
and L is a retract of αu. If r : γv → K and s : αu → L are retractions then if we define
θ : Cp(K) → Cp(L) by θ(g) = φ−1(g ◦ r)|L and ψ : Cp(L) → Cp(K) by ψ(f) = φ(f ◦ s)|K
we have ψ ◦ θ = id and hence θ is a linear embedding. Indeed for g ∈ Cp(K) we have
(θ(g)◦s)|L = θ(g) = φ−1(g◦r)|L. Since suppφ(K) ⊆ L we then have φ(θ(g)◦s)|K = (g◦r)|K
and hence ψ(θ(g)) = g. Since L ≈ ωn + 1 we then have by Proposition 2 in [1] that there
exists a linear embedding from C0(ω

ω + 1) to C0(ω
n + 1), where the function spaces are

endowed with the compact-open topology. This contradicts Theorem 1 in [7]. �

There is more to say, but the results are not conclusive. By making use of the results
and techniques developed in [4] and [7] and combining them with enhanced versions of the
proofs of Theorem 5.8 and Theorem 5.11, the following can be derived:

Theorem 5.12 (Baars [3]). Let α, γ < ω1 be limit ordinals. Let u ∈ α∗ and v ∈ γ∗ be such
that αu and γv are lp-equivalent. Then α and γ are lp-equivalent.

Hence, by exactly the same argument as in the proof of Theorem 5.8, we obtain:

Theorem 5.13. Let α, γ < ω1 be limit ordinals, and let u ∈ α∗ and v ∈ γ∗ be ω-near.
Then αu and γv are lp-equivalent if and only if α and γ are lp-equivalent while moreover
ωû and ωv̂ are homeomorphic.
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In light of Corollary 5.7, this is a rather limited result. In fact, we believe that an
isomorphic classification of the function spaces Cp(αu), where α < ω1 is a limit ordinal and
u ∈ α∗, will turn out to be rather complicated, if impossible.
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[9] E. K. van Douwen, Why certain Čech-Stone remainders are not homogeneous, Coll. Math. 41 (1979),

45–52.
[10] E. K. van Douwen, Remote points, Dissertationes Math. (Rozprawy Mat.) 188 (1981), 1–45.
[11] R. Engelking, General topology, Heldermann Verlag, Berlin, second ed., 1989.
[12] S.P. Gul’ko, Spaces of continuous functions on ordinals and ultrafilters, Math. Notes, Vol. 47,4 (1990),

329–334.
[13] M. Hasumi, A continuous selection theorem for extremally disconnected spaces, Math. Ann., Vol. 179

(1969), 83–89.
[14] A. Medini and D. Milovich, The topology of ultrafilters as subspaces of 2ω, Topology Appl. 159 (2012),

1318–1333.
[15] A. A. Miljutin, Isomorphisms of the spaces of continuous functions over compact sets of the cardinality

of the continuum (Russian), Teor. Funkcii Funkcional Anal i Prilozen. (Kharkov) 2 (1966), 150–156.
[16] J. van Mill, An introduction to βω, Handbook of Set-Theoretic Topology (K. Kunen and J.E. Vaughan,

eds.), North-Holland Publishing Co., Amsterdam, 1984, pp. 503–567.
[17] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North Holland, Vol. 64 (2002).
[18] V.V. Tkachuk, A Cp-theory problem book - Topological and Function Spaces, Problem Books in Math-

ematics, Springer Verlag (2011).
[19] V.V. Tkachuk, A Cp-theory problem book - Special Features of Function Spaces, Problem Books in

Mathematics, Springer Verlag (2014).
[20] V.V. Tkachuk, A Cp-theory problem book - Compactness in Function Spaces, Problem Books in Math-

ematics, Springer Verlag (2015).
[21] V.V. Tkachuk, A Cp-theory problem book - Functional Equivalencies, Problem Books in Mathematics,

Springer Verlag (2016).

Jan Baars, 971 Bukit Timah Road, 06-22 Floridian, 589647 Singapore
Email address: j.a.baars@casema.nl

Jan van Mill, KdV Institute for Mathematics, University of Amsterdam, Science Park
105-107, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands

Email address: j.vanmill@uva.nl


