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Abstract. It is an interesting, maybe surprising, fact that dif-
ferent dense subspaces of even "nice" topological spaces can have
di�erent densities. So, our aim here is to investigate the set of
densities of all dense subspaces of a topological space X that we
call the double density spectrum of X and denote by dd(X).

We improve a result from [1] by showing that dd(X) is always
ω-closed (i.e. countably closed) if X is Hausdor�.

We manage to give complete characterizations of the double
density spectra of Hausdor� and of regular spaces as follows.

Let S be a non-empty set of in�nite cardinals. Then
(1) S = dd(X) holds for a Hausdor� space X i� S is ω-closed

and supS ≤ 22
minS

;

(2) S = dd(X) holds for a regular space X i� S is ω-closed and
supS ≤ 2minS .

We also prove a number of consistency results concerning the
double density spectra of compact spaces. For instance:
(i) If κ = cf(κ) embeds in P(ω)/fin and S is any set of un-

countable regular cardinals < κ with |S| < minS, then there
is a compactum C such that {ω, κ} ∪ S ⊂ dd(C), moreover
λ /∈ dd(C) whenever |S|+ ω < cf(λ) < κ and cf(λ) /∈ S.

(ii) It is consistent to have a separable compactum C such that
dd(C) is not ω1-closed.

1. Introduction

The density d(X) of a topological space X, i.e. the minimum car-
dinality of a dense subspace of X, is one of the most important and
thoroughly studied topological cardinal functions. One important fea-
ture of it is that it is not monotone, that is we may have d(Y ) > d(X)
for a subspace, even for a dense subspace, Y of X. The aim of this
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paper is to investigate for a given space X the set of densities of all its
dense subspaces, that we call the double density spectrum of X.
For any space X we shall denote by D(X) the family of all dense

subspaces of X. (We shall also use the notation D(τ) instead of D(X)
where τ is the topology of X.) Thus

dd(X) = {d(D) : D ∈ D(X)}

will denote the double density spectrum of X. We shall also use N (X)
(or N (τ)) to denote the family of all nowhere dense subsets of X.
Of course, we have d(X) = min dd(X) and the double density spec-

trum had implicitly appeared in the de�nition of the cardinal function
δ(X) = sup dd(X) that was previously studied, in chronological order,
in [6], [1], and [4]. Clearly, we have dd(X) ⊂ [d(X), δ(X)] for any space
X.
We are going to say that the space X is d-stable if for every U ∈

τ+(X) we have d(U) = d(X), where τ+(X) denotes the family of all
non-empty open sets in X. It is trivial that

{U ∈ τ+(X) : U is d-stable}

forms a π-base for X.
It is obvious that every D ∈ D(X) includes I(X), the set of all

isolated points of X. Consequently, if I(X) ∈ D(X) then

dd(X) = {d(X)} = {|I(X)|}.

Moreover, if I(X) /∈ D(X) and Y = X \ I(X) then every member of
D(X) has a dense subset of the form I(X)∪D with D ∈ D(Y ), hence

dd(X) = {|I(X)|+ κ : κ ∈ dd(Y )}.

Consequently, if we know the double density spectrum of all crowded
spaces, we may easily compute the the double density spectrum of any
space. Therefore, in what follows, by space we shall always mean a
crowded Hausdor� space.
We end this section by presenting two propositions in which some

very simple and basic but useful properties of the double density spectra
of spaces are collected.

Proposition 1.1. The following are satis�ed for any space X.

(a) If Y ∈ D(X) then dd(Y ) ⊂ dd(X); if even Int(Y ) ∈ D(X), or
equivalently: X \ Y ∈ N (X), then dd(Y ) = dd(X).

(b) For every U ∈ τ+(X) we have dd(U) \ d(X) ⊂ dd(X).

(c) If X is d-stable then [X]<d(X) ⊂ N (X).
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Proof. The �rst part of (a) is trivial and the second follows fromD(Y ) =
{D ∩ Y : D ∈ D(X)}. (b) holds because for any E ∈ D(U) and
D ∈ D(X) with |D| = d(X) we have E ∪ (D \U) ∈ D(X). Finally, (c)
is just a reformulation of what d-stable means. �

Proposition 1.2. If X and Y are spaces with d(X) ≤ d(Y ) then

dd(X × Y ) ⊃ {κ ∈ dd(X) ∪ dd(Y ) : κ ≥ d(Y )}.
In particular, if d(X) = d(Y ) then dd(X × Y ) ⊃ dd(X) ∪ dd(Y ).

Proof. Indeed, this is because (i) D ∈ D(X) and E ∈ D(Y ) imply
D×E ∈ D(X×Y ), and (ii) if F ∈ D(X×Y ) then πX [F ] ∈ D(X) and
πY [F ] ∈ D(Y ). �

2. Characterizing the double density spectra

What kind of sets of (in�nite) cardinals may occur as the double
density spectrum of a space? The aim of this section is to answer this
natural question.
Since |X| ≤ 22d(X)

holds for any Hausdor� space X and d(X) =

min dd(X), it is obvious that S = dd(X) implies supS ≤ 22minS
. More-

over, if X is regular then by δ(X) ≤ π(X) ≤ w(X) ≤ 2d(X) we even
have supS ≤ 2minS.
A set of cardinals is ω-closed if it contains the supremum of all its

countable subsets. Our next theorem yields a less obvious necessary
condition for the validity of S = dd(X).

Theorem 2.1. The double density spectrum dd(X) of any space X is
ω-closed.

Proof. Assume that

S = {κn : n < ω} ∈ [dd(X)]ω,

then we have to show that κ = supS ∈ dd(X). We may, of course,
assume that κ /∈ S.
By part (b) of Proposition 1.1, κ ∈ dd(X) follows from κ ∈ dd(U)

for some U ∈ τ(X). So, assume κ /∈ dd(U) for all U ∈ τ(X) and de�ne
for each U ∈ τ+(X)

λ(U) = sup(κ ∩ dd(U)).

Clearly, the family

L = {U ∈ τ+(X) : ∀V ∈ τ+(U) (λ(V ) = λ(U))}
forms a π-base for X.
If there is U ∈ L such that λ(U) = κ then we may take a disjoint

collection {Vn : n < ω} ⊂ τ+(U) because X is both crowded and
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Hausdor�. But for any n < ω then λ(Vn) = λ(U) = κ implies that
there is Dn ∈ D(Vn) with κn < |Dn| < κ. Obviously, then D =⋃
{Dn : n < ω} is a dense subset of V =

⋃
{Vn : n < ω} such that

d(D) = |D| = κ, hence κ ∈ dd(V ).
The other possibility is that we have λ(U) < κ for all U ∈ L. In

this case we take a maximal disjoint subcollection U of L and note that
W = ∪U is dense open in X. Consequently, part (a) of Proposition 1.1
implies S ⊂ dd(W ) = dd(X).
We clearly also have |U| ≤ d(X) < κ, hence sup{λ(U) : U ∈ U} = κ.

Indeed, if we had sup{λ(U) : U ∈ U} = µ < κ then we could choose
n < ω such that µ · |U| < κn < κ. But then there is D ∈ D(W ) with
d(D) = κn and for each U ∈ U we have d(D ∩ U) ≤ µ, which would
imply d(D) ≤ µ · |U| < κn, a contradiction.
Thus we may pick for all n < ω distinct, hence disjoint, Un ∈ U so

that κn < λ(Un) < κ. This again implies that there are Dn ∈ D(Un)
with κn < |Dn| < κ, hence D =

⋃
{Dn : n < ω} is a dense subset of

U =
⋃
{Un : n < ω} such that d(D) = |D| = κ, similarly as above. �

It turns out that the necessary condition of ω-closedness together
with the obvious cardinality restrictions mentioned above actually char-
acterize the double density spectra of Hausdor� and of regular spaces.
Both characterization results will make use Cantor cubes. We recall
that the Cantor cube Cµ = {0, 1}µ of weight µ has density log µ, see
e.g. 5.4 of [3]. In particular, we have d(C2κ) = log 2κ ≤ κ.

Theorem 2.2. Let S be an ω-closed set of in�nite cardinals such that
minS = κ and supS ≤ 22κ. Then there is a Hausdor� space X with
S = dd(X).

Proof. The underlying set X of our promised space will be a dense
subset of C2κ with a topology τ that is �ner than the subspace topology
% on X inherited from C2κ . For later use we note that % is CCC if
X ∈ D(C2κ).
To get X, we �rst �x pairwise disjoint subsets {Xλ : λ ∈ S} of C2κ

such that |Xλ| = λ and Xλ is λ-dense in C2κ for each λ ∈ S. (The
latter means that |U ∩Xλ| = λ for every non-empty open set in C2κ .)
We can do this because C2κ may be partitioned into 22κ dense subsets
of size κ. Indeed, the cosets of a κ-sized dense subgroup of C2κ form
such a partition. We then set X =

⋃
{Xλ : λ ∈ S}.

On every Xλ we consider the topology τλ generated by all sets of the
form G \ A where G ∈ % � Xλ and A ∈ [Xλ]

<λ. We then let

N = {N ⊂ X : ∀λ ∈ S
(
N ∩Xλ ∈ N (τλ)

)
}.

Clearly, N is a proper ideal on X.
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Finally, our topology τ on X is generated by all sets of the form
U \ N where U ∈ % and N ∈ N . Since ∅ ∈ N we then have % ⊂ τ ,
hence τ is Hausdor�. It is also obvious that

N (τ � Xλ) = N (τλ) ⊃ [Xλ]
<λ

for all λ ∈ S. Consequently, for λ0 = minS we have N (τ) ⊃ [X]<λ0 .
It immediately follows from our de�nitions that Xλ ∈ D(τ) and

d(Xλ, τ) = λ for each λ ∈ S, hence we have S ⊂ dd(X, τ) and

d(X, τ) = min dd(X, τ) = min S.

It remains to show that µ /∈ S implies µ /∈ dd(X, τ). As |X| = sup S,
we may also assume that d(X, τ) < µ ≤ sup S.
So, consider any τ -dense set D ∈ [X]µ, we shall show that d(D, τ) <

µ, hence µ /∈ dd(X, τ). To see this, we �rst note that λ ∈ S with λ > µ
implies D ∩Xλ ∈ N (τλ), hence we have

D ∩
⋃
{Xλ : λ ∈ S \ µ} ∈ N .

But then D ∩
⋃
{Xλ : λ ∈ S \ µ} is τ -nowhere dense, hence the subset

E = D ∩
⋃
{Xλ : λ ∈ S ∩ µ}

of D is still τ -dense. So, if |E| < µ then we are done, hence we may
assume that |E| = µ.
Next we note that for any U ∈ %+ we have E ∩ U /∈ N , hence there

is λ ∈ S ∩ µ such that E ∩ U ∩Xλ is somewhere dense with respect to
τλ, i.e.

E ∩ U ∩Xλ /∈ N (τλ).

This in turn means that there is some V ∈ %+ with V ⊂ U such that
E ∩ V ∩Xλ is τλ-dense in V ∩Xλ.
Consequently, if V is a maximal disjoint collection of those V ∈ %+

for which there is some λ(V ) ∈ S ∩ µ such that E ∩ V ∩ Xλ(V ) is
τλ(V )-dense in V ∩Xλ(V ) then W = ∪V ∈ D(X, %).
Since % is CCC, the family V is countable, hence

λ∗ = sup{λ(V ) : V ∈ V} ∈ S ∩ µ
because S is ω-closed and λ∗ ≤ µ /∈ S. Let us now put

Y =
⋃
{Xλ : λ ∈ S and λ ≤ λ∗}.

We claim that E ∩ Y is τ -dense in E, and hence in D.
Indeed, assume that U \ N is any τ -basic set where U ∈ %+ and

N ∈ N . Then there is V ∈ V with U ∩ V 6= ∅, hence the choice of
λ(V ) and N ∩Xλ ∈ N (τλ) imply that

E ∩ U ∩ V ∩Xλ(V ) \N 6= ∅.
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But Xλ(V ) ⊂ Y for all V ∈ V , hence E ∩Y ∩ (U \N) 6= ∅ as well. Since
|E ∩ Y | ≤ |Y | = λ∗ < µ,

we thus have d(D, τ) ≤ d(E, τ) ≤ λ∗ < µ, and the proof is completed.
�

The corresponding characterization of the double density spectra of
regular spaces will be immediate from our following result.

Theorem 2.3. If S is any ω-closed set of in�nite cardinals such that
minS = κ and supS ≤ 2κ then there is a dense subspace X of the
Cantor cube C2κ of weight 2κ with S = dd(X).

Proof. We �rst claim that it su�ces to prove our theorem in the case
in which log 2κ = κ. Indeed, assume this and consider the case with
log 2κ < κ. We may then apply the previous case for the set S ′ =
{log 2κ} ∪ S and obtain X ′ ∈ D(C2κ) such that S ′ = dd(X ′). Of
course, we may also obtain Y ∈ D(C2κ) such that dd(Y ) = {κ}, for
instance take Y homeomorphic with Σ ×D where Σ is the σ-product
in Cκ and D ∈ D(C2κ) with |D| ≤ κ. But then it is easy to check
that dd(X ′ ⊕ Y ) = S, while it is also obvious that the topological sum
X ′ ⊕ Y is homeomorphic to a dense subspace of C2κ .
So, assume d(C2κ) = log 2κ = κ and note that this implies

[C2κ ]<κ ⊂ N (C2κ).

We also �x D ∈ D(C2κ) with |D| = κ.
To prepare for the construction of our promised space X, we intro-

duce the following de�nition. For every set of indices I ⊂ 2κ we denote
by σ(I) the set of all functions f ∈ {0, 1}I with |supp(f)| < ω, where
supp(f) = {i ∈ I : f(i) = 1}.
Then we �x a disjoint family of sets {Iλ : λ ∈ S} such that Iλ ∈ [2κ]λ,

and for each λ ∈ S we let Kλ = 2κ \ Iλ. We then put

Xλ = {x ∈ C2κ : x � Iλ ∈ σ(Iλ) and ∃d ∈ D(x � Kλ = d � Kλ)}.
For every λ ∈ S and x ∈ Xλ we may then �x d(x, λ) ∈ D such that
x � Kλ = d(x, λ) � Kλ.
Finally, we de�ne the dense subspace X of C2κ that we are looking

for by X =
⋃
{Xλ : λ ∈ S}. Clearly, we have Xλ ∈ D(C2κ) with

d(Xλ) = |Xλ| = λ, moreover [Xλ]
<λ ⊂ N (C2κ) for all λ ∈ S. This

easily implies S ⊂ dd(X ∩ U) for any U ∈ τ+(C2κ). We claim that
actually S = dd(X ∩ U) holds whenever U ∈ τ+(C2κ).
The proof of this claim is indirect, so assume that

µ = min
⋃
{dd(X ∩ U) \ S : U ∈ τ+(C2κ)}



THE DOUBLE DENSITY SPECTRUM OF A TOPOLOGICAL SPACE 7

is well de�ned. Note that we then have µ > κ. In what follows, we �x
U ∈ τ+(C2κ) with µ ∈ dd(X ∩U). By de�nition, this means that there
is Y ∈ D(X ∩ U) ⊂ D(U) with d(Y ) = |Y | = µ.
Let us recall that the d-stable open sets form a π-base in any space.

We apply this to the space Y and take a maximal disjoint collection
V ⊂ τ+(U) such that Y ∩ V is d-stable for each V ∈ V .
We claim that there is a V ∈ V for which d(Y ∩ V ) = µ. Indeed, if

we have d(Y ∩ V ) < µ for some V ∈ V then d(Y ∩ V ) ∈ dd(X ∩ V )
and the minimality of µ together imply d(Y ∩ V ) ∈ S. Consequently,
as V is countable and S is ω-closed, we cannot have d(Y ∩ V ) < µ for
all V ∈ V because that would imply

d(Y ) ≤
∑
{d(Y ∩ V ) : V ∈ V} = λ ∈ S

with λ < µ, contradicting that d(Y ) = µ.
The family E of the elementary open sets

[ε] = {x ∈ C2κ : ε ⊂ x}
forms a base for C2κ , with ε running through Fn(2κ, 2), the set of all
�nite partial functions from 2κ to 2. So, if we �x ε ∈ Fn(2κ, 2) so that
[ε] ⊂ V ∈ V with d(Y ∩ V ) = µ then E = Y ∩ [ε] ∈ D([ε]) is d-stable
with d(E) = |E| = µ. This clearly implies [E]<µ ⊂ N (C2κ).
Consequently, for all λ ∈ S we have E ∩ Xλ ∈ N (C2κ). Indeed, if

λ < µ this follows from |Xλ| = λ < µ, as we have just seen, and if
λ > µ then this follows from |E| = µ < λ and [Xλ]

<λ ⊂ N (C2κ).
For every point d ∈ D let us now de�ne

Jd = {λ ∈ S : ∃ e ∈ E ∩Xλ (e � Kλ = d � Kλ)},
moreover let D0 = {d ∈ D : |Jd| ≥ ω} and D1 = D \D0.
If d ∈ D0 then we may pick distinct cardinals {λn : n < ω} ⊂ Jd and

points en ∈ E ∩Xλn that "witness" λn ∈ Jd, i.e. en � Kλn = d � Kλn .
But for any basic neighborhood [d � a] ∈ E of d, where a ∈ [2κ]<ω, there
are only �nitely many n with a ∩ Iλn 6= ∅, hence we have en ∈ [d � a]
for all but �nitely many n < ω. In other words, this means that the
sequence {en : n < ω} ⊂ E converges to d.
But this means that there is a subset E0 ⊂ E with

|E0| ≤ |D0| × ω ≤ κ < µ

such that D0 ⊂ E0. Consequently, D0 is nowhere dense in C2κ because
E0 is. This, in turn, implies that there is ε1 ∈ Fn(2κ) such that ε1 ⊃ ε
and D ∩ [ε1] ⊂ D1.
For every d ∈ D1 we have |Jd| < ω and for each λ ∈ Jd we may pick

e(d, λ) ∈ E ∩Xλ such that e(d, λ) � Kλ = d � Kλ. We shall now show
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that the set

F = {e(d, λ) : d ∈ D1 and λ ∈ Jd} ⊂ E

is dense in E ∩ [ε1].
Indeed, for any η ∈ Fn(2κ, 2) with η ⊃ ε1 the set

Zη =
⋃
{E ∩Xλ : dom(η) ∩ Iλ 6= ∅} ∈ N (C2κ).

So, we can pick x ∈ E∩[η]\Zη and then x ∈ Xλ implies Iλ∩dom(η) = ∅,
hence d(x, λ) ∈ D ∩ [η] ⊂ D ∩ [ε1] ⊂ D1. But x is a witness for
λ ∈ Jd(x,λ), so f = e(d(x, λ), λ) ∈ F ∩ [η] because

f � dom(η) = d(x, λ) � dom(η) = x � dom(η).

But this yields the required contradiction that completes our indirect
proof, because |F | ≤ κ, and hence F is nowhere dense. �

From this we immediately obtain the following characterization re-
sult.

Corollary 2.4. The following statements are equivalent for a non-
empty set S of in�nite cardinals:

(i) S is ω-closed and supS ≤ 2minS.

(ii) There is a 0-dimensional CCC space X with S = dd(X).

(iii) There is a regular space X with S = dd(X).

3. On the double density spectra of compact spaces

The aim of this section is to present what we know about the double
density spectra of compact (Hausdor�) spaces. Unfortunately, unlike
for the classes of Hausdor� or regular spaces, we do not have any full
characterization in this case. However, we do know that the criteria
for regular spaces are not su�cient for the class of compacta. Indeed,
the main result of [4] says that π(X) = max dd(X) holds for any com-
pactum X. In particular, this implies that the double density spectrum
of a compact space always "admits a top".
Of course, as δ(X) ≤ π(X) ≤ w(X) ≤ 2d(X) holds for a compactum

X, there are only problems if 2d(X) > d(X)+, i.e. if the GCH fails at
κ = d(X). This leads us to the following question.

Problem 3.1. Assume that 2κ > κ+. Is there a compact space X with
d(X) = κ and π(X) > κ+ such that κ+ /∈ dd(X), or at least such that
dd(X) 6= [κ, π(X)]?
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We do not have a complete answer to these questions but we shall
present below interesting consistency results concerning them. These
results suggest that, at least consistently, we have a considerable amount
of freedom about the double density spectra of compact spaces.
We shall actually concentrate on the perhaps most interesting case of

κ = ω, i.e. the double density spectra of separable compact spaces. To
do that, we shall develop a general method of constructing σ-centered
and 0-dimensional spaces on [ω]ω from appropriate ideals on ω. The
required separable compacta will be just the compacti�cations of these
"ideal spaces".
So, in what follows, "ideal" will always mean an ideal on ω that

contains all �nite subsets of ω.

De�nition 3.2. For any �nite sequence s ∈ 2<ω and I ⊂ ω we let

B(s, I) = {A ∈ [ω]ω : s ⊂ χA and A ∩ I ⊂ |s|},
where χA is the characteristic function of A and |s| is the length of s.

Now, �x an ideal I on ω, then we let τI denote the topology on [ω]ω

generated by

BI = {B(s, I) : s ∈ 2<ω and I ∈ I}.
It is not completely obvious but it is immediate from the next lemma

that BI is actually a base for τI .

Lemma 3.3. If B(s, I) ∩B(t, J) 6= ∅ then
B(s, I) ∩B(t, J) = B(s ∪ t, I ∪ J).

Proof. Clearly, if B(s, I) ∩ B(t, J) 6= ∅ then either s ⊂ t or t ⊂ s. By
symmetry, we may assume that s ⊂ t, hence s∪ t = t. Now, it is again
obvious that then

B(s, I) ∩B(t, J) = B(s, I) ∩B(t, I ∪ J) = B(s, I) ∩B(t, I) ∩B(t, J).

From this we get that B(s, I) ∩ B(t, I) 6= ∅ as well. But for any
A ∈ B(s, I) ∩ B(t, I) and |s| ≤ k < |t| we then have k /∈ A ∩ I, hence
k ∈ I implies χA(k) = t(k) = 0. But this implies B(t, I) ⊂ B(s, I),
and so we can conclude that B(s, I) ∩B(t, J) = B(t, I ∪ J). �

Note that {B(s, ∅) : s ∈ 2<ω} is just the standard base for the Baire
space, hence τI is Hausdor�, being �ner than the Baire space topology.
It is also obvious that for every s ∈ 2<ω the collection {B(s, I) : I ∈

I} is centered because I is an ideal, hence τI is σ-centered.
To see that τI is 0-dimensional, we shall show that evey member of

its base BI is also closed. Indeed, if A /∈ B(s, I) then either s * χA and
then for t = χA � |s| we have A ∈ B(t, ∅) and B(t, ∅) ∩ B(s, I) = ∅, or
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s ⊂ χA and there is k ∈ A∩ I \ |s|. In the latter case let t be any initial
segment of χA with |t| > k, then again we have B(t, ∅) ∩B(s, I) = ∅.
It follows then that the space XI = 〈[ω]ω, τI〉 does have compacti�-

cations, and every compacti�cation C of XI is separable because τI is
σ-centered. Thus we have min dd(C) = ω.
A subset A ⊂ [ω]ω is called full if for every A ∈ A and B =∗ A

we have B ∈ A. In other words, A is full i� it is the union of =∗-
equivalence classes.
We claim that π(XI) = cof(I). Indeed, this is because if A ⊂ I is

full then clearly

{B(s, I) : s ∈ 2<ω and I ∈ A}
is a π-base for XI i� A is co�nal in I. If C is any compacti�cation of
XI we thus have

π(C) = π(XI) = cof(I) = max dd(C).

Next we are going to describe dd(XI); this is of interest because
for any compacti�cation C of XI we have dd(XI) ⊂ dd(C). First we
introduce some new terminology.
A set A ⊂ [ω]ω is called I-avoiding if for every I ∈ I there is A ∈ A

such that A ∩ I = ∅. Clearly, if A is full then A is I-avoiding i� for
every I ∈ I there is A ∈ A such that |A ∩ I| < ω.

Lemma 3.4. If A ⊂ [ω]ω is full then A ∈ D(XI) i� A is I-avoiding.
Consequently, if there is an I-avoiding full set A ⊂ [ω]ω such that
|A| = λ but no B ⊂ A with |B| < λ is I-avoiding then λ ∈ dd(XI).

Proof. Clearly, if A is full then A is I-avoiding i� A ∩ B(s, I) 6= ∅ for
every B(s, I) ∈ BI , hence i� A is dense in XI .
The second part follows because for every in�nite B ⊂ A the full hull
B∗ of B has the same cardinality as B. Consequently, no B ⊂ A with
|B| < λ is dense in XI as B∗ isn't. �

Our next task is to �nd conditions that will ensure λ /∈ dd(C) for
some cardinal λ and compacti�cation C of XI . We start with a de�ni-
tion.

De�nition 3.5. A cardinal λ is said to be a strong caliber of the space
X (in symbols: λ ∈ scal(X)) if for every U ∈ [τ(X)]λ there is V ∈ [U ]λ

such that Int
(⋂
V
)
6= ∅.

The following simple but very useful proposition yields a condition
for λ /∈ dd(X).

Proposition 3.6. If cf(λ) ∈ scal(X) then λ /∈ dd(X).
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Proof. We prove the contrapositive of our statement. So, assume that
λ ∈ dd(X) and D ∈ D(X) is such that |D| = λ and [D]<λ∩D(X) = ∅.
Enumerate D as D = {xα : α < λ} and let Fα = {xβ : β < α}. Then
Uα = X \ Fα ∈ τ+(X) and it is clear that for any co�nal subset S ⊂ λ
we have Int

(⋂
{Uα : α ∈ S}

)
= ∅ because

⋂
{Uα : α ∈ S} ∩ D = ∅.

But this clearly implies cf(λ) /∈ scal(X). �

Although the de�nition of λ being a strong caliber of X uses τ(X),
the family of all open sets, it can obviously be replaced with any π-base
of X. This implies that if X is quasiregular, i.e. the family RO(X) of
all regular open sets in X forms a π-base of X, then for any Y ∈ D(X)
we have scal(Y ) = scal(X). Indeed, this follows from the fact that
the map U 7→ U ∩ Y is an isomorphism between RO(X) and RO(Y ).
In particular, this means that for every compacti�cation C of XI we
have scal(C) = scal(XI). Consequently, cf(λ) ∈ scal(XI) implies
λ /∈ dd(C) by Proposition 3.6.
Now, it remains to �nd a condition on the ideal I that will imply

λ ∈ scal(XI). The following result yields us just such a condition. But
�rst we need a new piece of terminology. If λ is a cardinal then we
call the ideal I on ω weakly λ-complete if for every A ∈ [I]λ there is
B ∈ [A]λ with ∪B ∈ I.

Lemma 3.7. Let λ be a cardinal with cf(λ) > ω. If the ideal I on ω
is weakly λ-complete then λ ∈ scal(XI).

Proof. As noted above, it su�ces to verify the requirements of λ ∈
scal(XI) for members of the base BI of XI . Using cf(λ) > ω, however,
any subfamily of BI of size λ has a subfamily of the same size of the form
{B(s, I) : I ∈ A}, with all members having the same �rst coordinate
s, moreover A ∈ [I]λ.
By our assumption, we may then �nd B ∈ [A]λ with ∪B = J ∈ I.

But then for every A ∈ B(s, J) and I ∈ B we have A∩ I ⊂ A∩J ⊂ |s|,
hence A ∈ B(s, I) as well. Consequently we have

B(s, J) ⊂
⋂
{B(s, I) : I ∈ B}.

�

In the rest of this section we are going to construct ideals such that
their ideal spaces and their (separable) compacti�cations will provide
us with a wide variety of double density spectra. Of course, these will
require that the continuum c be very large.
Actually, we shall need a cardinal characteristic of the continuum

to be large, namely the smallest cardinal κ that does not embed in
P(ω)/fin, which we shall denote by n. In other words, n is the smallest



12 I. JUHÁSZ, J. VAN MILL, L. SOUKUP, AND Z. SZENTMIKLÓSSY

cardinal such that there is no mod �nite strictly increasing sequence of
that length in [ω]ω.
It is trivial that b+ ≤ n ≤ c+ and it is also well-known that MA

implies n = c+. On the other hand, Kunen proved in his PhD thesis
that if one adds any number of Cohen reals to a model of CH then
n = b+ = ω2 holds in the generic extension, see IV.7.53 of [5]. We shall
obtain interesting ideals, and hence interesting separable compacta,
when n is large.
In what follows, it will be useful have the notation < for the class

of all uncountable regular cardinals. Our next result is presented as
a warm up, it is actually a very special case of a later result but, we
think, it is quite interesting in itself.

Theorem 3.8. If κ ∈ n ∩< then there is a separable compactum C of
π-weight κ such that κ ∩ < ⊂ scal(C). Consequently, ω < λ < κ and
cf(λ) > ω imply λ /∈ dd(C). So, if κ < ℵω then dd(C) = {ω, κ}.

Proof. Assume that 〈Aα : α < κ〉 is a mod �nite strictly increasing se-
quence in [ω]ω. We may assume that

⋃
{Aα : α < κ} = ω, hence if I is

the ideal generated by {Aα : α < κ} then [ω]<ω ⊂ I. We claim that if
C is any compacti�cation of XI then C is as required.
Since κ is regular, it is obvious that π(C) = π(XI) = cof(I) = κ,

hence we have κ ∈ dd(C). Actually, we even have κ ∈ dd(XI) because
the full set

C = {ω \ Aα : α < κ}∗

is clearly I-avoiding such that no subset of C of smaller size is I-
avoiding.
Next we show that, for every λ as above, I is weakly λ-complete.

Indeed, λ < κ = cf(κ) implies that for every A ∈ [I]λ there is some
α < κ such that I ⊂∗ Aα for all I ∈ A. Then by cf(λ) > ω there
is some a ∈ [ω]<ω such that for B = {I ∈ A : I ⊂ a ∪ Aα} we
have |B| = λ. Clearly, then ∪B ∈ I. But then Lemma 3.7 implies
λ ∈ scal(XI) = scal(C), hence λ /∈ dd(C) by Proposition 3.6. �

We do not know whether λ ∈ dd(C) holds for λ ∈ (ω, κ) with cf(λ) =
ω. In particular, what happens with ℵω if, say, κ = ℵω+1?
However, and we mention it just as a curiosity, we do know that

dd(XI) = {κ} if 〈Aα : α < κ〉 is a tower. Indeed, this means that for
every A ∈ [ω]ω there is an α < κ with |A ∩ Aα| = ω. So, if C ⊂ [ω]ω

with |C| = |C∗| < κ then there is an α < κ with |A ∩ Aα| = ω for all
A ∈ C∗, hence by Lemma 3.4 we have that C∗ is not dense in XI and
so neither is C.
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Theorem 3.9. For every set S ⊂ n∩< there is a separable compactum
C such that

(i) π(C) = supS;

(ii) S ⊂ dd(C);

(iii) if µ ∈ < \ S with µ > |S| then µ ∈ scal(C), hence cf(λ) = µ
implies λ /∈ dd(C).

We are going to present two quite di�erent proofs of this result. Our
�rst proof reduces it to Theorem 3.8.

Proof. Wemay apply Theorem 3.8 for every λ ∈ S to obtain a separable
compactum Cλ of π-weight λ such that λ ∩ < ⊂ scal(Cλ). We claim
that the product C =

∏
{Cλ : λ ∈ S} is as required. Since |S| ≤ c and

the product of at most c separable spaces is separable, C is a separable
compactum. It is also clear that π(C) = supS.
We obtain (ii) because for every λ0 ∈ S we may apply Proposition

1.2 with X = Cλ0 and Y =
∏
{Cλ : λ ∈ S \ {λ0}} to conclude that

λ0 ∈ dd(C).
Finally, to verify (iii), we consider µ ∈ < \ S with µ > |S|. If

µ > λ ∈ S then π(Cλ) = λ trivially implies µ ∈ scal(Cλ), while for
µ < λ ∈ S we have µ ∈ scal(Cλ) by the choice of Cλ.
But it is straightforward to check that if a regular cardinal µ is a

strong caliber of every factor of the product of fewer than µ spaces
then it is also a strong caliber of the product as well. Thus we indeed
have µ ∈ scal(C). �

Our second proof produces a suitable ideal I on ω such that any
compacti�cation C of XI is as required.

Proof. We shall actually produce an ideal I on ω with the following
three properties:

(a) cof(I) = supS.

(b) For every λ ∈ S there is an I-avoiding full set A ⊂ [ω]ω such that
|A| = λ but no B ⊂ A with |B| < λ is I-avoiding.

(c) If µ ∈ < \ S and µ > |S| then I is weakly µ-complete.

It easily follows from our earlier results that then any compacti�cation
C of XI is as required. We leave it to the reader to check the details
of this, and we move to the de�nition of I.
We �rst �x an almost disjoint family {Qλ : λ ∈ S} ⊂ [ω]ω; this is

possible because |S| ≤ supS ≤ c. Then, for each λ ∈ S, we pick a mod
�nite strictly increasing λ-sequence {Qλ,α : α < λ} ⊂ [Qλ]

ω. Then we
de�ne I as the ideal generated by Q = {Qλ,α : λ ∈ S, α < λ}. We may
assume, without any loss of generality, that ∪Q = ω, hence [ω]<ω ⊂ I.
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Then (a) holds trivially. Item (b) holds because for every λ ∈ S the
full set Qλ = {Qλ \Qλ,α : α < λ}∗ is I-avoiding with |Qλ| = λ and no
R ⊂ Qλ with |R| < λ is I-avoiding.
To see (c), we note �rst that for every I ∈ I there is a �nite set

aI ⊂ S and a function fI with domain aI and with fI(λ) ∈ λ for each
λ ∈ aI such that I ⊂∗ ∪{Qλ,fI(λ) : λ ∈ aI}.
Now, assume that µ ∈ < \ S with µ > |S|, moreover A ∈ [I]µ. By

µ > |S| we may then assume that for some �xed a ∈ [S]<ω we have
aI = a for all I ∈ A. Next, we may choose B ⊂ A with |B| = µ so that
for every λ ∈ a ∩ µ there is a �xed αλ < λ with fI(λ) = αλ whenever
I ∈ I.
But for every λ ∈ a \ µ, since λ > µ is regular, we can �x αλ < λ

such that fI(λ) < αλ for all I ∈ B. This clearly implies that

I ⊂∗ J = ∪{Qλ,αλ : λ ∈ a} ∈ I

whenever I ∈ B. Now, then there is some b ∈ [ω]<ω such that C = {I ∈
B : I ⊂ J∪b} also has size µ, hence I is indeed weakly µ-complete. �

The following immediate corollary of Theorems 3.9 and 2.1 is, we
think, illuminating.

Corollary 3.10. Assume that n > ℵω. Then

(1) for every a ∈ [ω]<ω there is a separable compactum C such that
dd(C) = {ω} ∪ {ωn : n ∈ a};

(2) for every a ∈ [ω]ω there is a separable compactum C such that
dd(C) = {ω} ∪ {ωn : n ∈ a} ∪ {ℵω}.

The above consistency results on the double density spectra of (sep-
arable) compact spaces need that n be large, i.e. that "long" well-
ordered sequences embed into P(ω)/fin. However, it is well-known
that in some sense any partial order embeds into P(ω)/fin, at least
after passing to an appropriate generic extension of the ground model.
More precisely, for any poset Q = 〈Q,≤〉 there is a CCC notion of
forcing forcing P such that Q embeds into P(ω)/fin in the generic ex-
tension V P. (We haven't found a direct reference to this folklore result,
however it is an immediate consequence of items 2.5 and 2.7 of [2].)
It is not a surprise then that more complicated posets embedded in

P(ω)/fin yield us further interesting consistency results on the double
density spectra of (separable) compacta. Our next result well illustrates
this.

Theorem 3.11. It is consistent to have a separable compact space C
such that dd(C), which of course is ω-closed, is not ω1-closed.
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Proof. We �rst let

S = < ∩ ℵω1 \ {ω1} = {ωα+1 : 1 ≤ α < ω1}.

Then we consider the poset Q = 〈Q,≤〉, where Q = Π{λ : λ ∈ S} and
for x, y ∈ Q we have x ≤ y i� x(λ) ≤ y(λ) for all λ ∈ S. Next we
move from our ground model V to its generic extension V P, where P is
a CCC notion of forcing forcing such that Q embeds into P(ω)/fin in

V P. Warning: Q =
(∏
{λ : λ ∈ S}

)V 6= (∏{λ : λ ∈ S}
)V P

!

From now on we work in V P, so we may �x a bijection h of Q into
[ω]ω such that for any x, y ∈ Q we have x < y i� h(x) ⊂∗ h(y). In what
follows, we shall write Ax instead of h(x). Not surprisingly, we let I be
the ideal on ω generated by {Ax : x ∈ Q}. We may assume, without
any loss of generality, that ∪{Ax : x ∈ Q} = ω, hence [ω]<ω ⊂ I.
We next show that S ⊂ dd(XI). Indeed, for every λ ∈ S and α < λ

we de�ne xλ,α ∈ Q by putting xλ,α(λ) = α and xλ,α(µ) = 0 for all
µ ∈ S \ {λ}.
Let us then de�ne Bλ,α = ω \ Axλ,α . Clearly, then Bλ = {Bλ,α : α <

λ}∗ is an I-avoiding full set and we claim that no smaller sized subset
of it is I-avoiding. This follows from the fact that, as P is CCC, every
subset of λ in V P is covered by subset of λ in V of the same size, and
hence is bounded in λ. So, we have λ ∈ dd(XI) by Lemma 3.4.
A very similar argument, using that P is CCC, yields that every

subset R of Q in V P with |R| ≤ ω1 is bounded in Q, i.e. there is y ∈ Q
such that for every x ∈ R we have x ≤ y. This, in turn, means that
we have Ax ⊂∗ Ay for all x ∈ R, hence we can �nd a �nite a ⊂ ω with
|{x ∈ R : Ax ⊂ a ∪ Ay}| = ω1 as well. But this clearly implies that I
is weakly ω1-complete, hence ω1 ∈ scal(XI).
Now, if C is any compacti�cation of XI then, on one hand, we have

S ⊂ dd(C), and on the other ω1 ∈ scal(C). But the �rst item implies
that ℵω1 is an accumulation point of dd(C), while ℵω1 /∈ dd(C) by the
second. Consequently, dd(C) is indeed not ω1-closed. �

References

[1] Berner, Andrew J.; Juhász, István The SUP=MAX problem for δ. Proc. Amer.
Math. Soc. 99 (1987), no. 3, 585�588.

[2] van Douwen, Eric K.; Przymusi«ski, Teodor C.; Separable extensions of �rst
countable spaces. Fund. Math. 105 (1979/80), no. 2, 147�158.

[3] Juhász, I. Cardinal functions in topology -� ten years later. Second edition.
Mathematical Centre Tracts, 123. Mathematisch Centrum, Amsterdam, 1980.
iv+160 pp.

[4] Juhász, I.; Shelah, S. π(X) = δ(X) for compact X. Topology Appl. 32 (1989),
no. 3, 289�294.



16 I. JUHÁSZ, J. VAN MILL, L. SOUKUP, AND Z. SZENTMIKLÓSSY

[5] Kunen, K. Set theory. Studies in Logic (London), 34. College Publications,
London, 2011. viii+401 pp.

[6] Weston, J. H.; Shilleto, J. Cardinalities of dense sets. General Topology and
Appl. 6 (1976), no. 2, 227�240.

Alfréd Rényi Institute of Mathematics

Email address: juhasz@renyi.hu

University of Amsterdam

Email address: j.vanMill@uva.nl

Alfréd Rényi Institute of Mathematics

Email address: soukup@renyi.hu

Eötvös University of Budapest

Email address: szentmiklossyz@gmail.com


