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JAN VAN MILL

Abstract. In this paper we introduce a slightly stronger form of countable dense homo-
geneity that for Polish spaces can be characterized topologically in a natural way. Along
the way, we generalize theorems obtained by Bennett and Ungar on countable dense ho-
mogeneity.

1. Introduction

Unless otherwise stated, all spaces under discussion are separable, metrizable and infinite.
Recall that a space X is countable dense homogeneous (CDH) if given any two count-

able dense subsets D and E of X there is a homeomorphism f : X → X such that
f(D) = E. The first result in this area is due to Cantor, who showed that the reals
are CDH. Fréchet [15] and Brouwer [5], independently, proved that the same is true for the
n-dimensional Euclidean space Rn. In 1962, Fort [14] proved that the Hilbert cube is also
CDH. Systematic study of CDH-spaces was initiated by Bennett [3] in 1972. He proved that
strongly locally homogeneous and locally compact spaces are CDH. This was generalized
by de Groot to Polish spaces in [16] and independently, but later, in [13] and [2]. The proof
of Theorem 5.3 in Anderson, Curtis and van Mill [2] shows that actually something a little
stronger can be proved. The homeomorphism moving one countable dense set onto the
other can be chosen in such a way that it is limited by a given open cover of the space. We
call a space with this property strongly countable dense homogeneous, abbreviated SCDH.
As far as we know, all examples in the literature of CDH-spaces are in fact SCDH (see
however Example 3.8 below).

The topological sum of the 1-sphere S1 and the 2-sphere S2 is an example of a CDH-
space which is not homogeneous. Bennett [3] proved that for connected spaces, countable
dense homogeneity implies homogeneity (see also [21, 1.6.8]). We will show in Theorem 1.4
below that Bennett’s result can be generalized substantially. For locally compact spaces
this was done already in 1978 by Ungar. In fact, he obtained the following interesting
characterization of countable dense homogeneity among locally compact spaces.

Theorem 1.1 (Ungar [28]). Let X be a locally compact space such that no finite set
separates X. Then the following statements are equivalent:
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(a) X is CDH.
(b) X is n-homogeneous for every n.
(c) X is strongly n-homogeneous for every n.

Let us comment a little on Ungar’s proof. First of all, the equivalence (b) ⇔ (c) fol-
lows from Corollary 3.10 in his earlier paper [27] (the assumption on local connectivity in
Corollary 3.10 in [27] is superfluous since all one needs for the proof is the existence of
a Polish group which makes the space under consideration n-homogeneous for all n; here
a (separable metrizable) space is called Polish if its topology is generated by a complete
metric). His proofs of the implications (a) ⇒ (c) and (c) ⇒ (a) were both based (among
other things) on the well-known Effros Theorem from [7] (see also [1] and [22]) on transitive
actions of Polish groups on Polish spaces.

The main aim of this paper is to investigate whether the elegant Theorem 1.1 is optimal.
The question whether one can prove a similar result with the assumption of local compact-
ness relaxed to that of completeness is a natural one in this context. In recent years it has
become clear that there are delicate topological differences in the homogeneity properties
of locally compact and non-locally compact Polish spaces. It is for example a trivial result
that for each homogeneous locally compact space X there exists a Polish group G acting
transitively on X. For Polish spaces this need not be not true, as was shown in [24]. It
turns out that a transitive action by a Polish group on a Polish space is a very strong
homogeneity property of that space because the Effros Theorem can be applied in that
situation. Locally compact spaces have this property and the proof of Theorem 1.1 heavily
depends on it. So in the light of the example in [24] it is unclear whether Theorem 1.1
can be generalized to Polish spaces. If we consider homeomorphisms that are limited by
arbitrary open covers, then there is a way around the Effros Theorem.

Theorem 1.2. For a Polish space X, the following statements are equivalent:

(a) X is SCDH.
(b) For every open cover U of X, every finite subset F of X and every x ∈ X \ F ,

there is a neighborhood V of x such that for all y ∈ V there is a homeomorphism
f : X → X that is limited by U, restricts to the identity on F , and sends x to y.

One should think of (b) as a strong form of n-homogeneity for all n. It is equivalent
to (a) which is a strong form of countable dense homogeneity. In order to prove (b) ⇒
(a), it is inevitable that at a certain step in the proof one has to ensure that a sequence of
homeomorphisms converges to a homeomorphism. So that we run into homeomorphisms
that are limited by arbitrary open covers comes as no surprise since without control one
cannot make sure that the desired limit exists and is a homeomorphism. The condition
in (b) about the neighborhood V is a familiar one for Effros Theorem aficionados and is
needed for the standard back-and-forth proof pushing one countable dense set onto the
other. So the interesting implication in Theorem 1.2 is (a) ⇒ (b) which requires a new
idea that does not depend on the Effros Theorem; in contrast, the proof of the implication
(b) ⇒ (a) is routine.
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It is a little disappointing that we were not able to characterize countable dense ho-
mogeneity in a similar way. That we indeed did not do that in Theorem 1.2 will be
demonstrated in Example 3.8 where we describe an example of a Polish CDH-space which
is not SCDH. We will show that Theorem 1.2 and the Effros Theorem imply that such an
example cannot be compact. We do not know whether every locally compact CDH-space
is SCDH.

Corollary 1.3. Every compact CDH-space is SCDH.

It is also an open problem whether every compact CDH-space is strongly locally homoge-
neous. If so, then Corollary 1.3 is a trivial consequence of this. Kennedy [18] proved that if
a continuum is 2-homogeneous, and has a nontrivial homeomorphism that is the identity on
some nonempty open set, then it is strongly locally homogeneous. Hence a CDH-continuum
with such a homeomorphism is strongly locally homogeneous and therefore SCDH. Simply
observe that by Theorem 1.1 such a continuum is 2-homogeneous.

Let the group G act on the space X. We say that a subset H of G makes X CDH
provided that for all countable dense subsets D and E of X there is an element g ∈ H such
that gD = E. So, informally speaking, H witnesses the fact that X is CDH. Similarly,
we say that H makes X n-homogeneous provided that for all subsets F and G of X of
size n there exists g ∈ H such that gF = G. We finally say that H makes X strongly
n-homogeneous if given any two n-tuples (x1, . . . , xn) and (y1, . . . , yn) of distinct points of
X, there exists an element g ∈ H such that gxi = yi for every i ≤ n.

As was stated above, Ungar’s proof of the implications (a) ⇒ (c) and (c) ⇒ (a) in
Theorem 1.1 were both based on the Effros Theorem. It turns out however that the
implication (a)⇒ (c) holds for all spaces, in essence even without connectivity assumptions.
That is the new ingredient that we need in the proof of the implication (a) ⇒ (b) in
Theorem 1.2.

Theorem 1.4. If the group G makes the space X CDH and no set of size n−1 separates
X, then G makes X strongly n-homogeneous.

Observe that this result indeed improves Bennett’s result quoted above that a connected
CDH-space is homogeneous. In Remark 3.6 we describe an example of a space X with
very strong connectivity properties and which is strongly n-homogeneous for all n but not
CDH, hence Theorem 1.4 is sharp. This space is not Polish however. It is an open problem
that seems to be delicate whether there is an example of a Polish space that is strongly
n-homogeneous for all n but not CDH.

For some recent results on countable dense homogeneity, see [17], [9], [23], [25].

2. Preliminaries

(A) Topology. As usual, Q denotes the space of rational numbers. If X is any countable
space, then X × Q is homeomorphic to Q. This is a consequence of the fact due to
Sierpiński [26] that Q is topologically the unique countable space without isolated points.
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Hence Q contains a topological copy of any countable ordinal number. Hence Q contains
an uncountable family K of pairwise nonhomeomorphic compact subspaces.

A subset of a space X is called clopen if it is both closed and open.
A space X is called strongly locally homogeneous (abbreviated SLH) if it has a base

B such that for all B ∈ B and x, y ∈ B there is a homeomorphism f : X → X that is
supported on B (that is, f is the identity outside B) and moves x to y.

A space is rigid if the identity function is its only homeomorphism.
For a space X we let H(X) denote its group of homeomorphisms.
We say that a subset A of a space X separates X provided that X \ A is disconnected.

Lemma 2.1. Let X be CDH-space. Then the set of isolated points E of X is clopen in X
and every open subspace of X that meets X \ E is uncountable.

Proof. If E is the set of isolated points of X and e ∈ E, then clearly

E = {h(e) : h ∈ H(X)}.

Hence by [21, 1.6.7], E is a clopen subset of X.
Observe that if X \ E is not empty, then it has no isolated points and is CDH. Hence

for the second part of the lemma we may assume without loss of generality that E = ∅.
Striving for a contradiction, assume that X contains a nonempty open countable subset

U . Put V =
⋃
{f(U) : f ∈ H(X)}. Then V is clearly invariant under H(X). In addition,

the open cover {f(U) : f ∈ H(X)} of V has a countable subcover. This means that V is
countable since U is.

Let D be an arbitrary countable dense subset of X\V , and fix distinct elements v, w ∈ V .
Observe that V has no isolated points, hence V \ {v} and V \ {v, w} are both dense in V .
Hence both D ∪ (V \ {v}) and D ∪ (V \ {v, w}) are countable dense subsets of X. There
is by assumption a homeomorphism f : X → X such that

f
(
D ∪ (V \ {v})

)
= D ∪ (V \ {v, w}).

Since V is H(X)-invariant, it follows that f(V ) = V , hence f(X \ V ) ∩ V = ∅. But this
means that f({v}) = {v, w}, a contradiction. �

Let A ⊆ X and let U be an open cover of X. The star of A with respect to U is the set

St(A,U) =
⋃
{U ∈ U : U ∩ A 6= ∅}.

If A is a singleton subset of X, say A = {x}, then we denote St(A,U) by St(x,U). The cover
{St(U,U) : U ∈ U} is denoted by St(U). Moreover, St2(U) denotes St

(
St(U)

)
, etc. We say

that an open cover V of X is a star-refinement of U if St(V) < U, i.e., if for every V ∈ V

there exists U ∈ U such that St(V,V) ⊆ U. Every open cover admits a star-refinement, as
is well-known, [8, 5.1.12].

A cover V of X is a barycentric refinement of a cover U of X if {St(x,V) : x ∈ X}
refines U.
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(B) The Inductive Convergence Criterion. Let X be a space with open cover U.
We say that a map f : X → X is limited by U if for each x ∈ X there is an element U ∈ U

containing both x and f(x).

Proposition 2.2. [2, 5.1] Suppose that X is Polish, and {hn}n is a sequence of homeo-
morphisms of X for which there exists a sequence of open covers {Un}n of X such that

(1) Un is a barycentric refinement of Un−1,
(2) Un has mesh less than 2−n,
(3) (hn ◦ · · · ◦ h1)

−1(Un) has mesh less than 2−n,
(4) hn is limited by Un,

then limn→∞ hn ◦ · · · ◦ h1 is a homeomorphism of X. (We use a complete metric on X of
course.)

This is a form of the so-called Inductive Convergence Criterion for Polish spaces.

(C) Set theory. A cardinal is an initial ordinal, and an ordinal is the set of smaller
ordinals. We use ‘countable’ for ‘at most countable’. If X is a set and κ is a cardinal then
[X]<κ and [X]κ denote {A ⊆ X : |A| < κ} and {A ⊆ X : |A| = κ}, respectively. Hence
[X]<ω abbreviates the collection of all finite subsets of X.

A cub in ω1 is a closed and unbounded subset of ω1 (endowed with the order topology).
A subset S of ω1 is called stationary if S ∩ C 6= ∅ for every cub C in ω1. If S ⊆ ω1 is
stationary, and S =

⋃
n<ω Sn, then for some n, Sn is stationary. For if not, then for every

n there is some cub Cn in ω1 such that Sn ∩ Cn = ∅. But then C =
⋂
n<ω Cn is a cub

in ω1 missing S, a contradiction. This fact will be used without explicit reference in the
forthcoming.

If S ⊆ ω1 is stationary, then a function f : S → ω1 is called regressive if f(α) < α for
every α ∈ S \ {0}. The so-called Pressing-Down Lemma says that if S ⊆ ω1 is stationary,
and f : S → ω1 is regressive, then for some α < ω1, f

−1({α}) is stationary. For details,
see [19, 6.15].

Lemma 2.3. Let S ⊆ ω1 be stationary. If f : S → [ω1]
<ω \ {∅} is such that max f(α) < α

for every α ∈ S, then for some F ∈ [ω1]
<ω \ {∅}, {α ∈ S : f(α) = F} is stationary.

Proof. The proof is a routine application of the Pressing-Down Lemma. Indeed, let g(α) =
max f(α) for α ∈ S. Then g is regressive, hence by the Pressing-Down Lemma there exists
λ < ω1 such that T = g−1({λ}) is stationary. Since [λ+1]<ω is countable, it is clear that
for some F ∈ [λ+1]<ω we have that {α ∈ T : f(α) = F} is stationary. �

(D) Actions by groups. Let a : G×X → X be an action of a group G on the space
X. For every g ∈ G, the function x 7→ a(g, x) is a homeomorphism of X. We use gx as an
abbreviation for a(g, x). This notation is sometimes slightly confusing, especially if G is a
group of homeomorphisms on some space. The action is called transitive if for all x, y ∈ X
there exists g ∈ G such that gx = y. For every x ∈ X we let Gx denote the orbit of x, i.e.,
Gx = {gx : g ∈ G}. If A ⊆ X, then

GA = {f ∈ G : (∀x ∈ A)(f(x) = x)}.
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That is, GA is the stabilizer subgroup of A.

Lemma 2.4. Let the group G act on the infinite space X. Then the following statements
are equivalent for every n ≥ 1:

(a) G makes X strongly n-homogeneous.
(b) For every F ∈ [X]n−1, the group GF acts transitively on X \ F .

Proof. It is clear that (a) ⇒ (b) is trivial. We prove (b)n ⇒ (a)n by induction on n. For
n = 1 there is nothing to prove. So assume that our statement holds for n−1, where
n ≥ 2, and that X satisfies (b)n. Since X is infinite it satisfies (b)n−1 and hence (a)n−1 by
our inductive hypothesis. Let (x1, . . . , xn) and (y1, . . . , yn) be arbitrary n-tuples of distinct
points of X. By what we just observed, there is an element g0 ∈ G such that g0xi = yi for
every i ≤ n−1. Put F = {y1, . . . , yn−1}. By (b)n there is an element g1 ∈ GF such that
g1g0xn = yn. So we conclude that g1g0xi = yi for every i ≤ n. �

Let X be a compact space. It is well-known, and easy to prove, that H(X) endowed with
the compact-open topology is a Polish group and that the natural action H(X)×X → X
is continuous. If % is an admissible metric on X, then the formula

%̂(f, g) = max
{
%
(
f(x), g(x)

)
: x ∈ X

}
defines an admissible metric on H(X). For details, see [21, §1.3].

3. Proof of Theorem 1.4

(A) Basic tools. We will first present two preliminary results that are interesting in
their own rights and will be the keys in obtaining our main results.

Proposition 3.1. Let X be a space. Suppose that G is a subset of H(X) that makes X
CDH. If F ⊆ X is finite and D,E ⊆ X \ F are countable and dense in X, then there are
elements α, β ∈ G such that α�F = β�F and (α−1 ◦ β)(D) ⊆ E.

Proof. Let h0 be an arbitrary element in G. Suppose {hβ : β < α} ⊆ G have been
constructed for some α < ω1. Now by CDH, pick hα ∈ G such that

(†) hα(F ∪ E) =
⋃
β<α

hβ(D).

For 1 ≤ α < ω1, let Tα be a nonempty finite subset of α such that hα(F ) ⊆
⋃
β∈Tα

hβ(D).

By Lemma 2.3 there are a stationary subset S of ω1 \ {0} and a finite subset T of ω1 such
that for all λ, µ ∈ S, Tλ = T = Tµ. Observe that for all λ ∈ S,

hλ(F ) ⊆
⋃
β∈T

hβ(D).

Since F is finite, and
⋃
β∈T hβ(D) is countable, and for all λ ∈ S the function hλ�F : F →⋃

β∈T hβ(D) is 1-1, there are distinct λ, µ ∈ S such that hλ�F = hµ�F .
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We may assume without loss of generality that λ < µ. Put α = hµ and β = hλ, and
g = α−1 ◦ β. Then, clearly, g ∈ H(X)F and hence g(D) ∩ F = ∅. Hence by (†) we
consequently get

g(D) = (h−1
µ ◦ hλ)(D) = (h−1

µ ◦ hλ)(D) \ F ⊆ (F ∪ E) \ F = E,

as required. �

Proposition 3.2. Let X be a space. Suppose that G is a subset of H(X) that makes X
CDH. Then for every finite F ⊆ X and uncountable collection of countable subsets A of
X \F that are all dense in X there are distinct A,B ∈ A and elements α, β ∈ G such that
α�F = β�F and (α−1 ◦ β)(A) = B.

Proof. Let D be an arbitrary countable dense subset of X. For every A ∈ A pick an
element fA ∈ G such that fA(A ∪ F ) = D. Since A is uncountable and D is countable,
there are distinct B,A ∈ A such that fB�F = fA�F . Put α = fB and β = fA. Then
g = α−1 ◦ β restricts to the identity on F , and hence g(A) = B. �

(B) The main results and applications. We now come to our main results. In
Corollary 3.5 below we prove a more general result than the one stated in Theorem 1.4.

Proposition 3.3. Let X be a space without isolated points. Suppose that G is a subset of
H(X) that makes X CDH. Then for all finite F ⊆ X and uncountable A ⊆ X \ F , the set⋃

{(α−1 ◦ β)(A) : (α, β ∈ G) & (α�F = β�F )}

has nonempty interior.

Proof. By the Cantor-Bendixson Theorem, [8, 1.7.11], there is a subspace E of A which
is homeomorphic to Q. Let K be an uncountable family of pairwise nonhomeomorphic
(compact) subspaces of E.

Striving for a contradiction, assume that

B =
⋃
{(α−1 ◦ β)(A) : (α, β ∈ G) & (α�F = β�F )}

has empty interior. Then X \B is dense in X, hence we may fix a countable dense subset
D of X \ (B ∪ F ) (here we use that X has no isolated points). For every K ∈ K, put
DK = D ∪K. Then {DK : K ∈ K} is an uncountable family of countable dense subsets
of X \ F . There are by Proposition 3.2 distinct K0, K1 ∈ K and elements α, β ∈ G such
that α�F = β�F and (α−1 ◦ β)(D ∪K0) = D ∪K1. Observe that (α−1 ◦ β)(K0) ⊆ B and
hence (α−1 ◦ β)(K0) ∩D = ∅. From this we conclude that (α−1 ◦ β)(K0) ⊆ K1. It follows
similarly that (β−1 ◦ α)(K1) ⊆ K0. So we conclude that (α−1 ◦ β)(K0) = K1. But K0 and
K1 are not homeomorphic and hence we reached a contradiction. �

Remark 3.4. Observe that the proof of this result is based on the fact that the uncount-
able subset A of X contains an uncountable family of pairwise nonhomeomorphic countable
subsets. In the proof we used the well-known fact that this is true for all separable metriz-
able spaces. The proof however works in a much broader setting. For example, if X is
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hereditarily Lindelöf and first countable. Since countable dense homogeneity is of limited
interest outside the class of all separable metrizable spaces, there does not seem to be a
point in pursuing this.

Corollary 3.5. Let X be a space without isolated points. Assume that the group G makes
X CDH. Then for every finite subset F ⊆ X, every GF -invariant subset of X \ F is open.

Proof. Let A ⊆ X \ F be nonempty and a GF -orbit. By Lemma 2.1 and Proposition 3.1
it follows that A is uncountable. Hence A has nonempty interior by Proposition 3.3, and
so is open being an orbit. �

Proof of Theorem 1.4. Assume that G makes the space X CDH and no set of size n−1
separates X. By Lemma 2.4 all we need to show is that for every F ∈ [X]n−1 the group
GF acts transitively on X \ F . By Corollary 3.5 every orbit GFx for x ∈ X \ F is open.
Since orbits are disjoint, they are clopen. So we are done by connectivity. �

Remark 3.6. It is natural to wonder about the converse of Theorem 1.4. As we remarked
in the introduction, Ungar [28] showed that in a locally compact space X such that no
finite set separates X, countable dense homogeneity and strong n-homogeneity for all n are
equivalent notions. Local compactness is essential in this result. In [20], an example was
constructed of a bi-Bernstein set X in the plane which is strongly locally homogeneous but
not CDH. It is easy to see that no finite subset of X separates X. This implies that X is
strongly n-homogeneous for all n. Indeed, let F ∈ [X]n−1 be arbitrary, and fix x, y ∈ X \F .
Let the base B make X SLH. Since X \ F is connected, there is by [21, 1.5.21] a simple
chain B1, . . . , Bm of elements of B connecting x and y such that

⋃m
i=1Bi ⊆ X \ F . For

every i = 1, . . . ,m−1 pick an arbitrary point zi ∈ Bi∩Bi+1. Let z0 = x and zm = y. There
is for every i ≤ m a homeomorphism fi of X such that fi(zi−1) = zi and fi is supported
on Bi. Then f = fm ◦ · · · ◦ f1 is a homeomorphism of X with f(x) = y and is supported
on
⋃m
i=1Bi, and hence restricts to the identity on F . So we are done by Lemma 2.4.

Remark 3.7. It was stated as a corollary to the main results in Ungar [28] that every
open dense subset of a locally compact CDH-space is itself CDH. As Ungar mentioned in
private conversation, the proof for the argument for this corollary is incomplete, and it is
unclear whether it is true (see also [12, p. 2]). This generated quite some activity in the
literature. Fitzpatrick and Zhou [10] proved that there is a connected, locally connected,
CDH, Baire Hausdorff space with a dense, open, connected subspace that is not CDH. See
Watson and Simon [29] for a completely regular space with similar properties. Fitzpatrick
and Zhou [10] asked whether there is such a space that is metrizable. This question was
repeated in [11, Problem 2] and specified in [11, Problem 2′]. These questions were recently
answered in [25]: there is a CDH-space X containing a dense connected rigid open subset.
This example is Polish but not locally compact. So the question whether Ungar’s result
is true remains open. This seems a rather delicate problem. Kennedy [18] proved that if
a continuum is 2-homogeneous, and has a nontrivial homeomorphism that is the identity
on some nonempty open set, then it is strongly locally homogeneous. Hence every open
subspace of such a space is CDH.
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Observe that by Corollary 3.5, if X is CDH and has no isolated points, then X \ F for
any finite subset F of X has ‘many’ homeomorphisms, hence is not rigid. We do not know
whether X \ F is CDH. Again, this seems to be a delicate question.

(C) A counterexample. We will now answer the obvious question whether every
CDH-space is SCDH in the negative. For all undefined notions, see [25].

Example 3.8. There is a Polish convex subset X of Hilbert space `2 having an open cover
U such that

(1) If f is a homeomorphism of X that is limited by U, then f is the identity.
(2) No finite set in X separates X.
(3) Homeomorphisms between compact subsets of X can be extended to homeomor-

phisms of X (with control). Hence X is strongly n-homogeneous for every n.
(4) X is CDH.

We will show that the space in [23] is the example we are looking for. Hence there are
Polish CDH-spaces that are not SCDH for a very strong reason.

Let X be a nonempty compact space. We say that a countable collection of Z-sets X in
the Hilbert cube Q is X-dense if

(1) X is pairwise disjoint and every X ′ ∈ X is homeomorphic to X,
(2) for every f ∈ C(X,Q) and ε > 0 there are an X ′ ∈ X and a homeomorphism

α : X → X ′ such that %̂(α, f) < ε.

The basic properties of X-dense collections that are important to us are listed in the
following result.

Proposition 3.9 ([23]). Let X be a nonempty compact space.

(a) There is an X-dense collection of Z-sets in Q.
(b) Let S and T be X-dense collections of Z-sets in Q. Then there is an arbitrarily

close to the identity homeomorphism h : Q→ Q such that h(
⋃

S) =
⋃

T.

Now let P be a Q-dense collection of Z-sets in Q
(
Proposition 3.9(a)

)
, and put Y =

Q \
⋃

P. Then Y is a dense Gδ-subset of Q and hence is Polish. It was shown in [23] that
Y is an example of a CDH-space which is not strongly locally homogeneous. Moreover,
Y is homeomorphic to a convex subset of Hilbert space `2. The space Y has many other
interesting properties. For example, it has a dense rigid connected open subset, as was
shown in [25]. We will show here that it has the properties of the space X that were
promised in Example 3.8.

That homeomorphisms between compact subsets of Y can be extended to homeomor-
phisms of Y (with control), is an easy consequence of the proof of Proposition 3.3 in [23].
In this paper we are only interested in the fact that X is strongly n-homogeneous, and that
follows from Theorem 1.4. So we do not bother to prove the homeomorphism extension
result for compacta in detail. Moreover, since Y is the complement of a σZ-set in Q, we
clearly get that no finite set separates Y . So all there remains to check is that Y has the
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open cover promised in Example 3.8(1). This in our opinion rather unexpected result, has
a surprisingly simple proof; it is inspired by the proof of Theorem 4.1 in [25].

Let {Qn : n ∈ N} be a faithful enumeration of P.

Lemma 3.10 ([25, Lemma 3.2]). There are a compact set K in Q \ Y and an open base
B for Q \K such that

(1) for every B ∈ B, B ∩K = ∅,
(2) for all B,B′ ∈ B such that B ∩ B′ = ∅, there exists n such that Qn ∩ K 6= ∅,

Qn ∩B 6= ∅ but Qn ∩B′ = ∅.

Now let V be a so-called Dugundji cover for Q and K, [21, 1.2.1]. That is, V is a locally
finite open cover of Q \K such that

(D) if Vn ∈ V for every n and lim
n→∞

%(Vn, K) = 0, then lim
n→∞

diam(Vn) = 0.

Put U = {V ∩ Y : V ∈ V}.

Theorem 3.11. If h is a homeomorphism of Y that is limited by U, then h is the identity
on Y .

Proof. We first note that h ‘permutes’ P.

Claim 1 ([23, 4.2]). There is a bijection α : P→ P such that for every A ⊆ Y and P ∈ P,

if A ∩ P 6= ∅ then h(A) ∩ α(P ) 6= ∅ (here closure means closure in Q).

Assume that for n we have Qn ∩K 6= ∅, and let p ∈ K ∩Qn. There is a sequence (xi)i
in Y converging to p. For every n let Vn ∈ V be such that {xn, h(xn)} ⊆ Vn. Observe that
limn→∞ %(Vn, K) ≤ limn→∞ %(xn, K) = 0, hence limn→∞ diam(Vn) = 0 by (D) above. From
this we conclude that (h(xi))i converges to p, i.e., α(Qn) = Qn by Claim 1.

Striving for a contradiction, assume that there exists x ∈ X such that h(x) 6= x. Since
{x, h(x)} ∩ K = ∅, there are B,B′ ∈ B such that x ∈ B, h(B ∩ X) ⊆ B′ ∩ X, and
B ∩ B′ = ∅. By Lemma 3.10 there exists n such that Qn ∩ K 6= ∅, Qn ∩ B 6= ∅ but
Qn ∩ B′ = ∅. Pick a sequence (xi)i in B ∩ X such that it converges to an element of
Qn ∩ B. By Claim 1, the sequence

(
h(xi)

)
i

has a cluster point in α(Qn). But as we just

saw, α(Qn) = Qn and all cluster points of
(
h(xi)

)
i

are contained in B′ which is disjoint
from Qn. This is a contradiction. �

Question 3.12. Is there is an example of a Polish space that is strongly n-homogeneous for
all n but not CDH?

Remark 3.13. That our space Y has the property stated in Theorem 3.11 was observed
independently also by Dobrowolski in [6].

4. Proof of Theorem 1.2 and Corollary 1.3

It will be convenient to introduce some notation. If X is a space and U is an open cover
of X, then put H(X; U) = {f ∈ H(X) : f is limited by U}.
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Lemma 4.1. Let X be a space without isolated points. Let U be an open cover of X.
Suppose that H(X; U) makes X CDH. Then for all (possibly empty) finite F ⊆ X and
x ∈ X \ F there is an open neighborhood V of x such that for every y ∈ V there is an
element f ∈ H(X)F such that f(x) = y and f is limited by St4(U).

Proof. Denote H(X; U) by G. Put

H = {α−1 ◦ β : (α, β ∈ G) & (α�F = β�F )}
and

A = {h(x) : h ∈ H},
respectively. Then A is uncountable by Lemma 2.1 and Proposition 3.1. Put

B = {h(a) : a ∈ A, h ∈ H}.
Then B has nonempty interior by Proposition 3.3. Let W be the interior of B, and pick
an arbitrary element p ∈ W . Then are h0, h1 ∈ H such that p = h1

(
h0(x)

)
. Put

V = (h1 ◦ h0)
−1(W ).

Then V is an open neighborhood of x, and we claim that it is as required. To this end,
pick an arbitrary element y in V . There are ξ0, ξ1 ∈ H such that

(ξ1 ◦ ξ0)(x) = (h1 ◦ h0)(y).

As a consequence, (h−1
0 ◦h−1

1 ◦ξ1 ◦ξ0)(x) = y. Observe that f = h−1
0 ◦h−1

1 ◦ξ1 ◦ξ0 ∈ H(X)F
and that every h ∈ H is limited by St(U). This means that f is limited by St4(U). �

Proof of Theorem 1.2. We first prove (a) ⇒ (b). Let U be an open cover of X. Let V be
an open refinement of U such that St4(V) < U. By (a), the homeomorphisms of X that
are limited by V make X CDH. Hence we are done by Lemma 4.1.

Finally observe that (b) ⇒ (a) follows from Proposition 2.2 by adapting the standard
back-and-forth proof that locally compact and SLH-spaces are CDH. For the convenience
of the reader, we will provide the details.

To this end, let U be an arbitrary open cover of X. There is by [4, Theorem 4.1] an
admissible complete metric % on X such that the family of all open %-balls of radius 1
forms a refinement of U.

Let A = {a1, a2, . . . } and B = {b1, b2, . . . } be faithfully indexed dense subsets of X. The
hypothesis (b) implies that if E is a neighborhood of a point x ∈ X, and F ⊆ X \ {x} is
finite and G ⊆ X is dense, then there exists for every open cover V of X a homeomorphism
f of X which is limited by V, restricts to the identity on F and takes x into G ∩ E.

Let h1 denote the identity function on X, and let V1 be the family of all open %-balls of
radius 1/8. We now construct a sequence (hi)i≥2 of homeomorphisms of X and a sequence
{Vi}i≥2 of open covers of X such that for each i ≥ 1 the following conditions are satisfied:

(1) hn ◦ · · · ◦ h1(ai) = h2i ◦ · · · ◦ h1(ai) ∈ B for each n ≥ 2i,
(2) (hn ◦ · · · ◦ h1)

−1(bi) = (h2i+1 ◦ · · · ◦ h1)
−1(bi) ∈ A for each n ≥ 2i+ 1,

(3) if i ≥ 2, then Vi is a barycentric refinement of Vi−1,
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(4) Vi has mesh less than 2−(i+1),

(5) (hi ◦ · · · ◦ h1)
−1(Vi) has mesh less than 2−(i+1),

(6) hi is limited by Vi.

Assume h1, . . . , h2i−1 and V1, . . . ,V2i−1 have been defined for certain i ≥ 1.
Let V2i be an open cover of X such that

(7) V2i has mesh less than 2−(2i+1),

(8) (h2i−1 ◦ · · · ◦ h1)
−1
(
St(V2i)

)
has mesh less than 2−(2i+1),

(9) St(V2i) refines V2i−1.

If h2i−1 ◦ · · · ◦h1(ai) ∈ B, take h2i the identity function on X. Otherwise, choose a small
neighborhood U2i of h2i−1 ◦ · · · ◦ h1(ai) which is disjoint from the finite set

K = {b1, . . . , bi−1} ∪ h2i−1 ◦ · · · ◦ h1({a1, . . . , ai−1}).

Take h2i to be a homeomorphism of X which is limited by V2i such that

h2i ◦ h2i−1 ◦ · · · ◦ h1(a1) ∈ B ∩ U2i

and restricts to the identity on K. It is clear that the only thing we need to verify is
(5)2i. Indeed, if W ∈ V2i, then since h2i is limited by V2i we clearly have that h−1

2i (W ) ⊆
St(W,V2i). From this we get by (8) that

diam(h2i ◦ · · · ◦ h1)
−1(W ) < 2−(2i+1),

as required.
Let V2i+1 be an open cover of X such that

(10) V2i+1 has mesh less than 2−(2i+2),

(11) (h2i ◦ · · · ◦ h1)
−1(St(V2i+1)

)
has mesh less than 2−(2i+2),

(12) St(V2i+1) refines V2i.

If (h2i ◦ · · · ◦ h1)
−1(bi) ∈ A, take h2i+1 the identity function on X. Otherwise, choose a

small neighborhood U2i+1 of bi which is disjoint from the finite set

L = {b1, . . . , bi−1} ∪ h2i ◦ · · · ◦ h1({a1, . . . , ai}).

Take h2i+1 to be a homeomorphism of X which is limited on V2i+1 such that

h−1
2i+1(bi) ∈ (h2i ◦ · · · ◦ h1)(A) ∩ U2i+1

and restricts to the identity on L. It is clear that the only thing we need to verify is
(5)2i+1. Indeed, if W ∈ V2i+1, then since h2i+1 is limited by V2i+1 we clearly have that
h−1

2i+1(W ) ⊆ St(W,V2i+1). From this we get by (11) that

diam(h2i+1 ◦ · · · ◦ h1)
−1(W ) < 2−(2i+2),

as required.
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By Proposition 2.2 we have that h = limn→∞ hn ◦ · · · ◦ h1 is a homeomorphism of X.
The conditions (1) and (2) insure that h(A) = B. Finally, if x ∈ X is arbitrary, then by
(4) and (6) we get

%
(
x, h(x)

)
≤

∞∑
i=1

2−(i+1) = 1/2.

Since x was arbitrary, this proves that h is limited by U. �

Proof of Corollary 1.3. We may clearly assume that X is infinite. The set E of isolated
points of X is clopen and discrete by Lemma 2.1. A moments reflection shows that we
may assume without loss of generality that E = ∅.

We will verify that X satisfies the condition in Theorem 1.2(b). To this end, let F ⊆ X
be finite, take an arbitrary x ∈ X \ F , and let ε > 0. Our task is to find an open
neighborhood P of x in X such that for every a ∈ P there exists an element h ∈ H(X)F
such that h(x) = a and h moves no point more than ε. As to be expected, this is a
consequence of the Effros Theorem from [7].

The Polish group G = H(X)F acts on the locally compact space X \ F and its orbits
are clopen subsets of X \F by Corollary 3.5. As a consequence, the set U = Gx is an open
subset of X on which G acts transitively. In addition, U is Polish being locally compact.
Let O be an open neighborhood of x in X such that the compact set O is contained in U .
Let V = {f ∈ H(X)F : %̂(f, 1X) < 1/2ε}. By the Effros Theorem, the set V z is open in
Gx for every z ∈ Gx. Let δ > 0 be a Lebesgue number for the open cover {V z : z ∈ O} of
O. Now let P be an open neighborhood of x such that diamP < δ and P ⊆ O. Pick an
arbitrary element a ∈ P . There exists z ∈ O such that x, a ∈ V z. Pick f, g ∈ V such that
f(z) = x and g(z) = a. Then h = g ◦ f−1, restricts to the identity on F , sends x onto a
and %̂(h, 1X) < ε. �

In the light of Corollary 1.3 and Example 3.8, the following question is quite natural.

Question 4.2. Let X be a locally compact CDH-space. Is X SCDH?
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