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The ancient dream: detecting the primes

• Mathematicians have long wondered whether the set of prime numbers can
be described by a simple equation.

• In the 1970s, Yuri Matiyasevich proved that every “computably enumerable”
set of integers can be captured by a Diophantine equation — that is, by a
polynomial equation with integer solutions.

• Amazingly, this means that also the primes can be characterized in this way!

• A few years later, Jones, Sato, Wada, and Wiens actually wrote down such a
polynomial — a 25th-degree monster in 26 variables whose positive values
are exactly the primes.

• It works, but it’s... not exactly practical.
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Is there an easier way to detect primes?

A 25-degree polynomial in 26 variables that detects primes. . .
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Joint work with Will Craig and Ken Ono
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Partitions: building blocks of additive number theory

Definition (Partition)

A partition of an integer n is a finite ordered sequence (λ1, λ2, . . . , λr ) of integers
λ1 ≥ λ2 ≥ · · ·λr ≥ 1 summing to n.

The conjugacy classes of the symmetric group Sn are labeled by partitions.

Example (Partitions of 4)

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)

Write p(n) for the number of partitions of n. Euler observed∑
n≥0

p(n) qn =
1∏

n≥1(1− qn)
.
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Partitions are determined by their part sizes and multiplicities

Note that a partition is uniquely determined by
the different part sizes s1 < s2 < . . . < sa and
corresponding multiplicities m1,m2, . . . ,ma.

Example (Stanley coordinates)

For λ = (7, 4, 4, 4, 2, 1, 1) = (71, 43, 21, 12), we
have s = (1, 2, 4, 7) and m = (2, 1, 3, 1).

m4 = 1

m3 = 3

m2 = 1

m1 = 2

s1 = 1

s2 = 2

s3 = 4

s4 = 7
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MacMahon partition function counts sums of products of multiplicities

Definition (MacMahon partition function, 1920)

For a ≥ 1, define the MacMahon partition function by

Ma(n) =
∑

n=m1s1+···+masa
0<s1<s2<···<sa

m1m2 · · ·ma

Consider
Ψ(n) := (n2 − 3n + 2)M1(n)− 8M2(n).

Example (The value Ψ(3))

n = 3, a = 1: λ = (3) or λ = (13), so M1(3) = 1 + 3 = 4.
n = 3, a = 2: λ = (2, 1), so M2(3) = 1 · 1 = 1.
Hence,

Ψ(3) = 2M1(3)− 8M2(3) = 0.
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MacMahon partition function (continued)

Reminder

Ma(n) =
∑

n=m1s1+···+masa
0<s1<s2<···<sa

m1m2 · · ·ma, Ψ(n) := (n2 − 3n + 2)M1(n)− 8M2(n).

Example (The value Ψ(4))

n = 4, a = 1: λ = (4), (22) or λ = (14), so M1(4) = 1 + 2 + 4 = 7.
n = 4, a = 2: λ = (3, 1) or (2, 12), so M2(4) = 1 · 1 + 1 · 2 = 3.
Hence,

Ψ(4) = 6M1(4)− 8M2(4) = 18.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

Ψ(n) 0 0 18 0 120 0 270 192 504 0 1680 0 1296 1536 . . .
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The MacMahon partition function detects primes

Reminder

Ma(n) =
∑

n=m1s1+···+masa
0<s1<s2<···<sa

m1m2 · · ·ma, Ψ(n) := (n2 − 3n + 2)M1(n)− 8M2(n).

Theorem (Craig–vI–Ono, ’24)

For n ≥ 2 we have

• Ψ(n) ≥ 0

• Ψ(n) = 0 if and only if n is prime.
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Generating series of MacMahon partition functions yields divisor sums

Let Ua(q) :=
∑

n≥0Ma(n) q
n and σk−1(n) =

∑
d |n d

k−1. Observe

• U1(q) =
∑
n≥0

M1(n) q
n =

∑
n≥0

∑
n=m1s1
0<s1

m1 q
n =

∑
n≥1

σ1(n) q
n.

• U1(q)
2 =

∑
n≥0

n=m1s1+m2s2
0<s1, 0<s2

m1m2 q
n =

( ∑
n≥0

n=m1s1+m2s2
0<s1<s2

+
∑
n≥0

n=m1s1+m2s2
0<s2<s1︸ ︷︷ ︸

2U2(q)

+
∑
n≥0

n=(m1+m2)s1
0<s1=s2

)
m1m2 q

n.

Hence,

U1(q)
2−2U2(q) =

∑
n≥0

n=ms1

( ∑
m1+m2=m

m1m2

)
qn =

∑
n≥0

n=ms1

m3 −m

6
qn =

∑
n≥1

σ3(n)− σ1(n)

6
qn.

Observation

Both U1 and U2 can be expressed in terms of divisor sums.
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Theorem (Hoffman–Ihara, ’17)∑
a≥0

Ua(q) x
a = exp

(∑
k≥1

(−1)k+1

k
xk
∑
n≥1

∑
d |n

(
d + k − 1

d − k

)
qn
)
.

Proof idea.

Ua is an element of a quasi-shuffle algebra.

For k ≥ 2, write

• Bk := kth Bernoulli number;

• σk−1(n) :=
∑

d |n d
k−1;

• Gk(q) := −Bk

2k
+
∑
n≥1

σk−1(n)q
n;

• M̃ := Q[G2,G4,G6, . . .].

Corollary (Andrews–Rose, ’11)

For all a ≥ 1 we have Ua ∈ M̃.

12 / 19



Elements of M̃ are quasimodular forms

Artistic impressions of a hyperbolic tiling (Escher)
and a modular form (Lowry-Duda)

Definition (Modular form)

A q-series f ∈ Q[[q]] is modular of weight k if

• f is holomorphic for |q| < 1;

• f (q) = τk f (q̃)

for q = e2πiτ , q̃ = e−
2πi
τ , Im(τ) > 0.

Examples

For k ≥ 4 even, the series Gk is modular.
Also ∆(q) := q

∏∞
n=1(1− qn)24 is modular.

Note that G2(q) = τ2G2(q̃)− 1
4πi τ .

Elements of M̃ are called quasimodular forms.

The operator D := q d
dq acts on M̃:

Theorem (Kaneko–Zagier, ’95)

The algebra M̃ is a graded differential
algebra, freely generated by G2,G4 and G6.

Example (Discriminant modular form)

∆ =
(240G4)

3 − (504G6)
2

1728
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One can prove various identities using modular forms

Example

DG2 = −2G 2
2 + 5

6G4, that is n σ1(n) =
5

6
σ3(n) +

1

6
σ1(n) − 2

∑
a+b=n

σ1(a)σ1(b).

Example

G8 = 120G 2
4 , that is σ7(n) = σ3(n) + 120

∑
a+b=n

σ3(a)σ3(b).

Example (Lagrange’s four-square theorem)∑
a,b,c,d∈Z

qa
2+b2+c2+d2

= 8G2(q)− 32G2(q
4), that is r4(n) = 8σ1(n)− 32σ1(n/4),

where r4(n) denotes the number of ways to write n as a sum of four squares.
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Some quasimodular forms detect primes

Consider

fk,ℓ(q) := (Dℓ + 1)Gk+1 − (Dk + 1)Gℓ+1 = c0 +
∑
n≥1

∑
d |n

(nℓ + 1)dk − (nk + 1)dℓ

 qn.

Note that for d = 1 one gets (nℓ + 1) − (nk + 1) = nℓ − nk .
for d = n one gets (nℓ + 1)nk − (nk + 1)nℓ = −nℓ + nk .

Hence,
fk,ℓ(q) = c0 +

∑
n≥1

( ∑
d |n

0<d<n

(nℓ + 1)dk − (nk + 1)dℓ

)
qn.

Lemma (Lelièvre, ’04)

The coefficients of fk,ℓ vanish at primes.
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Overview: why the expression Ψ detects primes

• The expression Ψ(n) = (n2 − 3n + 2)M1(n)− 8M2(n) are the coefficients of the
quasimodular form

F = (D2 − 3D + 2)G2 − G4.

• We have (D + 1)F = f1,3, which is prime-detecting.

• Hence, for n ≥ 2 we have Ψ(n) = 0 iff n is prime.

• For the other four expressions the same strategy works.

Question

Can’t there be more prime-detecting expressions in the MacMahon functions?
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Cusp forms cannot detect primes

Let f =
∑

n≥0 anq
n be modular of weight k. Assume a0 = 0 (f is a cusp form).

Theorem (Deligne, ’74)

For all p prime, |ap| ≤ 2p
k−1
2 |a1|.

The space of cusp forms admits a natural basis of
so-called Hecke eigenforms.

Theorem (Eichler–Shimura, Igusa, Deligne, ’71)

For each Hecke eigenform f and prime ℓ, there exists an
irreducible continuous group homomorphism

ρf : Gal(Q/Q) → GL2(Qℓ)

such that if p prime with p ̸= ℓ

Tr(ρf (Frobp)) = ap and det(ρf (Frobp)) = pk−1.

Theorem (Serre, Murthy, ’83)

The sequence {ap}p prime has
infinitely many sign changes.

Theorem (Serre, Ribet,
Ono–Skinner, ’98)

For all sufficiently large primes ℓ
and 0 ≤ a < ℓ, we have

ap ≡ a mod ℓ

for infinitely many primes p.
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There are no further prime-detecting combinations of MacMahon functions

Question

Can’t there be more prime-detecting expressions in the MacMahon functions?

• Cusp forms cannot detect primes.

• Also, ‘quasimodular cusp forms’ cannot detect primes.

• In the five examples, the MacMahon functions were quasimodular not involving cusp
forms.

• ‘Generalically’, linear combinations of MacMahon functions admit a cuspidal part
and hence cannot detect primes.
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