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Abstract
We study a model inspired by deliberative practice,
in which agents selectively disclose evidence about
a set of alternatives prior to taking a final decision
on them. We are interested in whether such a pro-
cess, when iterated to termination, results in the ob-
jectively best alternatives being selected—thereby
lending support to the idea that groups can be wise
even when their members communicate with each
other. We find that, under certain restrictions on
the relative amounts of evidence, together with the
actions available to the agents, there exist delibera-
tion protocols in each of the two families we look at
(i.e., simultaneous and sequential) that offer desir-
able guarantees. Simulation results further comple-
ment this picture, by showing how the distribution
of evidence among the agents influences parame-
ters of interest, such as the outcome of the protocols
and the number of rounds until termination.

1 Introduction
Arguments that groups can be wise, i.e., that they can be
trusted to find an objectively correct answer, date back to
Condorcet [Condorcet, 1785; Elkind and Slinko, 2016] and
are typically probabilistic in nature. However, work in this
tradition often operates under the assumption that agents
are independent, and thereby precluded from communicating
with, or otherwise influencing, each other. At the same time,
there is much enthusiasm amongst proponents of delibera-
tive democracy about the idea that deliberation (which would
involve communication) prior to taking a decision leads to
better outcomes [Elster, 1998; Fishkin and Laslett, 2003;
Pivato, 2019]. There is a question, then, as to whether some
form of structured information exchange can be conducive to
accurate beliefs and, down the line, to correct decisions.

This is the question we address here. In our paper we put
forward a formal model in which alternatives are supported
by (objective, unassailable) evidence that can be accessed by
agents, who rank alternatives based on the evidence and ul-
timately take a collective decision. We take it that evidence
may be unevenly distributed among the population, and this
leads to varied, possibly incorrect, beliefs. The corrective
to an ill-informed opinion, in our model, is communication,

here formalized as evidence disclosure: we assume agents are
truth-seeking, hence both open to changing their beliefs on
the quality of alternatives, by absorbing evidence disclosed
by others, as well as willing to inform others by selective
disclosure of evidence. Formally, this information exchange
is modelled by a deliberation protocol, which we think of
as a process that takes place in rounds and that consists of
rules about how information is disclosed and processed by
the agents. The process stops when no one can, or wishes to,
do anything to further change the status quo.

We distinguish between two main types of deliberation
protocols: simultaneous, in which evidence is disclosed and
absorbed by all agents at the same time; and sequential, in
which agents take turns in speaking and releasing evidence.
Our model is not probabilistic, i.e., we do not touch upon the
process by which agents acquire evidence in the first place.
Rather, we are interested in whether deliberative practices, as
sketched above, are conducive to good decisions regardless
of the distribution of evidence. Our goal, then, is to find a
sweet spot where features of this distribution and the proto-
col in use are guaranteed to engender accurate beliefs in the
agents, ensuring that they elect the right alternative.

Contributions. We put forward an evidence-based election
model fitted with a general mechanism for deliberation, in
which agents iteratively update their rankings in response to
evidence disclosure from participating agents. We look at two
types of deliberation protocols, one simultaneous and two se-
quential, meant to approximate, in broad terms, the dynamics
of information exchange in a real-world context (e.g., the dis-
cussion board of a paper reviewing platform, or a boardroom
of people taking turns to speak), and at two agent types, lazy
and keen, distinguished by their readiness to disclose infor-
mation. We analyse these protocols with respect to termina-
tion time and, most importantly, the conditions under which
they lead to the optimal (i.e., supported by most evidence)
alternative being the election winner. The formal analysis is
complemented by simulations, for a finer-grained picture of
how the protocols fare on profiles of varying structure.

A sobering, though perhaps not surprising, finding is that in
many cases the optimal alternative can lose out to inferior al-
ternatives: this can happen when the distribution of evidence
is unbalanced, allowing for small (but very vocal!) sets of
supporters for non-optimal alternatives to sway the remaining
electorate in the wrong direction. This effect can be mitigated
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if the optimal alternative is endowed with (much) more evi-
dence than its competitors, or if, as simulations suggest, the
distributions of evidence are relatively similar in the way ev-
idence is spread. Remarkably, we also find that by limiting
the amount of information agents can put forward, and care-
fully engineering the order in which agents speak, desirable
guarantees can be given for the sequential protocols.
Related Work. Research in epistemic social choice seeks
out conditions and methods for accurate group decisions
[Elkind and Slinko, 2016; Dietrich and Spiekermann, 2021;
Dietrich and Spiekermann, 2020; Condorcet, 1785; List,
2018], with a large proportion of the literature dedicated to
the study of jury theorems under varied assumptions about
the agents [Condorcet, 1785; Ladha, 1992; List and Goodin,
2001; Owen et al., 1989; Dietrich and Spiekermann, 2013;
Grofman et al., 1983; Dietrich and Spiekermann, 2022; Pi-
vato, 2017; Michelini et al., 2022]. Alongside it there is a sig-
nificant AI literature looking at the effect of opinion dynamics
on collective opinions [Auletta et al., 2015; Brill et al., 2016;
Auletta et al., 2019]. The idea that deliberation boosts the the
truth-tracking ability of groups has been argued extensively
in the deliberative democracy literature [Elster, 1998; Fishkin
and Laslett, 2003; Landemore, 2013; Bächtiger et al., 2018;
Goodin and Spiekermann, 2018; Hartmann and Rafiee Rad,
2018], complemented with formal models aiming to untan-
gle the effects of deliberation [List, 2007; Perote-Peña and
Piggins, 2015; Fain et al., 2017; Chung and Duggan, 2020;
Ding and Pivato, 2021]. To the best of our knowledge, the
model closest to our own is that of Ding and Pivato [2021],
whose parallel protocol over binary decisions is similar to
our simultaneous protocol. The dynamics of our model bears
resemblance to that seen in iterative voting [Meir, 2017;
Lev and Rosenschein, 2012], though the preference forma-
tion mechanism in our case is different.
Outline. In Section 2 we present our evidence-based delib-
eration model; in Section 3 we define the specific deliberation
protocols we focus on (the impatient reader can jump to Ex-
ample 1 to see the protocols in action); Section 4 outlines the
main results; in Section 5 we provide simulation results; we
conclude in Section 6.

2 The Model
We work with a finite set A = {a, b, c, . . .} of m alterna-
tives and a finite set E of global evidence. Every x ∈ A
is associated with a finite set E(x) ⊆ E of evidence for x.
We make no assumption on any e ∈ E(x) other than to
say that e supports x. For simplicity, we require that every
evidence item supports exactly one alternative, i.e., the fam-
ily of sets {E(x)}x∈A forms a partition of E. Evidence, in
our model, is objective and induces a ground-truth ranking
≽ over A given by the amount of evidence supporting each
alternative. We say that x is (objectively) at least as good
as y if |E(x)| ≥ |E(y)|. We typically assume that there is
a unique optimal alternative, i.e., an alternative x ∈ A such
that |E(x)| > |E(y)|, for all y ∈ A.

The evidence in E is held among a finite set N =
{1, . . . , n} of agents, with n ⩾ 3, and across a sequence of
discrete time steps indexed by t ∈ N. We write Et

i (x) for the

set of evidence that agent i ∈ N has for alternative x ∈ A at
time t ∈ N, with Et

i (x) ⊆ E(x). Each agent i uses the evi-
dence at their disposal to form an evidence order ≽t

i over A,
where x ≽t

i y holds if |Et
i (x)| ⩾ |Et

i (y)|, for any x, y ∈ A.
Intuitively, agent i thinks x is at least as good as y at t if there
is at least as much evidence supporting x as there is support-
ing y at t. We say agent i is neutral with respect to x and y
at t, denoted x ∼t

i y, if x ≽t
i y and y ≽t

i x, and thinks x is
strictly better than y, denoted x ≻t

i y, if x ≽t
i y and y ̸≽t

i x.
The set top(≽t

i) = {x ∈ A | x ≽t
i y for all y ̸= x ∈ A}

of top alternatives of ≽t
i consists of alternatives that agent i

believes to be objectively best at t.
A profile ≽t= (≽t

1, . . . ,≽
t
n) at time t collects all evidence

orders of agents in N at t. If α is a list of alternatives in A (of
arbitrary length), the plurality winners FPL(α) ⊆ A is the
set of alternatives that show up most often in α. A plausible
example for α is the list of top-ranked alternatives in ≽t, and
we use FPL(≽t) to denote the plurality winners of ≽t.

Presented with a set C ⊆ A of alternatives up for consider-
ation, an agent might judge, based on their evidence ranking
≽t

i, that there are alternatives deserving of their support at
time t. We parse this by distinguishing between two types of
agents, lazy and keen, and using the set f•(≽t

i, C) of favored
alternatives given C, defined relative to the agent type:

flazy(≽
t
i, C) = {x ∈ top(≽t

i) | x ≻t
i y, for all y ∈ C},

fkeen(≽
t
i, C) =


∅, if top(≽t

i) = C,

{x ∈ C | x ≻t
i y for some y ∈ C}∪

{x ∈ A \ C | x ≽t
i y for some y ∈ C},

otherwise.

Intuitively, the favored set contains alternatives that the agent
is willing to disclose evidence in favor of, if the set of win-
ners is C. Lazy and keen agents then differ in how they deter-
mine the set of alternatives they wish to lend their support to.
Lazy agents support only top-ranked alternatives they con-
sider strictly better to every element in C. In contrast, keen
agents support any alternatives that move the result closer to
their evidence order in the following manner: if C is exactly
their top-ranked choices, they are happy and withhold sup-
port, otherwise, they support every x ∈ C that they strictly
prefer to some alternative in C, along with supporting those
alternatives not in C that they weakly prefer to some member
of C—this includes alternatives supported by lazy agents, but
also potentially more. Disclosure is the engine behind delib-
eration, and the feature to which we now turn.

Deliberation occurs in rounds, with each round corre-
sponding to a time t. During a round t ⩾ 1, each agent i:
(1) decides whether to disclose evidence for alternatives in
f•(≽

t−1
i , C) based on a set K ⊆ E of public evidence items

and a set C of alternatives up for consideration, and (2) up-
dates their evidence sets with any evidence disclosed through-
out the round. As i’s evidence sets get updated so does their
evidence ranking, such that i starts the round with evidence
ranking ≽t−1

i and ends it with ≽t
i.

We write Dt
i(x) for the set of evidence items supporting

x that i discloses at round t, and make the following global
assumptions. First, any evidence disclosed at round t gets ab-
sorbed into agents’ evidence sets before the end of the round:

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2590



Et
i (x) = Et−1

i (x) ∪
(⋃

j∈N Dt
j(x)

)
, for all x ∈ A, i.e., i’s

evidence set for x at the end of round t consists of i’s evidence
set for x at t−1 together with all the evidence for x disclosed
throughout round t. Note that this condition applies only to
i’s evidence set at the end of round t, but leaves open the pos-
sibility (a possibility we will exploit) that i updates Et−1

i (x)

incrementally. Note, as well, that Et
i (x) differs from Et−1

i (x)
only if i at t finds out information about x that they did not
know at t− 1 (no double-counting of evidence).

Second, we require that when disclosing, agents do not re-
peat evidence that is already known. We say that an evidence
item e ∈ E is private to i at t if e ∈ Et

i (x), for some x ∈ A,
and e /∈ K. Agents disclose only evidence that is private. If C
is a set of alternatives up for consideration, we write ut

i(C) =
{e ∈ E | ∃x ∈ f•(≽

t−1
i , C) s.t. e ∈ Et−1

i (x) and e /∈ K}
for the set of private evidence items in support of some al-
ternatives that agent i is in support of with respect to C at
t. If ut

i(C) ∩ E(x) ̸= ∅, we say that i dissents on x at t by
disclosing evidence from ut

i(C).
We say that protocol P terminates at round t if there are no

dissenters at t, and thus there is no change in agents’ evidence
sets. If P terminates at t, we say that the final winners are the
plurality winners FPL(≽t) of the profile at termination.

3 Deliberation Protocols
We now detail two types of deliberation protocols.
Simultaneous protocol. This protocol consists of one dis-
closure instance per round, in which all dissenting agents dis-
close all the evidence available to them, for all the alternatives
on which they dissent.
Definition 1 (Simultaneous protocol Psim ). At round t = 0,
set K = ∅ and C = ∅. For t ⩾ 1, start by setting
C = FPL(≽t−1), for all i ∈ N . During round t each
agent discloses all items of evidence in ut

i

(
FPL

(
≽t−1

))
.

The round ends with both public knowledge and agents’ evi-
dence sets getting updated with all disclosed information, i.e.,
K = K ∪

(⋃
i∈N Dt

i(x)
)

and Et
i (x) = Et−1

i (x)∪K, for all
i ∈ N and x ∈ A.
Intuitively, Psim approximates a process in which disclosed
information is pooled and presented to agents all at once (e.g.,
by posting it on a discussion board), after which agents relay
their updated top-ranked choices to an aggregation mecha-
nism. The plurality winners are announced to the group, pos-
sibly triggering a new round of disclosure.
Sequential Protocols. In sequential protocols, rounds are
characterized by agents taking turns in nominating and dis-
closing evidence. A running tally is kept of the growing list
of nominations, with each agent i being aware of who is win-
ning based on the nominations of their predecessors. During
their turn, an agent learns this information, discloses (or not),
and may nominate (or not) their supported alternatives. As
soon as evidence is disclosed, all agents update their evidence
sets. Thus, in a sequential deliberation protocol the set of al-
ternatives under consideration can change from one agent to
other, as the list of nominations grows; similarly, since agents
update their evidence sets incrementally, their evidence rank-
ings can change multiple times during one round.

≽0
1

b∅
a{a1}

≽0
2

b∅
a{a2,a3}

≽0
3

a∅
b{b1,b2}

agent 3

discloses for b

≽1
1

a{a1}
b{b1,b2}

≽1
2

a{a2,a3}, b{b1,b2}

≽1
3

a∅
b{b1,b2}

Figure 1: Revision of evidence rankings from t = 0 to t = 1 as a
result of evidence disclosure with the simultaneous protocol Psim .
Evidence sets supporting an alternative are written as superscripts;
higher means better in the evidence ranking.

How to handle intermediary winners within each round?
Fix, first, an arbitrary ordering ▷ = (π1, . . . , πn) of the
agents, given by a permutation of N , and denote by αt

πi
the

vector of alternatives nominated by all agents up to, and in-
cluding, agent πi at round t. Vector αt

πi
is used differently by

the following sequential protocols.
Definition 2 (Sequential Constant Protocol Pseq-con ). At
t = 0 set K = ∅ and C = ∅. At t ⩾ 1, start by setting
C = FPL(α

t−1
πn

), i.e., the first agent in ▷ decides based on
the previous round, and Et

i (x) = Et−1
i (x), for all i ∈ N and

x ∈ A. Then, for every i ≥ 2, set C = FPL(α
t
πi−1

), i.e.,
each agent i ⩾ 2 decides based on the plurality winners over
the list αt

πi−1
of alternatives nominated by their predeces-

sors. Nominations are handled thus: at the beginning of the
round the list of nominations is empty, i.e., αt

0 = (); agent
πi adds to αt

i−1 alternatives on which they dissent; if there
are no such alternatives, they add all their top-ranked alter-
natives. Each agent πi discloses either one item of evidence
in ut

πi
(C), or nothing if they do not dissent. As soon as πi

discloses, public knowledge and agents’ evidence sets are up-
dated: K = K ∪ Dt

πi
(x), and Et

i (x) = Et
i (x) ∪ K, for all

i ∈ N and x ∈ A.
Definition 3 (Sequential Abstention Protocol Pseq-abs ). At
round t = 0, set K = ∅, C = ∅ At t = 1, agent π1 kicks
things off by nominating their top-ranked alternatives and by
disclosing an item of evidence supporting each of them. Fol-
lowing this, agents decide based on the currently winning al-
ternatives, i.e., for π1 we set C = FPL(α

t−1
πn

) while for πi≥2,
we set C = FPL(α

t
πi−1

). Nominations are handled differ-
ently to the sequential constant protocol. First, rather than the
list resetting at the beginning of each round, nominations stay
in place as we cycle through π. Then, agents nominate alter-
natives they dissent on, but abstain from nominating if they
have nothing to dissent on. In another difference, agents dis-
close an item of evidence for each alternative they dissent on.
Finally, updates occur, as for Pseq-con , as soon as there is a
disclosure event: K = K∪Dt

πi
(x) and Et

i (x) = Et
i (x)∪K,

for all i ∈ N and x ∈ A.
Though slightly idealized, these protocols formalize rules of
information exchange we could reasonably expect to see in
real-life deliberations. The next example shows that it is not
difficult to find cases where things go wrong.
Example 1. Take alternatives A = {a, b} supported by evi-
dence E(a) = {a1, a2, a3} and E(b) = {b1, b2}, and a pro-
file ≽0= (≽0

1,≽
0
2,≽

0
3) with the initial evidence distribution

depicted in Figure 1. Note that a is both the plurality winner
at t = 0, and the optimal alternative, as |E(a)| > |E(b)|.
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Under Psim , at t = 1 agent 3 discloses both b1 and b2.
All agents update their evidence sets and 1 and 2 revise their
evidence rankings accordingly, such that ≽1= (b ≻1

1 a, a ∼1
2

b, b ≻1
3 a); it is the end of round t = 1 and b is the sole

plurality winner. If agents are lazy no agent dissents, and
deliberation stops at t = 1 with b as final winner. If agents
are keen (i.e., want to see a winning as much as b), then agent
2 dissents for a at t = 2, at the end of which the profile is
≽2= (a ≻2

1 b, a ∼2
2 b, a ∼2

3 b) with a back as the winner.
Agents 2 and 3 support b but have no new evidence for it, so
the protocol stops at t = 2 with a as the final winner.

For Pseq-con , let the agent ordering be 1 ▷ 2 ▷ 3 with the
agents being keen. At t = 1 agents 1 and 2 nominate a on
their turns. At this point the list of nominations is (a, a), so
3 nominates, and discloses an evidence item for, b; based on
the list of nominations (a, a, b), a is the round winner. To
start round t = 2, agent 1 is tied between a and b. With a
being the sole winner of the previous round, agent 1 supports
b. However, they have no private evidence for b so they cannot
dissent and hence simply nominate their top choices, a and b.
This is followed by 2 nominating a and disclosing evidence
for it, then 3 nominating b and disclosing evidence for it. At
the end of round t = 2 the list of nominations is (a, b, a, b),
with a and b as tied round winners. At t = 3 there is no
more disclosure, and b is crowned final winner based on the
sequence of nominations (a, b, a, b, b).

For Pseq-abs the agent ordering is also 1▷ 2▷ 3. Agent 1
starts by nominating a and disclosing a1; agent 2 skips their
turn, since they do not dissent; agent 3 nominates b and dis-
closes an item of evidence for it. At the end of t = 1 the profile
is ≽1= (a ∼1

1 b, a ≻1
2 b, b ≻1

3 a). Round t = 2 starts with
the list of nominations (a, b) built during the previous round.
Assuming all agents are keen, we get: 1 skips; 2 dissents,
nominates a and discloses for it, bringing the list of nomi-
nations to (a, b, a); agent 3 dissents again, nominates b and
discloses their remaining item of evidence for it. At t = 3 the
list of nominations is (a, b, a, b), so agent 1 skips their turn; 2
nominates a and discloses their last item of private evidence
for it; 3 does not dissent, as they have no private evidence for
b. The protocol stops with a as the final winner.

4 Results
Note that, since evidence is finite, there must be a round
where no agent dissents: either via all agents being satisfied,
or due to agents running out of private evidence to disclose.
Thus, Protocols Psim , Pseq-con and Pseq-abs terminate after
a finite number of rounds. Ideally, though, deliberation not
only ends, but also leads to the objectively best decisions: an
outcome that, as illustrated by Example 1, is not guaranteed
by our protocols. Thus, moving forward, our aim is to iden-
tify conditions under which our protocols produce optimal
outcomes. To preface the results, we make the following two
assumptions on the initial distribution of evidence:

(A1) Completeness: E(x) =
⋃

i∈N E0
i (x), for all x ∈ A.

(A2) Disjointness: E0
i (x)∩E0

j (x)=∅, for i ̸= j ∈ N , x ∈ A.
Completeness rules out situations in which deliberation has
no chance of succeeding because of implausible draws of ev-
idence (e.g., no one gets any evidence), and also motivates our

≽0
1

y0, a00, . . . , a
0
s

x|E(y)|− k−1
n−1

≽0
2

x|E(y)|− k−1
n−1

y0, a00, . . . , a
0
s

. . . ≽0
n−1

x|E(y)|− k−1
n−1

y0, a00, . . . , a
0
s

≽0
n

y|E(y)|

x|E(y)|−1
a
|E(a0)|
0

. . .

a
|E(as)|
s

Figure 2: Profile of Theorem 1, evidence amounts are superscripts.

notion of success: one consequence of completeness is that if
all private information became public, agents would all con-
verge to the same—objectively correct—ranking. However,
since we can anticipate that the communication costs asso-
ciated with such an outcome would be considerable, this is
not the goal we set for a deliberation: correct decisions can
be achieved with less information. Thus, to borrow an exist-
ing term from the literature [Ding and Pivato, 2021], we say
a protocol P is full-disclosure equivalent if the final winners
consist of the optimal alternative.

Disjointness is worth wanting because without it, one can
easily find distributions of evidence in which there is unani-
mous agreement on a sub-optimal alternative and deliberation
never even kicks off. To get deliberation going, there needs
to be at least one agent backing the optimal alternative, and
assumptions A1 and A2 imply that there exists some agent at
t = 0 that is in support of the better among a pair of two al-
ternatives, i.e., if x is objectively better than y then x cannot
be weakly Pareto dominated by y at t = 0.

One thing that should help the optimal alternative is the
amount of evidence supporting it: intuitively, the more ev-
idence (relative to non-optimal alternatives), the better. We
make this intuition formal by deriving exact bounds on the
amount of evidence needed.
Theorem 1. If |A| ⩾ 2 and the initial evidence distribution
satisfies A1 and A2, then, if x is the optimal alternative and
y is the second-best, with |E(y)| ⩾ 1 and n ⩾ 3, every P ∈
{Psim , Pseq-con , Pseq-abs} is full-disclosure equivalent iff: (i)
|E(x)| ⩾ n · |E(y)|, when agents are lazy, and (ii) |E(x)| >
n · |E(y)| − n, when agents are keen.

Proof. Take A = {x, y, a0, . . . , as} with |E(x)| > |E(y)| ⩾
|E(a0)| ⩾ . . . ⩾ |E(as)|. We prove the claim for lazy agents
(keen agents is analogous), and for Psim .

(“⇒”) Suppose |E(x)| < n · |E(y)|, rewritten as |E(x)| =
n · |E(y)| − k, for k > 0. Since |E(x)| > |E(y)| we in-
fer that |E(y)| − k/(n−1) > 0. Consider a scenario where
at t = 0 agent n has all the evidence for y and |E(y)| − 1
amounts of evidence for x. Agent i ∈ {1, . . . , n − 1} gets
|E(y)|−ki amounts of evidence for x, where ki ≈ (k−1)/n−1

and k1 + · · · + kn−1 = k − 1. This works as an amount of
evidence, since |E(y)|−(k−1)/(n−1) > |E(y)|−k/(n−1) > 0.
Remaining alternatives are handled by giving all the evidence
for them to agent n. See Figure 2 for an illustration of the re-
sulting profile. At t = 1 agent n dissents and discloses their
information for their favorite alternatives, of which y is one,
and these alternatives become the plurality winners. Deliber-
ation stops after this, with x not among the final winners.

(“⇐”) If |E(x)| ⩾ n · |E(y)|, then |E0
i (x)| ⩾ |E(y)|, for

at least one agent i ∈ {1, . . . , n}. This ensures that agent
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i places x as their strictly top alternative at round 0, such
that if x is not initially the winner then agent i discloses their
evidence for x at t = 1. This disclosure persuades every
other agent to put x on top of their evidence orders. There is
no further disclosure for y, which ensures that x is the sole
election winner at termination.

For Pseq-con and Pseq-abs , the left-to-right argument from
above works unmodified. For the right-to-left direction, con-
struct a counterexample using the profile in Figure 2, with the
agent ordering 1 ▷ · · · ▷ n. Agent n will disclose incremen-
tally until they lift y to the top of everyone else’s ranking.

The bounds of Theorem 1 seem large: are they needed in
practice? We return to this question in Section 5, but before
that, we take a closer look at each protocol.

The Simultaneous Protocol. Can we get any good results
with Psim outside of the bounds given by Theorem 1 Psim?
Below we identify a particular situation that guarantees full-
disclosure equivalence for two alternatives.

Theorem 2. For A = {a, b} with a ∈ A as the optimal
alternative and a complete and disjoint initial distribution of
evidence, we have that if a /∈ FPL(≽0), then Psim is full-
disclosure equivalent, for both keen and lazy agents.

Proof. There must be at least one agent j that strictly prefers
a to b at t = 0, and thus dissents for a at t = 1. Let N∗

be the set of dissenters for a at t = 1 (the set varies depend-
ing on the agent types). Note that |E0

i (a)| ⩾ |E0
i (b)| for

each i ∈ N∗, and |E0
i (a)| < |E0

i (b)|, for all i ∈ N \ N∗.
Under Psim , all agents in N∗ disclose all their private evi-
dence in support of a at t = 1. Assume agents are keen (the
argument works similarly if agents are lazy). Note that for
agents in N \ N∗, their private evidence for b at t = 1 re-
mains unchanged as they absorb all disclosed evidence for a
released by the dissenters in N∗. Disclosure by agents in N∗,
we claim, convinces all agents in N \N∗ to think a is strictly
better than b at t = 1. Assume, towards a contradiction, that
there is ℓ ∈ N \ N∗ such that b ≽1

ℓ a. The disjointness as-
sumption implies that |E0

ℓ (a)| +
∑

j∈N∗ |E0
j (a)| < |E0

ℓ (b)|,
and the completeness assumption implies that |E(a)| =
|E0

ℓ (a)|+
∑

i̸=ℓ∈N\N∗ |E0
i (a)|+

∑
j∈N∗ |E0

j (a)|. It follows
that |E(b)| > |E(a)|, contradicting the optimality of a.

Theorem 2 points towards a feature that shows up in other
contexts: the protocol favors initial underdogs, as their sup-
porters rally for them and sometimes change the status quo.
Note, however, that Theorem 2 fails to hold for more than
two alternatives, as the rally can end up propping the entirely
wrong alternative (see the Appendix for an example).

The Sequential Constant Protocol. First off we have that,
in line with similar results in the literature [Hartmann and
Rafiee Rad, 2020], the set of final winners with Pseq-con is
sensitive to the order in which agents communicate.

Example 2. Take N = {1, . . . , 5}, A = {a, b}, E(a) =
{a1, a2, a3}, E(b) = {b1, b2}, with initial evidence E0

i (a) =
{ai} and E0

i (b) = ∅ for i ∈ {1, 2, 3}, E0
4(a) = ∅, E0

4(b) =
{b1}, E0

5(a) = ∅ and E0
5(b) = {b2}. Take the agent ordering

1 ▷ 2 ▷ 3 ▷ 4 ▷ 5. With Pseq-con and either keen or lazy

agents, at t = 1 we see agents 1, 2 and 3 nominating (but not
disclosing for) a, then 4 and 5 nominating and disclosing for
b, making b the unanimous winner at termination. If agents
are ordered in reverse, a comes out as unique final winner.

Example 2 raises the question of whether, given the evi-
dence distribution, there exists an agent ordering that makes
Pseq-con full-disclosure equivalent: a problem faced by, e.g.,
the organizer of a debate tasked with determining the order in
which people speak. The answer hinges on how much knowl-
edge the organizer has about the distribution of evidence. In
the case of two alternatives and full access to the initial dis-
tribution, it is straightforward to see that an agent ordering
in which supporters of b (the worse alternative) speak first,
in descending order of |E0

i (b)| − |E0
i (a)|, followed by sup-

porters of a, guarantees a win for a. If the organizer knows
only which alternative is optimal and what the evidence or-
ders look like, but not necessarily the distribution of evidence
among the agents, the following result offers a solution.

Theorem 3. If A = {a, b} with a as optimal, and the initial
evidence distribution is complete, disjoint and with no tied
agents, then an agent ordering where agents who put b at
the top come first, followed by agents who put a at the top,
guarantees full-disclosure equivalence for Pseq-con .

Proof Sketch. The proof works by finding bounds for the
maximum amount of evidence for b that can be released
throughout the deliberation rounds. If A,B ⊆ N are agents
in N who put a and b at the top, respectively, then the pro-
tocol unfolds with agents in B nominating b, because they
come first, followed by agents in A disclosing evidence for a
until some agents in B are flipped to a, and potentially trig-
gering disclosure for b. It is shown that the agents in b who
disclose for b cannot flip all the agents in A, such that even if
b regains majority support, then there are agents in A that can
still disclose for a and, eventually, make a win.

If the organizer knows less, e.g., only agents’ rankings but not
the optimal alternative, then very little can be done: Theorem
1 already implies that, for any agent ordering, we can find dis-
tributions of evidence that make either alternative win. Note,
as well, that for |A| = 2 and keen agents, some of which can
start out neutral, allowing supporters of the non-optimal al-
ternative to begin the deliberation, as in Theorem 3, does not
guarantee full-disclosure equivalence for Pseq-con .

Proposition 4. Take A = {a, b} with a being the optimal al-
ternative and a complete, disjoint profile. If neutral agents are
present, then Pseq-con is not full-disclosure equivalent, even
for orderings ▷ of a keen agent population where agents who
put b at the top come first.

Proof. Consider the counterexample in Figure 3 with the b-
first ordering 1▷ . . .▷ 33. Agents 1− 7 nominate b, agent 8
follows by nominating and disclosing for a; agents 9−14, ini-
tially neutral, now support a and only nominate a as their top-
ranked alternative, as they have no evidence for it; agent 15
nominates a and discloses an evidence item for it; the remain-
ing agents just nominate a. Deliberation ends at t = 2 with b
as the unanimous winner, even though a is optimal.
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≽0
i∈{1,2,3}

a∅
b{bi}

≽0
j∈{4,...,7}

a∅
b{b

1
j ,b

2
j ,b

3
j ,b

4
j}

≽0
8

b∅
a{a8}

≽0
k∈{9,...,14}

b∅
a∅

≽0
ℓ∈{15,...,33}

b∅
a{aℓ}

Figure 3: Initial evidence distribution for profile in Proposition 4.

Whether there exists an agent ordering that guarantees full-
disclosure equivalence for keen agents that may be neutral
remains an open question, and highlights the care that must
be taken in ensuring good results for deliberation. Luckily,
the Pseq-abs protocol, to which we turn to next, nicely com-
plements the mixed bag of results obtained for Pseq-con .

The Sequential Abstention Protocol. For Pseq-abs we
show that when |A| = 2, a balance is maintained between the
evidence that has been disclosed for each alternative, regard-
less of the agent ordering. We write Kt(a) = {e ∈ E(a) |
e ∈ K at time t} for the public evidence supporting a ∈ A at
t.

Lemma 5. For A = {a, b} with a ∈ A as the optimal alterna-
tive, and a complete and disjoint initial evidence distribution,
under Pseq-abs it holds that ||Kt(a)| − |Kt(b)|| ⩽ 1 for every
round t, ordering ▷, and agent type.

Proof sketch. For every a ∈ A, the number of nominations at
end of round t is |Kt(a)|. For any a ∈ A (both keen and lazy
agents), with Pseq-abs there is no nomination, or disclosure, in
favour of a at any round t+ 1 where C = {a}, which would
be the case if |Kt(a)| − |Kt(b)| = 1 for b ∈ A.

The following result states that for any agent ordering of keen
agents, Pseq-abs works as desired for two alternatives.

Theorem 6. For A = {a, b} with a being the optimal alter-
native, and an initial evidence distribution that is complete
and disjoint, it holds that Pseq-abs is full-disclosure equiva-
lent for any ordering ▷ of keen agents.

Proof. For Pseq-abs , consider any round t starting with either
C = {b}, or C = {a, b} as the current winning alternative
set. The process terminates if all n agents abstain on their
turn when C = {b}, i.e., if none of the agents dissent for a,
and thus nominate a. For C = {b}, or C = {a, b}, no agent
dissents on their turn at t, then we know that for every agent,
the evidence they are privy to, publicly and privately, is either
in favour of b, or equal between a and b. From Lemma 5,∣∣|Kt(a)| − |Kt(b)|

∣∣ ⩽ 1 for all rounds t. So if no agent
discloses then it must be the case that each agent’s amount of
private evidence supporting a at t is at most as large as their
private evidence for b (otherwise they would dissent for a).
This implies that the total amount of evidence known by all
agents, both privately and publicly, that supports b, surpasses
that for a, contradicting the optimality of a.

With A = {a, b} and lazy agents, full-disclosure equivalence
no longer holds under Pseq-abs for any agent ordering ▷, as
the following example illustrates.

Example 3. Take A = {a, b} and N = {1, 2, 3} with
|E0

1(a)| = 0 and |E0
1(b)| = 1 for agent 1, while |E0

j (a)| = 1

and |E0
j (b)| = 0 for agents j ∈ {2, 3}. Note that a is the

optimal alternative with |E(a)| = 2 > 1 = |E(b)|. Then ob-
serve that, under protocol Pseq-abs with the ordering 1▷2▷3
and all three agents being lazy, after the nomination and dis-
closure for b by agent 1, both agents 2 and 3 will be neutral
between a and b, so will both abstain during their turns due
to being lazy, and with b winning via previous nominations.

Also, the positive result of Theorem 6 does not hold for m ⩾
3 alternatives (see the Appendix for an example). In this case,
more conditions are required on the agent ordering in order
to guarantee full-disclosure equivalence. We leave to future
work the task of characterising these exact requirements.

5 Evidence Gap and Spread
We want to understand how (i) the evidence gap in favor of
the optimal alternative, herewith a, and (ii) the spread of ev-
idence among the agents, influences the final outcome of a
deliberation. Recall, from Theorem 1, that |E(a)| needs to be
around n times larger than |E(b)| for the protocols to guaran-
tee good results. What happens if |E(a)| is below this bound?
The numerical simulations presented in this section indicate
that, under mild assumptions on the initial distribution of ev-
idence, good results occur even for smaller values of |E(a)|.

What kind of assumptions? One common feature of bad
outcomes in Example 1 and similar cases is that evidence for
a starts out being distributed roughly equally, with all agents
getting a similar share, whereas evidence for b is heavily
skewed towards a few agents. These agents become excep-
tionally motivated to reveal evidence, and end up derailing
the final outcome. The hypothesis we test is that such cases,
with an unbalanced initial distribution, spell trouble.

Setup. We look at the case of two alternatives A = {a, b},
with a as the optimal alternative for complete and disjoint ini-
tial distributions of evidence. For given |E(x)|, x ∈ A, num-
ber of agents n and agent type, we randomly generate a vector
x = (x1, . . . , xn), where x is an integer partition of |E(x)|,
i.e., xi ∈ N, i ∈ {1, . . . , n} and x1 + · · · + xn = |E(x)|.
For each x we can specify a set of parameters that control its
variance. Each xi stands for the amount of evidence for x
that agent i has at t = 0. Doing this for every alternative in A
creates an initial profile ≽0, and we run Psim and Pseq-con on
the generated instance. For each combination of parameters
we run 5000 instances.1 The success rate is the fraction of
instances where the optimal alternative a is the final winner.

Success rate as function of evidence gap. The evidence
gap for a over b is defined as |E(a)| − |E(b)|, telling us not
just that a is objectively better than b, but also by how much.
For the simulations we set n = 10 agents, the amount of ev-
idence for b to |E(b)| = 30, and varied |E(a)| from 31 to
100. Results are shown in Figure 4a. As expected, the suc-
cess rate of all protocols gets better as the evidence gap for a
grows: more evidence for a relative to b means a has a better

1We leave Pseq-abs out because, at least in the case of keen
agents, it is full-disclosure equivalent (see Theorem 6).
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(a) Impact of evidence gap (b) Impact of variance in initial distribution (c) Number of rounds to termination

Figure 4: Simulation results. Note the drops in success rate in Figure 4b, when evidence amounts are multiples of the number of agents and
the variance is small, an interesting artefact of the numbers involved. For instance, for n = 10, |E(a)| = 40, |E(b)| = 30, we expect most
agents get around 3 items of evidence for b and 4 for a: a starts out on top of most agents’ rankings, albeit by a narrow margin. At the same
time, we can also expect a small number of agents who start out favoring b over a: because they start out in the minority, these agents disclose
at the first round and, due to the fragile advantage of a, it becomes very likely that all the a-supporters get flipped at this point, allowing for a
victory for b. This intuition is confirmed by Figure 4c, showing that deliberation in these cases usually stops after about one round.

chance of being the final winner. Interestingly, we see near
perfect success rate around |E(a)| = 90 = 3 · |E(b)|, (sur-
prisingly) smaller than the amount n·|E(b)| = 300 suggested
by Theorem 1. In performing these simulations, all evidence
distributions x are set to similar variance, for each x ∈ A.
The assumption here is that whatever process operates in the
background to provide agents with evidence, it works in sim-
ilar ways for all alternatives. But what happens if it does not?

Success rate and variance. For the second batch of sim-
ulations we keep the variance in the evidence distribution
for a constant and small, such that all agents receive simi-
lar amounts of evidence for a, while increasing the variance
in the distribution for b. Intuitively, this is in line with the hy-
pothesis, outlined above, that unbalanced distributions lead
to bad results because they allow some agents to hold large
amounts of evidence for b. Results are shown in Figure 4b,
and they bear out this intuition. The numbers in parenthe-
ses indicate by how much xi, the amount of evidence i has
for x, is allowed to deviate from the average |E(x)|/n. Thus,
for n = 10 agents and |E(a)| = 30, an equal distribution
of evidence sees every agent get 30/10 = 3; a pair (−1, 1)
means that each agent actually has in between 2 and 4 items.
Thus, larger spreads lead to vectors of evidence with higher
variance, and cases where the distribution for b is based on a
higher spread have lower success rate.

Number of rounds to termination. Finally, we look at
the impact that variance in the initial distribution has on the
length of the process. For each batch of 500 deliberation
rounds, we plot the average number of rounds to termina-
tion. As before, results are plotted against a growing amount
of evidence for a, while |E(b)| is kept fixed. Results are pre-
sented in Figure 4c and show that unbalanced distributions
lead to longer deliberation sessions, especially for values of
|E(a)| close to |E(b)|. As the evidence gap between a and b
grows larger there is a growing chance that profiles are close
to consensus for a, with less need for drawn out discussions.

6 Conclusion

We have put forward an election model that incorporates de-
liberation between agents, where deliberation, formalized as
three protocols (Psim , Pseq-con , Pseq-abs ), is based on selec-
tive disclosure of private evidence. We have found that even
under severe restrictions of the evidence distribution (i.e.,
completeness and disjointness) there is ample space for things
to go wrong, as motivated lobbies for sub-optimal alternatives
can steer the rest of the electorate away from the truth. Future
work may reasonably seek to relax these assumptions: in real-
life scenarios, where agents have access to similar sources,
we can expect considerable overlap in evidence sets. How-
ever, our work points to significant pitfalls that can occur even
in the restricted setting in which this does not happen, the pit-
falls being symptomatic of what can go wrong in a debate. In
Section 4 we found theoretical guarantees if the evidence gap
for the optimal alternative is large enough; if not, we need
careful orchestration of the rules of debate: sequential proto-
cols can be successful by regulating the order in which agents
speak, putting limits on how much they can say, and by ex-
ploiting the behavioral assumptions leading them to disclose
(i.e., whether keen or lazy). Simulations in Section 5 show
that, on average, the optimal alternative has a better chance
of winning, even when not supported by an overwhelming
amount of evidence, if evidence is distributed in a similar way
across agents. The latter finding lends support to the idea that
diversity is good for decision making [Hong and Page, 2004;
Page, 2007]: in our context, few agents monopolizing all ev-
idence for an alternative indicates a non-diverse crowd.

Looking forward, our model can be nudged even closer to
reality by: allowing agents to also reject evidence; adding
a probabilistic model of the acquisition of evidence; or, in
following the lead of the literature on learning in social net-
works [Acemoglu et al., 2010; Golub and Jackson, 2010;
Golub and Sadler, 2016; Bikhchandani et al., 2021], by re-
stricting communication to a local neighborhood.
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