Proportionality in Complex Domains

Julian Chingoma

j.z.chingoma@uva.nl March. 2023

University of Amsterdam

What are these complex domains?

- * **Multiwinner Voting:** A job panel must produce a shortlist of *k* candidates to continue to the next interview stage.
- * Participatory Budgeting: Citizens must decide on the public projects, each coming with a cost, that are to be implemented by the local municipality, subject to a budget.

We look at other complex domains.

Julian Chingoma 1 / 18

Talk Outline

- * Proportionality in Multwinner Voting (MWV).
- * MWV with Weighted Seats.
- ⋆ Judgment Aggregation.

Julian Chingoma 2 / 18

(Approval-based) MWV Model

- ★ Candidates $C = \{a, b, c, \ldots\}$.
- * Agents $N = \{1, \ldots, n\}$.
- ★ Each agent submits an approval ballot $A_i \subseteq C$.
- ★ Outcome is a committee $W \subseteq C$ of size k.

Julian Chingoma 3/18

Proportionality in MWV

Definition (*ℓ*-cohesiveness)

For an integer $\ell \in \{1, ..., k\}$, a group of agents $N' \subseteq N$ is ℓ -cohesive if $|N'| \ge n \cdot \frac{\ell}{k}$ and $|\bigcap_{i \in N'} A_i| \ge \ell$.

Definition (Proportional Justified Representation (PJR))

A committee W provides PJR if for every ℓ -cohesive group N', it holds that $|W \cap (\bigcup_{i \in N'} A_i)| \ge \ell$.

Definition (Extended Justified Representation (EJR))

A committee W provides EJR if for every ℓ -cohesive group N', there exists an agent $i \in N'$ such that $|W \cap A_i| \ge \ell$.

Julian Chingoma 4 / 18

Multiwinner Voting with Weighted Seats

Joint work with Ulle Endriss, Ronald de Haan, Adrian Haret and Jan Maly.

Julian Chingoma 5 / 18

MWV with Weighted Seats

Example

Each seat represents a role and some roles are more valuable than others.

• The committee has 5 seats with the following roles: (chair, treasurer, secretary, member, member).

Example

Each seat has an associated budget that is available for the seat's elected candidate to spend.

• The committee has 5 seats with the following budgets: (\$3278, \$1400, \$560, \$100, \$4).

Julian Chingoma 6 / 18

Model

- ★ Candidates $C = \{a, b, c, \ldots\}$.
- * Agents $N = \{1, \ldots, n\}$.
- * Each agent submits an approval ballot $A_i \subseteq C$.
- * A weight vector $\mathbf{w} = (w_1, \dots, w_k)$ with a weight for each of the k seats.
- * W is the sum of all the weights.
- * Outcome is a committee $\mathbf{c} = (c_1, \dots, c_k)$.
- * For any set of candidates $A \subseteq C$, the satisfaction from a committee c is $sat(A, c) = \sum_{i=1}^{k} \mathbb{1}_{c_i \in A} \cdot w_i$.

Julian Chingoma 7 / 18

Proportionality

For weight vector \mathbf{w} , the set of all *possible* satisfaction values is SAT(\mathbf{w}).

Example

If $\mathbf{w} = (5, 3, 1)$, then $SAT(\mathbf{w}) = \{1, 3, 4, 5, 6, 8, 9\}$.

Definition (*ℓ*-WS-cohesiveness)

For an integer $\ell \in SAT(\boldsymbol{w})$, a group of agents N' is ℓ -WS-cohesive if $|N'| \ge n \cdot \frac{\ell}{W}$ and there exists a $C' \subseteq \bigcap_{i \in N'} A_i$ with |C'| = t such that there exists a committee \boldsymbol{c} where $sat(C', \boldsymbol{c}) \ge \ell$, and $|N'| \ge n \cdot \frac{t}{k}$.

Definition (*ℓ*-WSJR)

A committee \boldsymbol{c} provides ℓ -WSJR if for every ℓ -WS-cohesive group N', there exists an agent $i \in N'$ such that $\operatorname{sat}(A_i, \boldsymbol{c}) \geqslant \ell$.

Julian Chingoma 8 / 18

ℓ-WSJR

Unfortunately, ℓ -WSJR is not always satisfiable.

Example

- Candidates $C = \{a, b, c\}$.
- Agents $N = \{1, 2, 3\}$.
- Weight vector $\mathbf{w} = (3, 2, 1)$.
- Approval ballots are $A_1 = \{a\}, A_2 = \{b\}$ and $A_3 = \{c\}$.

Another negative result:

* It is computationally hard to determine whether such a committee even exists.

Julian Chingoma 9 / 18

Weakening ℓ-WSJR

Intuition: some cohesive group member is just one 'swap' away from the deserved satisfaction?

 $I_{c}(A)$ is the vector of positions within the committee c of candidates in A.

Definition (ℓ-WSJR-1)

A committee \boldsymbol{c} provides ℓ -WSJR-1 if for every ℓ -WS-cohesive group N', there exists an agent $i \in N'$ and some $j \in I_{\boldsymbol{c}}(C \setminus A_i)$ such that either (i), we have $w_j + \operatorname{sat}(A_i, \boldsymbol{c}) \geqslant \ell$ if there exists some candidate $c \in A_i$ with $c \notin \boldsymbol{c}$, or (ii), for some $h \in I_{\boldsymbol{c}}(A_i)$, it holds that $w_j + \operatorname{sat}(A_i, \boldsymbol{c}) - w_h \geqslant \ell$.

Can ℓ-WSJR-1 always be satisfied?

Julian Chingoma 10 / 18

w-MES

The rule works in k rounds where agents pay to assign candidates to weights from $\mathbf{w} = (w_1, \dots, w_k)$:

- ★ In round $r \in \{1, ..., k\}$, agents consider assignments to weight w_r .
- * $b_i(r)$ is agent *i*'s budget to start round r, and in round 1, we set $b_i(1) = \frac{W}{n}$.
- * In round r, we say a pair (c, w_r) is q-affordable for some $q \in \mathbb{R}_{\geq 0}$, with c currently unelected, if:

$$\sum_{i\in N(c)}\min(q,b_i(r))\geqslant w_r.$$

* If no pair is q-affordable then go to the next round, otherwise, for a q-affordable pair (c, w_r) for a minimum q, assign c to w_r and continue to the next round.

Julian Chingoma 11 / 18

w-MES and ℓ-WSJR-1

Good news in the following restricted setting.

Party-list elections: An election where for every pair of agents $i, j \in N$, it holds that either $A_i = A_j$, or $A_i \cap A_j = \emptyset$, and for every agent i, we have $|A_i| \ge k$.

Theorem

w-MES satisfies ℓ-WSJR-1 on party-list elections.

Julian Chingoma 12 / 18

Judgment Aggregation

Joint work with Ulle Endriss and Ronald de Haan.

Julian Chingoma 13 / 18

Judgment Aggregation (JA)

Work done in the general JA framework.

Julian Chingoma, Ulle Endriss, and Ronald de Haan (May 2022). "Simulating Multiwinner Voting Rules in Judgment Aggregation". In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2022). IFAAMAS

Interpretation: MWV with a variable number of winners (VMWV), and with logical constraints.

Example

- The candidates are $\{a, b, c, d, e\}$.
- A constraint may be: $\neg(a \land b \land c) \land (d \rightarrow \neg e)$.

Julian Chingoma 14/18

Model (VMWV with logical constraints)

- ★ Candidates $C = \{a, b, c, \ldots\}$.
- \star Agents $N = \{1, \ldots, n\}$.
- * A logical constraint Γ.
- \star Each agent submits an approval ballot $A_i \subseteq C$ that respects Γ.
- $\star \operatorname{Mod}(\Gamma)$ is the set of all committees respecting Γ .
- ★ Outcome is a committee $W \in \text{Mod}(\Gamma)$.

Julian Chingoma 15 / 18

Proportionality

Definition ((W, Γ , ℓ)-cohesiveness)

For an integer $\ell \in \{1, \dots, |W|\}$ for a committee W, we say a group of agents N' is (W, Γ, ℓ) -cohesive if $|N'| \geqslant n \cdot \frac{\ell}{|W|}$ and $|\{c \in \bigcap_{i \in N'} A_i \mid c \text{ is logically independent of } C \setminus \{c\}\}| \geqslant \ell$.

Adapt PJR instead of EJR.

Definition (\ell-JA-PJR)

Given a constraint Γ , we say that a committee W provides ℓ -JA-PJR, if for every (W, Γ, ℓ) -cohesive group of agents N', it is the case that $|W \cap (\bigcup_{i \in N'} A_i)| \ge \ell$.

Julian Chingoma 16 / 18

Aggregation Rules

* Use scoring functions \boldsymbol{a} and \boldsymbol{d} , for approvals and disapprovals (with $\boldsymbol{a}(0) = \boldsymbol{d}(0) = 0$).

$$\operatorname*{\mathsf{argmax}}_{W \in \operatorname{Mod}(\Gamma)} \sum_{i \in \mathcal{N}} extbf{ extit{a}}(|W \cap A_i|) - extbf{ extit{d}}(|W \cap C \setminus A_i|)$$

Definition (PAV-JA)

PAV-JA uses $\mathbf{a}(t) = t$ and $\mathbf{d}(t) = \sum_{j=m}^{t} \frac{1}{j}$.

Definition (CC-JA)

CC-JA uses a(t) = 1 when $t \ge 1$, and d(t) = 1 if $t \ge \left\lceil \frac{m}{2} \right\rceil + 1$, otherwise, d(t) = 0.

Julian Chingoma 17 / 18

Rules and ℓ-JA-PJR

Theorem

PAV-JA satisfies ℓ -JA-PJR for every value $\ell \geqslant \frac{|W|}{m-|W|+1}$.

Theorem

Assuming logical independence between all candidates, CC-JA satisfies ℓ -JA-PJR for $\ell=1$ and fails it for every $\ell>1$.

Julian Chingoma 18 / 18