Proportionality for Constrained Binary Decisions

Julian Chingoma

Joint work with Umberto Grandi and Arianna Novaro

November, 2023

Institute of Logic, Language and Computation (ILLC)

University of Amsterdam

Constrained Binary Decisions

Typically, scenarios where voters make a decision of either **yes** or **no**.

- * Activities that a group of friends will partake in.
- * Candidates to be part of a committee.
- * Public projects to be implemented in an instance of participatory budgeting.

Plus some constraints.

- * Going to the museum leaves no time to go to the beach.
- * Cannot hire too many candidates with similar expertise.
- $\star\,$ Building a park bench leaves no space to build a fountain.

How do we ensure fair outcomes?

Talk Outline

- ★ The Model
- * Justified Representation
- * Priceability

The Model

- * Issues $\mathcal{I} = \{1, \ldots, m\}$.
- * Voters $V = \{v_1, \ldots, v_n\}$.
- * Each voter $v_i \in V$ submits a ballot $\boldsymbol{b}_i = (\boldsymbol{b}_i^1, \dots, \boldsymbol{b}_i^m) \in \{0, 1\}^m$.
- * An outcome is a vector $\boldsymbol{w} = (w_1, \dots, w_m) \in \{0, 1\}^m$.
- $\star\,$ A constraint ${\cal C}$ is a set of feasible outcomes.
- * Voter satisfaction $u_i(\boldsymbol{w}) = |\{t \in \mathcal{I} \mid b_i^t = w_t\}|.$

Justified Representation without Constraints

Definition (*T*-cohesiveness)

A group of voters V' is *T*-cohesive for a set of issues *T* if:

- All voters agree on the decisions of all issues in *T*.
- $|V'| \ge |T| \cdot \frac{n}{m}$.

Definition (Extended Justified Representation, EJR)

An outcome **w** provides EJR if for every *T*-cohesive group of voters *V'*, there exists a voter $v_i \in V'$ such that:

$u_i(\boldsymbol{w}) \geqslant |T|.$

Justified Representation with Constraints

Definition (Feasible deviation)

A group of voters V' has an (S, w)-deviation if S is non-empty, and:

- These voters agree on all decisions in S.
- Outcome w disagrees with these voters on all issues in S.
- It is feasible to 'flip' outcome w's decisions on all issues in S.

Example

- Constraint $C = \{(0, 0), (0, 1)\}.$
- Three voters with $b_1 = (1,0)$, $b_2 = (1,1)$ and $b_3 = (0,1)$.
- Suppose outcome is $\boldsymbol{w} = (0, 0)$.
- Voters $\{v_1, v_2\}$ have no deviation.
- Voters $\{v_2, v_3\}$ have a deviation for $S = \{2\}$ to outcome w' = (0, 1).

Justified Representation with Constraints

Definition (Constrained EJR, c-EJR)

An outcome w provides c-EJR if for every T-cohesive group of voters V that has an (S, w)-deviation for some $S \subseteq T$, there exists a voter $v_i \in V'$ such that:

 $u_i(\boldsymbol{w}) \geqslant |T|.$

Example

- Constraint $C = \{(0, 1), (0, 0)\}.$
- Two voters with $b_1 = (1, 1)$ and $b_2 = (1, 0)$.

Constraint C has the NFD property if no issue's decision is fixed by the constraint.

Does the situation improve with the NFD property?

With NFD, c-EJR can always be provided when $|\mathcal{I}| \in \{2,3\}$.

With NFD, c-EJR can always be provided when $|\mathcal{C}| = 2$.

Unfortunately, we can't do better.

Example

- Constraint $C = \{(0000), (0111), (1111), (1000)\}.$
- Four voters with $\boldsymbol{b}_1 = (0000)$, $\boldsymbol{b}_2 = (0111)$, $\boldsymbol{b}_3 = (1111)$ and $\boldsymbol{b}_4 = (1000)$.

What next? Let us look at a weaker version of EJR.

Julian Chingoma

Definition (EJR Up to One Issue, EJR-1)

An outcome w provides EJR-1 if for every *T*-cohesive group of voters *V'*, there exists a voter $v_i \in V'$ such that:

 $u_i(\boldsymbol{w}) \geqslant |T|-1.$

Is EJR-1 always satisfiable?

Method of Equal Shares

Definition (Method of Equal Shares, MES)

- Each voter has a budget of *m*.
- Each decision $d \in \{0, 1\}$ on an issue *t* costs *n*.
- In every round, compute for every undecided issue *t*, the minimum value for α(*t*, *d*) such that the supporters of decision *d* on issue *t* can afford the price *n*, by each paying α(*t*, *d*) or the rest of their funds.
- If, for every pair (t, d), there exists no such value $\alpha(t, d)$, then stop.
- Otherwise, we select the pair (t, d) with a minimal value α(t, d), set decision d on issue t.

MES satisfies EJR-1.

MES works. How about for constraints?

Constrained version of EJR-1

Definition (c-EJR-1)

An outcome **w** provides *c*-*EJR*-1 if for every *T*-cohesive group of voters *V'* that has an (S, w)-deviation for some $S \subseteq T$, there exists a voter $v_i \in V'$ such that:

 $u_i(\boldsymbol{w}) \ge |T|-1.$

Unfortunately, this is also not always satisfiable.

Definition (λ -MES)

- Each voter has a budget of *m*.
- In every round, each decision $d \in \{0, 1\}$ on an issue t costs $\lambda(t, d)$.
- In every round, compute for every undecided issue t, the minimum value for $\alpha(t, d)$ such that the supporters of decision d on issue t could afford the price $\lambda(t, d)$, by each paying $\alpha(t, d)$ or the rest of their funds.
- If there exists no such value $\alpha(t, d)$ for every pair (t, d), then stop.
- Otherwise, we select the pair (t, d) with a minimal value α(t, d), set decision d on issue t, if it is feasible.

Now, what type of constraints to look at?

Definition (Budget-like constraints)

A constraint C is *budget-like* if there exists a cost function c on issue-decision pairs such that the following conditions hold for every $w = (w_1, \ldots, w_m) \in C$:

•
$$c(t, d) + c(t, 1 - d) = 2n$$
 for every issue t and decision $d \in \{0, 1\}$.

•
$$\sum_{w_t \in \boldsymbol{w}} \boldsymbol{c}(t, w_t) \leqslant mn.$$

•
$$\sum_{w_t \in \boldsymbol{w}} \boldsymbol{c}(t, w_t) > mn - 2q$$
 where $q = \max\{|n - \boldsymbol{c}(t, d)| \mid (t, d) \in \mathcal{I} \times \{0, 1\}\}.$

How does MES do on this class of constraints?

λ -MES and Budget-like constraints

Definition

For budget-like constraints for cost function c, λ_b -MES uses prices defined by the cost function c.

Given a constraint C that is budget-like for some cost function c, then for every outcome \boldsymbol{w} returned by λ_b -MES, it holds for every T-cohesive group of voters V' that has an (S, \boldsymbol{w}) -deviation for some $S \subseteq T$, that there exists a voter $v_i \in V'$ such that:

$$u_i(\boldsymbol{w}) \geqslant rac{n}{n+q} \cdot |T| - 1$$

where $q = \max\{|n - c(t, d)| \mid (t, d) \in \mathcal{I} \times \{0, 1\}\}.$

Not easy to provide justified representation. What else can we do?

Julian Chingoma

Priceability

Definition (Priceability)

Suppose that each voter has a personal budget of *m* and each issue-decision pair (t, d) has a price $\pi(t, d)$.

A price system $(\{p_i\}_{v_i \in V}, \{\pi(t, d)\}_{(t, d) \in \mathcal{I} \times \{0, 1\}})$ supports an outcome

 $\boldsymbol{w} = (w_1, \ldots, w_m)$ if all the following hold:

- Voters only pay for they agree with.
- No voter exceeds their budget of *m*.
- For each (t, w_t) , payments by its supporters must equal its price $\pi(t, w_t)$.
- For each $(t, 1 w_t)$, there are no payments for it.
- There exists no group of voters V' with an (S, w)-deviation such that V' collectively hold more in funds than the sum of max{π(t, w_t), π(t, 1 − w_t)} over all t ∈ S.

An outcome is priceable if there exists a price system that supports it.

Priceability

Example

- Constraint $C = \{(0000), (0111), (1111), (1000)\}.$
- Four voters with $\boldsymbol{b}_1 = (0000)$, $\boldsymbol{b}_2 = (0111)$, $\boldsymbol{b}_3 = (1111)$ and $\boldsymbol{b}_4 = (1000)$.
- Suppose the outcome is $\boldsymbol{w} = (0000)$.
- Priceable with prices being $\pi(1, d) = 4$ for $d \in \{0, 1\}$, and $\pi(t, d) = \frac{11}{3}$ for $t \in \{2, 3, 4\}$ and $d \in \{0, 1\}$.

For a constraint C that is budget-like for some cost function c, then every outcome w returned by λ_b -MES is priceable.

Variant of MES

Definition (c-MeCorA)

- Each voter has a budget of *m*.
- At the start, an arbitrary outcome **w** is selected and each issue costs 0.
- In every round, a group of voters with an (S, w)-deviation may 'flip' outcome w's decisions on the issues in S (must lead to a feasible outcome). But to do so, they must spend their funds to raise the price of every issue in S (by at least *\epsilon*).
- If no such group exists, the rule stops.
- Otherwise, 'flip' the decisions for the group of voters where each voter pays the least (as in MES).

c-MeCorA always returns priceable outcomes.

Future Work

- Study other EJR weakenings like PJR.
- Adapt more rules such as PAV or Sequential Phragmén.
- Stable Pricebility.

Thanks!