# Proportionality in Multiwinner Voting with Weighted Seats

Julian Chingoma

LILAC Seminar

j.z.chingoma@uva.nl

February, 2023





Institute of Logic, Language and Computation (ILLC)

University of Amsterdam

- \* **Multiwinner Voting:** A job panel must produce a shortlist of *k* candidates to continue to the next interview stage.
- Participatory Budgeting: Citizens must decide on the public projects, each coming with a cost, that are to be implemented by the local municipality, subject to a budget.

We look another such complex domain.

### Talk Outline

- \* Standard Multwinner Voting (MWV) Model
- \* Proportionality in MWV.
- \* MWV with Weighted Seats.

## (Approval-based) MWV Model

- \* Candidates  $C = \{a, b, c, \ldots\}$ .
- \* Agents  $N = \{1, ..., n\}$ .
- \* Each agent submits an *approval ballot*  $A_i \subseteq C$ .
- \* Outcome is a committee  $W \subseteq C$  of size k.

## Proportionality in MWV

#### Definition (*l*-cohesiveness)

For an integer  $\ell \in \{1, ..., k\}$ , a group of agents  $N' \subseteq N$  is  $\ell$ -cohesive if  $|N'| \ge n \cdot \frac{\ell}{k}$ and  $|\bigcap_{i \in N'} A_i| \ge \ell$ .

### Example

• Candidates 
$$C = \{a, b, c, d\}$$
 with  $k = 3$ .

- Agents  $N = \{1, 2, 3\}$ .
- Approval ballots are  $A_1 = \{a, b\}$ ,  $A_2 = \{a, b, c\}$  and  $A_3 = \{c, d\}$ .
- $\{1,2\}$  is 2-cohesive.
- $\{2,3\}$  and  $\{3\}$  are 1-cohesive.

## Proportionality in MWV

**Natural axiom:** if a group is  $\ell$ -cohesive then  $\ell$  of their common candidates should be elected to the committee.

Definition (Strong Justified Representation (SJR))

A committee *W* provides SJR if for every  $\ell$ -cohesive group *N'*, it holds that  $|W \cap \bigcap_{i \in N'} A_i| \ge \ell$ .

However, this requirement is too strong, even when  $\ell = 1$ .

### Example

- Candidates  $C = \{a, b, c, d\}$  with k = 3.
- Agents  $N = \{1, ..., 9\}$ .
- Suppose 2 agents approve {a}, another 2 agents approve {d}, and 1 agent each approves of {b}, {c}, {a, b}, {b, c}, {c, d}.
- Each candidate  $c \in \{a, b, c, d\}$  must be elected to provide SJR.

A weaker axiom: if a group is  $\ell$ -cohesive then at least one group member should be represented by  $\ell$  committee members.

### Definition (Extended Justified Representation (EJR))

A committee *W* provides EJR if for every  $\ell$ -cohesive group *N'*, there exists an agent  $i \in N'$  such that  $|W \cap A_i| \ge \ell$ .

#### Multiwinner Voting with Weighted Seats

Joint work with Ulle Endriss, Ronald de Haan, Adrian Haret and Jan Maly.

## MWV with Weighted Seats

### Example

Each seat represents a role and some roles are more valuable than others.

• The committee has 5 seats with the following roles: (chair, treasurer, secretary, member, member).

### Example

Each seat has an associated budget that is available for the seat's elected candidate to spend.

• The committee has 5 seats with the following budgets: (\$3278, \$1400, \$560, \$100, \$4).

### Model

- \* Candidates  $C = \{a, b, c, \ldots\}$ .
- \* Agents  $N = \{1, ..., n\}$ .
- ★ Each agent submits an approval ballot  $A_i \subseteq C$ .
- \* A weight vector  $\boldsymbol{w} = (w_1, \dots, w_k)$  with a weight for each of the k seats.
- $\star$  *W* is the sum of all the weights.
- \* Outcome is a committee  $\boldsymbol{c} = (c_1, \ldots, c_k)$ .
- ★ For any set of candidates  $A \subseteq C$ , the satisfaction from a committee c is  $sat(A, c) = \sum_{j=1}^{k} \mathbb{1}_{c_j \in A} \cdot w_j$ .

## Proportionality

For weight vector  $\boldsymbol{w}$ , the set of all *possible* satisfaction values is SAT( $\boldsymbol{w}$ ).

#### Example

If 
$$\boldsymbol{w} = (5,3,1)$$
, then SAT $(\boldsymbol{w}) = \{1,3,4,5,6,8,9\}$ .

#### Definition (*l*-WS-cohesiveness)

For an integer  $\ell \in SAT(\boldsymbol{w})$ , a group of agents N' is  $\ell$ -WS-cohesive if  $|N'| \ge n \cdot \frac{\ell}{W}$ and there exists a  $C' \subseteq \bigcap_{i \in N'} A_i$  with |C'| = t such that there exists a committee  $\boldsymbol{c}$ where sat $(C', \boldsymbol{c}) \ge \ell$ , and  $|N'| \ge n \cdot \frac{t}{k}$ .

#### Definition (*l*-WSJR)

A committee  $\boldsymbol{c}$  provides  $\ell$ -WSJR if for every  $\ell$ -WS-cohesive group N', there exists an agent  $i \in N'$  such that  $\operatorname{sat}(A_i, \boldsymbol{c}) \ge \ell$ .

### $\ell\text{-WSJR}$

Unfortunately, *l*-WSJR is not always satisfiable.

### Example

- Candidates  $C = \{a, b, c\}$ .
- Agents  $N = \{1, 2, 3\}$ .
- Weight vector  $\boldsymbol{w} = (3, 2, 1)$ .
- Approval ballots are  $A_1 = \{a\}, A_2 = \{b\}$  and  $A_3 = \{c\}$ .

Also, even if such a committee exists, it is computationally hard to compute it. **What now?** Weaken the axiom.

**Intuition:** some cohesive group member is just one 'swap' away from the deserved satisfaction?

 $I_{c}(A)$  is the vector of positions within the committee c of candidates in A.

### Definition (*l*-WSJR-1)

A committee c provides  $\ell$ -WSJR-1 if for every  $\ell$ -WS-cohesive group N', there exists an agent  $i \in N'$  and some  $j \in I_c(C \setminus A_i)$  such that either (*i*), we have  $w_j + \operatorname{sat}(A_i, c) \ge \ell$  if there exists some candidate  $c \in A_i$  with  $c \notin c$ , or (*ii*), for some  $h \in I_c(A_i)$ , it holds that  $w_j + \operatorname{sat}(A_i, c) - w_h \ge \ell$ .

Can  $\ell$ -WSJR-1 always be satisfied?

Inspired by the Method of Equal Shares (MES) rule in standard MWV.

The rule works in *k* rounds where agents pay to assign candidates to weights from  $\boldsymbol{w} = (w_1, \dots, w_k)$ :

- \* In round  $r \in \{1, \ldots, k\}$ , agents consider assignments to weight  $w_r$ .
- \*  $b_i(r)$  is agent *i*'s budget to start round *r*, and in round 1, we set  $b_i(1) = \frac{W}{n}$ .
- ★ In round *r*, we say a pair  $(c, w_r)$  is *q*-affordable for some  $q \in \mathbb{R}_{\geq 0}$ , with *c* currently unelected, if:

 $\sum_{i\in N: c\in A_i} \min(q, b_i(r)) \ge w_r.$ 

\* If no pair is *q*-affordable then go to the next round, otherwise, for a q-affordable pair  $(c, w_r)$  for a minimum q, assign c to  $w_r$  and continue to the next round.

Good news in the following restricted setting.

**Party-list elections**: An election where for every pair of agents  $i, j \in N$ , it holds that either  $A_i = A_j$ , or  $A_i \cap A_j = \emptyset$ , and for every agent *i*, we have  $|A_i| \ge k$ .

#### Theorem

*w-MES satisfies ℓ-WSJR-1 on party-list elections.* 

## Weakening *l*-WSJR: Part 2

Use LOWSAT(
$$w$$
) =  $(\ell_1, \ell_2, \dots, \ell_k)$  where  $\ell_t = \sum_{j=1}^t w_j$ .

#### Example

If 
$$w = (5, 3, 3, 1)$$
, then LOWSAT $(w) = (1, 4, 7, 12)$ .

#### Definition (Lower *l*-WS-cohesiveness)

For an integer  $\ell \in LOWSAT(w)$ , a group of agents N' is *lower*  $\ell$ -WS-cohesive if  $|N'| \ge n \cdot \frac{\ell}{W}$  and there exists a  $C' \subseteq \bigcap_{i \in N'} A_i$  with |C'| = t such that there exists a committee c where sat $(C', c) \ge \ell$ , and  $|N'| \ge n \cdot \frac{t}{k}$ .

### Definition (Lower *l*-WSJR)

A committee  $\boldsymbol{c}$  provides *lower*  $\ell$ -WSJR if for every *lower*  $\ell$ -WS-cohesive group N', there exists an agent  $i \in N'$  such that  $sat(A_i, \boldsymbol{c}) \ge \ell$ .

**Bad news!** *w*-MES does not satisfy *lower l*-WSJR.

Is lower ℓ-WSJR is always satisfiable? Yes, use MES as in standard MWV.

- \* Treat all seats as having weight 1.
- \* Run MES where each agent *i* has initial budget  $b_i(1) = \frac{k}{n}$  instead of  $\frac{W}{n}$ .
- $\star$  When a seat is bought for a candidate *c*, assign *c* to some weight.
- $\star\,$  MES ensures that cohesive groups get the seats that they deserve.

## Future Work

- ★ Test more rules.
- \* Define other fairness notions.
- $\star\,$  More axioms for the setting.