Proportionality in Multiwinner Voting with Weighted Seats

Julian Chingoma
LILAC Seminar
j.z.chingoma@uva.nl

February, 2023

Institute of Logic, Language and Computation (ILLC)

University of Amsterdam

Complex Domains

* Multiwinner Voting: A job panel must produce a shortlist of k candidates to continue to the next interview stage.
* Participatory Budgeting: Citizens must decide on the public projects, each coming with a cost, that are to be implemented by the local municipality, subject to a budget.

We look another such complex domain.

Talk Outline

* Standard Multwinner Voting (MWV) Model
* Proportionality in MWV.
* MWV with Weighted Seats.

(Approval-based) MWV Model

* Candidates $C=\{a, b, c, \ldots\}$.
* Agents $N=\{1, \ldots, n\}$.
\star Each agent submits an approval ballot $A_{i} \subseteq C$.
* Outcome is a committee $W \subseteq C$ of size k.

Proportionality in MWV

Definition (ℓ-cohesiveness)

For an integer $\ell \in\{1, \ldots, k\}$, a group of agents $N^{\prime} \subseteq N$ is ℓ-cohesive if $\left|N^{\prime}\right| \geqslant n \cdot \frac{\ell}{k}$ and $\left|\bigcap_{i \in N^{\prime}} A_{i}\right| \geqslant \ell$.

Example

- Candidates $C=\{a, b, c, d\}$ with $k=3$.
- Agents $N=\{1,2,3\}$.
- Approval ballots are $A_{1}=\{a, b\}, A_{2}=\{a, b, c\}$ and $A_{3}=\{c, d\}$.
- $\{1,2\}$ is 2 -cohesive.
- $\{2,3\}$ and $\{3\}$ are 1 -cohesive.

Proportionality in MWV

Natural axiom: if a group is ℓ-cohesive then ℓ of their common candidates should be elected to the committee.

Definition (Strong Justified Representation (SJR))

A committee W provides SJR if for every ℓ-cohesive group N^{\prime}, it holds that $\left|W \cap \bigcap_{i \in N^{\prime}} A_{i}\right| \geqslant \ell$.

However, this requirement is too strong, even when $\ell=1$.

Example

- Candidates $C=\{a, b, c, d\}$ with $k=3$.
- Agents $N=\{1, \ldots, 9\}$.
- Suppose 2 agents approve $\{a\}$, another 2 agents approve $\{d\}$, and 1 agent each approves of $\{b\},\{c\},\{a, b\},\{b, c\},\{c, d\}$.
- Each candidate $c \in\{a, b, c, d\}$ must be elected to provide SJR.

Proportionality in MWV

A weaker axiom: if a group is ℓ-cohesive then at least one group member should be represented by ℓ committee members.

Definition (Extended Justified Representation (EJR))

A committee W provides EJR if for every ℓ-cohesive group N^{\prime}, there exists an agent $i \in N^{\prime}$ such that $\left|W \cap A_{i}\right| \geqslant \ell$.

Multiwinner Voting with Weighted Seats
 Joint work with Ulle Endriss, Ronald de Haan, Adrian Haret and Jan Maly.

MWV with Weighted Seats

Example

Each seat represents a role and some roles are more valuable than others.

- The committee has 5 seats with the following roles: (chair, treasurer, secretary, member, member).

Example

Each seat has an associated budget that is available for the seat's elected candidate to spend.

- The committee has 5 seats with the following budgets: (\$3278, \$1400, \$560, \$100, \$4).

Model

* Candidates $C=\{a, b, c, \ldots\}$.
* Agents $N=\{1, \ldots, n\}$.
\star Each agent submits an approval ballot $A_{i} \subseteq C$.
\star A weight vector $\boldsymbol{w}=\left(w_{1}, \ldots, w_{k}\right)$ with a weight for each of the k seats.
$\star W$ is the sum of all the weights.
\star Outcome is a committee $\boldsymbol{c}=\left(c_{1}, \ldots, c_{k}\right)$.
* For any set of candidates $A \subseteq C$, the satisfaction from a committee \boldsymbol{c} is $\operatorname{sat}(A, \boldsymbol{c})=\sum_{j=1}^{k} \mathbb{1}_{c_{j} \in A} \cdot w_{j}$.

Proportionality

For weight vector \boldsymbol{w}, the set of all possible satisfaction values is SAT(w).

Example

If $\boldsymbol{w}=(5,3,1)$, then $\operatorname{SAT}(\boldsymbol{w})=\{1,3,4,5,6,8,9\}$.

Definition (ℓ-WS-cohesiveness)

For an integer $\ell \in \operatorname{SAT}(\boldsymbol{w})$, a group of agents N^{\prime} is ℓ-WS-cohesive if $\left|N^{\prime}\right| \geqslant n \cdot \frac{\ell}{W}$ and there exists a $C^{\prime} \subseteq \bigcap_{i \in N^{\prime}} A_{i}$ with $\left|C^{\prime}\right|=t$ such that there exists a committee \boldsymbol{c} where $\operatorname{sat}\left(C^{\prime}, \boldsymbol{c}\right) \geqslant \ell$, and $\left|N^{\prime}\right| \geqslant n \cdot \frac{t}{k}$.

Definition (ℓ-WSJR)

A committee \boldsymbol{c} provides ℓ-WSJR if for every ℓ-WS-cohesive group N^{\prime}, there exists an agent $i \in N^{\prime}$ such that $\operatorname{sat}\left(A_{i}, \boldsymbol{c}\right) \geqslant \ell$.

ℓ-WSJR

Unfortunately, ℓ-WSJR is not always satisfiable.

Example

- Candidates $C=\{a, b, c\}$.
- Agents $N=\{1,2,3\}$.
- Weight vector $\boldsymbol{w}=(3,2,1)$.
- Approval ballots are $A_{1}=\{a\}, A_{2}=\{b\}$ and $A_{3}=\{c\}$.

Also, even if such a committee exists, it is computationally hard to compute it. What now? Weaken the axiom.

Weakening ℓ-WSJR: Part 1

Intuition: some cohesive group member is just one 'swap' away from the deserved satisfaction?
$I_{\boldsymbol{c}}(A)$ is the vector of positions within the committee \boldsymbol{c} of candidates in A.

Definition (ℓ-WSJR-1)

A committee \boldsymbol{c} provides ℓ-WSJR-1 if for every ℓ-WS-cohesive group N^{\prime}, there exists an agent $i \in N^{\prime}$ and some $j \in I_{c}\left(C \backslash A_{i}\right)$ such that either (i), we have $w_{j}+\operatorname{sat}\left(\boldsymbol{A}_{i}, \boldsymbol{c}\right) \geqslant \ell$ if there exists some candidate $c \in \boldsymbol{A}_{i}$ with $c \notin \boldsymbol{c}$, or (ii), for some $h \in I_{c}\left(A_{i}\right)$, it holds that $w_{j}+\operatorname{sat}\left(A_{i}, \boldsymbol{c}\right)-w_{h} \geqslant \ell$.

Can ℓ-WSJR-1 always be satisfied?

w-MES

Inspired by the Method of Equal Shares (MES) rule in standard MWV.
The rule works in k rounds where agents pay to assign candidates to weights from $\boldsymbol{w}=\left(w_{1}, \ldots, w_{k}\right):$
\star In round $r \in\{1, \ldots, k\}$, agents consider assignments to weight w_{r}.
$\star b_{i}(r)$ is agent i 's budget to start round r, and in round 1 , we set $b_{i}(1)=\frac{w}{n}$.

* In round r, we say a pair $\left(c, w_{r}\right)$ is q-affordable for some $q \in \mathbb{R} \geqslant 0$, with c currently unelected, if:

$$
\sum_{i \in N: c \in A_{i}} \min \left(q, b_{i}(r)\right) \geqslant w_{r} .
$$

* If no pair is q-affordable then go to the next round, otherwise, for a q-affordable pair $\left(c, w_{r}\right)$ for a minimum q, assign c to w_{r} and continue to the next round.

w-MES and ℓ-WSJR- 1

Good news in the following restricted setting.
Party-list elections: An election where for every pair of agents $i, j \in N$, it holds that either $A_{i}=A_{j}$, or $A_{i} \cap A_{j}=\emptyset$, and for every agent i, we have $\left|A_{i}\right| \geqslant k$.

Theorem

w-MES satisfies ℓ-WSJR-1 on party-list elections.

Weakening ℓ-WSJR: Part 2

Use LowSAT $(\boldsymbol{w})=\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right)$ where $\ell_{t}=\sum_{j=1}^{t} w_{j}$.

Example

If $\boldsymbol{w}=(5,3,3,1)$, then $\operatorname{LOWSAT}(\boldsymbol{w})=(1,4,7,12)$.

Definition (Lower ℓ-WS-cohesiveness)

For an integer $\ell \in \operatorname{LowSAT}(\boldsymbol{w})$, a group of agents N^{\prime} is lower ℓ-WS-cohesive if $\left|N^{\prime}\right| \geqslant n \cdot \frac{\ell}{W}$ and there exists a $C^{\prime} \subseteq \bigcap_{i \in N^{\prime}} A_{i}$ with $\left|C^{\prime}\right|=t$ such that there exists a committee \boldsymbol{c} where $\operatorname{sat}\left(C^{\prime}, \boldsymbol{c}\right) \geqslant \ell$, and $\left|N^{\prime}\right| \geqslant n \cdot \frac{t}{k}$.

Definition (Lower ℓ-WSJR)

A committee coron lower ℓ-WSJR if for every lower ℓ-WS-cohesive group N^{\prime}, there exists an agent $i \in N^{\prime}$ such that $\operatorname{sat}\left(\boldsymbol{A}_{i}, \boldsymbol{c}\right) \geqslant \ell$.

Lower ℓ-WSJR

Bad news! w-MES does not satisfy lower ℓ-WSJR.
Is lower ℓ-WSJR is always satisfiable? Yes, use MES as in standard MWV.
\star Treat all seats as having weight 1.
\star Run MES where each agent i has initial budget $b_{i}(1)=\frac{k}{n}$ instead of $\frac{W}{n}$.
\star When a seat is bought for a candidate c, assign c to some weight.
\star MES ensures that cohesive groups get the seats that they deserve.

Future Work

* Test more rules.
* Define other fairness notions.
\star More axioms for the setting.

