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Remarks : · Vo
,
4, EX , 70+EX , Pt(t) = maxp P(G,P)

*

p, /G, PCt,
· For vertex-transitive G

, $(G)= (G)"+p , (G)* (but not for non-v. +. G)

· Ifdo andI , are incomparable, then JG , J0t , Pf(G) <P1G), 0, JG).
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