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2. Duality
↓
(commutative) isomorphism classes of

Notation f
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· G = H iff cohomomorphism G->H
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Asymptotic Spectrum
X = 29 : R+ 12 : (10) = 0

, %(1) = 1
,
FGH q(GH) = q(G)q(4),

9(G + 1) =((G) + q(u) ,
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3. Proof.
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. 2 Closure
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3.3 Extension

Lemma (One-step extension) Let I be closed. Suppose GH
then J Strassen preorder&L such that Hd' G
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.
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Lemma (Maximal extension) Every Strassen preorder has a maximal

Strassen extension (which is then closed and total) .

Proof Leta be a Strassen preorder.

We will use Eorn's lemma.

LetP be the set of all Strassen preorders extending & ordered

by inclusion.

Let C & J be any chain. Then UC is in D and contains all

preorders in C.

Then by Zorn's lemma P contains a maximal element.

Maximal => closed (otherwise the closure is larger) .
Maximal & closed => total (otherwise can do one-step extension) D

.



3.4 Totality
Leta be a strassen preorder

Fractional rank P(G) := inf & m : mG2n]
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Lemma .. o = O
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.,
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.,
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Theorem If G is total
,
then G =0 and is thus a -mon . hom

Proof Suppose O(G) < < P(G)
Then nmG & ↑
So mGG n (totality) so P(G) - & B
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Theorem G = n = XqtX , p(a) = (4) .

Proof= is easy
E Suppose G & U . (To prove : 50EX

, (a) F P(n) .)
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, geX.
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.
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. Compactness
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hom

.] & Ro
· FGER
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· Give X coarsest topology making all eve continuous.

Theorem
.

X is compact

Proof X TG] R. To prove : X is closed

L
compact

Tompact(Tychonoff)
X = Xmon 1 Xnorm 1 Xsubmult 1 ... intersection of closed sets

e.g. X norm := ev (503) 1 eri(13) closed B




