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~. [l = [7only arithmetic operationset

Conjecture : w = 2

In : &(T) = cW
↑

matrix mult. tensor e## #Y

Strassen'sasymptoticrank conjecture :

For
any concise tensor TE CmQmQmR(T) = m

What properties does & have ? Computable ? Semicontinuous ? Integer-valued ?
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Theorem1. STEV : &(T) = r] is Zariski-closed.

Ref RIA] : = sup[1(T) : TEA]

#theoremc. [A] = RIA] ·

TheoremTheorem (T)=3 .

Then R[A] = r
· By Theorem 2

, RI] = r.

· So for all TE
. &(T) =r, so TE A.

· Then &A
.

I
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&

I important ingredient
Leumas [+*. TEA] & Span &+*

r
: TEA3

Proof

· Let t be a linear form vanishing on the RHS
· f : The ((T*) is a polynomial vanishing on A
· So f vanishes on A

· Thene vanishes on the LHS A
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R : = [B(T) : TE #*...#
,

d
, ...,deeN]

Theorem & is well-ordered
.

(Every non-increasing sequence stabilizes .)

Moetherianity of F
%
0...#

*E
and RCT)2 max

,
di for concise T.

Theorem & is complete (over().-

Baire property for affine varieties over K .

Open problems :

1
. Is R discrete from below ?

#

2. Is STEV : &(+ ) = ry an reducible variety ?
#

3. Use lower-semicontinuity of R on concrete Strassen's asymptotic rank
sequence of tensors. conjecture


