Asymptotic tensor rank is characterized by polynomials

with Christandl, Hoeberechts, Nieuwboer, Vrana

- 1. Tensors and ranks
- 2. Algebraic complexity theory
- 3. Polynomials
- 4. Consequences

matrix n

rank minimal

$$M = \sum_{i=1}^{r} u_i \otimes v_i$$

- · easy to compute
- $R(M) \leq r$ iff all $(r+1) \times (r+1)$

submatrices have det = 0

matrix n rank minimal $M = \sum_{i=1}^{r} u_i \otimes v_i$

· easy to compute

kronecker product A⊗B

• $R(A \otimes B) = R(A)R(B)$

• $R(M) \leq r$ iff all $(r+1) \times (r+1)$ submatrices have det = 0

matrix n n

ranke minimal
$\mathcal{M}_{i} = \sum_{i=1}^{n} u_{i} \otimes V_{i}$
 easy to compute R(M) ≤ r iff all (r+1) × (1) submatrices have det
tensor rank $T = \sum_{i=1}^{r} u_i \otimes V_i \otimes W_i$ • NP-hard

kronecker product A & B

• $R(A \otimes B) = R(A)R(B)$

(+1) = 0

tensor

matrix n

tensor

n

n

n

rank minimal	teronecker product
$\mathcal{M}_{i} = \sum_{i=1}^{n} u_{i} \otimes V_{i}$	A⊗B
· easy to compute	• $R(A \otimes B) = R(A)R(B)$
• $R(M) \leq r$ iff all $(r+1) \times (r+1)$	
submatrices have $det = 0$	
tensor rante — minimal	
$T = \sum_{i=1}^{n} u_i \otimes V_i \otimes W_i$	TØS
• NP-hard	$\cdot R(\tau \otimes S) \leq R(\tau)R(S)$

2. Algebraic complexity theory

$$m = m = m = m = 0 \quad \text{watrix mult. Exponent}$$

$$O(n^{W}) \quad \text{arithwetic operations}$$

$$2 \in W \leq 2.3...$$
Conjecture:

$$Conjecture \cdot \omega = 2$$
Th: $\mathcal{R}(T) = 2^{W}$
matrix mult. tensor $\in \mathbb{F}^{4} \otimes \mathbb{F}^{4} \otimes \mathbb{F}^{4}$
Strassen's asymptotic rank conjecture:
For any concise tensor $T \in \mathbb{C}^{m} \otimes \mathbb{C}^{m} \otimes \mathbb{C}^{m}$, $\mathcal{R}(T) = m$
What properties does \mathcal{R} have? Computable? Semicontinuous? Integer-valued?

3. Polynomials
$$V = \mathbb{C}^{n} \otimes \mathbb{C}^{n}, A \subseteq V, r \in \mathbb{R}$$

Theorem 1 $\{ \top \in V : \mathbb{R}(\tau) \leq r \}$ is Zaris Ei-closed

3. Polynomials
$$V = \mathbb{C}^{n} \otimes \mathbb{C}^{n}, A \subseteq V, r \in \mathbb{R}$$

Theorem 1 $\{ \top \in V : \mathbb{R}(\top) \leq r \}$ is Zaris Ei-closed.
Def. $\mathbb{R}[A] := \sup \{ \mathbb{R}(\top) : \top \in A \}$
Theorem 2 $\mathbb{R}[\overline{A}] = \mathbb{R}[A]$

3. Polynomials
$$V = \mathbb{C}^{n} \otimes \mathbb{C}^{n}, A \subseteq V, r \in \mathbb{R}$$

Theorem 1 $\{ \top \in V : \mathbb{R}(\top) \leq r \}$ is Zariski-closed.
Def. $\mathbb{R}[A] := \sup \{ \mathbb{R}(\top) : \top \in A \}$
Theorem 2 $\mathbb{R}[\overline{A}] = \mathbb{R}[A]$

Theorem 2 => Theorem 1.

· Let
$$A = \{ T \in V : \mathcal{R}(T) \leq r \}$$
. Then $\mathcal{R}[A] \leq r$.

- By Theorem 2, $\mathbb{R}[\overline{A}] \in \Gamma$.
- · So for all $T \in \overline{A}$, $R(T) \leq r$, so $T \in A$.
- · Then Ā CA 🛛

Theorem 2
$$\mathbb{R}[\overline{A}] = \mathbb{R}[A]$$

important ingredient

$$\underline{\mathsf{Lemma 3}} \quad \{ \top^{\otimes n} : \top \in \overline{A} \} \subseteq \operatorname{span} \{ \top^{\otimes n} : \top \in A \}$$

Theorem 2
$$\mathbb{R}[\overline{A}] = \mathbb{R}[A]$$

Lemma 3
$$\{T^{\otimes n}: T \in \overline{A}\} \subseteq \operatorname{span} \{T^{\otimes n}: T \in A\}$$

Proof

- · Let l be a linear form vanishing on the RHS
- $f \cdot T \mapsto \ell(T^{\otimes n})$ is a polynomial vanishing on A
- So f vanishes on \overline{A}
- Then & vanishes on the LHS 0

Theorem 2 $\mathbb{R}[\overline{A}] = \mathbb{R}[A]$

Proof sketch :

To prove: <

<u>Theorem 2</u> $\mathbb{R}[\overline{A}] = \mathbb{R}[A]$

Theorem 2 $R[\overline{A}] = R[A]$

•
$$T^{\otimes nm} = \sum_{i_1, \dots, i_m = 1} \alpha_{i_1} \cdots \alpha_{i_m} S_{i_1} \otimes \cdots \otimes S_{i_m}$$

Theorem 2 $R[\overline{A}] = R[A]$

Proof sketch:
To prove:
$$\leq$$

• Let $\top \in \overline{A}$. Then $\top^{\otimes n} = \sum_{i=1}^{p(n)} \alpha_i S_i^{\otimes n}$ with $S_i \in A$ (Lemma 3)

•
$$T^{\otimes nm} = \sum_{i_1, \dots, i_m = 1}^{p(n)} \alpha_{i_1} \cdots \alpha_{i_m} S^{\otimes n}_{i_1} \otimes \cdots \otimes S^{\otimes n}_{i_m}$$

•
$$R(\tau^{\otimes nm}) \leq p(n)^{m} \max_{i_{1},...,i_{m}} R(S_{i_{1}}^{\otimes n}) \cdots R(S_{i_{m}}^{\otimes n})$$

Theorem 2 $\mathbb{R}[\overline{A}] = \mathbb{R}[A]$

• Let
$$T \in A$$
. Then $T^{\otimes n} = \sum_{i=1}^{n} \alpha_i S_i$ with $S_i \in A$ (Lemma 3)

•
$$T^{\otimes nm} = \sum_{i_1, \dots, i_m = 1}^{p(n)} \alpha_{i_1} \cdots \alpha_{i_m} S^{\otimes n}_{i_1} \otimes \cdots \otimes S^{\otimes n}_{i_m}$$

•
$$R(T^{\otimes nm}) \leq p(n)^{m} \max_{i_{1},...,i_{m}} R(S_{i_{1}}^{\otimes n}) \cdots R(S_{i_{m}}^{\otimes n})$$

 $\leq p(n)^{m} R[A]^{mn} + small part and sleipping details$

Theorem 2 $\mathbb{R}[\overline{A}] = \mathbb{R}[A]$

Proof sketch:
To prove:
$$\leq$$

 $\int_{ab} T_{ab} = \int_{ab} T_{ban} = \int_{ab} \int_{a}$

• Let
$$\top \in A$$
. Then $\top^{\otimes n} = \sum_{i=1}^{\infty} \alpha_i S_i^{\otimes n}$ with $S_i \in A$ (Lemma 3)

•
$$T^{\otimes nm} = \sum_{i_1, \dots, i_m = 1}^{p(n)} \alpha_{i_1} \cdots \alpha_{i_m} S^{\otimes n}_{i_1} \otimes \cdots \otimes S^{\otimes n}_{i_m}$$

•
$$R(T^{\otimes nm}) \leq p(n)^{m} \max_{i_{1},...,i_{m}} R(S_{i_{1}}^{\otimes n}) \cdots R(S_{i_{m}}^{\otimes n})$$

 $\leq p(n)^{m} R[A]^{mn} + small part and slipping details$

• $\mathcal{R}(T) \leq \mathcal{R}[A] \square$

4. Consequences and more

$$\mathcal{R} := \left\{ \mathcal{R}(\top) : \top \in \#^{d_{l}} \otimes \dots \otimes \#^{d_{k}}, d_{l,\dots}, d_{k} \in \mathbb{N} \right\}$$

Theorem \mathcal{R} is well-ordered. (Every non-increasing sequence stabilizes.) Noetherianity of $\mathbb{F}^{d_1} \otimes \dots \otimes \mathbb{F}^{d_k}$ and $\mathbb{R}(T) \ge \max_i d_i$, for concise T 4. Consequences and more

$$\mathcal{R} := \left\{ \mathcal{R}(\top) : \top \in \#^{d_{l}} \otimes \dots \otimes \#^{d_{k}}, d_{l,\dots}, d_{k} \in \mathbb{N} \right\}$$

Theorem \mathcal{R} is well-ordered. (Every non-increasing sequence stabilizes.) Noetherianity of $\mathbb{F}^{d_1} \otimes \dots \otimes \mathbb{F}^{d_k}$ and $\mathbb{R}(T) \ge \max_i d_i$ for concise TTheorem \mathcal{R} is complete (over \mathbb{C}). Bairs property for affine varieties over \mathbb{C} . 4. Consequences and more

$$\mathcal{R} := \left\{ \mathcal{R}(\top) : \top \in \#^{d_{l}} \otimes \dots \otimes \#^{d_{k}}, d_{l,\dots}, d_{k} \in \mathbb{N} \right\}$$

Theorem R is well-ordered. (Every non-increasing sequence stabilizes.) Noetherianity of $\mathbb{F}^{d_1} \otimes ... \otimes \mathbb{F}^{d_k}$ and $\mathbb{R}(T) \ge \max_i d_i$ for concise TTheorem R is complete (over C). Baire property for affine varieties over C. Open problems: I. Is R discrete from below?

2. Is
$$\{ \top \in V : \mathbb{R}(\top) \leq r \}$$
 an imeducible variety?

3. Use lower-semicontinuity of R on concrete Strassen's asymptotic ranke sequence of tensors. Strassen's asymptotic ranke conjecture