Asymptotic tensor rank is characterized by polynomials Jeroen Zuiddam With Christandl, Hoeberechts, Nieuwboer, Vrana	
Asymptotic tensor rank is characterized by polynomials Jeroen Zuiddam with Christandl, Hoeberechts, Nieuwboer, Vrana	
Asymptotic tensor rank is characterized by polynomials Jeroen Zuiddam With Christandl, Hoeberechts, Nieuwboer, Vrana	
Asymptotic tensor rank is characterized by polynomials Jeroen Zuiddam With Christandl, Hoeberechts, Nieuwboer, Vrana	
Asymptotic tensor rank is characterized by polynomials Jeroen Zuiddam With Christandl, Hoeberechts, Nieuwboer, Vrana	
Asymptotic tensor rank is characterized by polynomials Jeroen Zuiddam With Christandl, Hoeberechts, Nieuwboer, Vrana	
Asymptotic tensor rank is characterized by polynomials Jeroen Zuiddam With Christandl, Hoeberechts, Nieuwboer, Vrana	
Asymptotic tensor rank is characterized by polynomials Jeroen Zuiddam With Christandl, Hoeberechts, Nieuwboer, Vrana	
Asymptotic tensor rank is characterized by polynomials Jeroen Zuiddam With Christandl, Hoeberechts, Nieuwboer, Vrana	
Asymptotic tensor rank is characterized by polynomials Jeroen Zuiddam with Christandl, Hoeberechts, Nieuwboer, Vrana	
Asymptotic tensor rank. is characterized by polynomials Jeroen Zuiddam With Christandl, Hoeberechts, Nieuwboer, Vrana	
is characterized by polynomials Jeroen Zuiddam With Christandl, Hoeberechts, Nieuwboer, Vrana	
is Characterized by polynomials Jeroen Zuiddam With Christandl, Hoeberechts, Nieuwboer, Vrana	
is characterized by polynomials Jeroen Zuiddam With Christandl, Hoeberechts, Nieuwboer, Vrana	
Jeroen Zuiddam. With Christandl, Hoeberechts, Nieuwboer, Vrana	
Jeroen Zuiddam With Christandl, Hoeberechts, Nieuwboer, Vrana	
Jeroen Zuiddam. With Christandl, Hoeberechts, Nieuwboer, Vrana	
Jeroen Zuiddam. With Christandl, Hoeberechts, Nieuwboer, Vrana	
Jeroen Zuiddam With Christandl, Hoeberechts, Nieuwboer, Vrana	
Jeroen Eurodam With Christandl, Hoeberechts, Nieuwboer, Vrana	
With Christandl, Hoeberechts, Nieuwboer, Vrana	
with Christandl, Hoeberechts, Nieuwboer, Vrana	
with Christandl, Hoeberechts, Nieuwboer, Vrana	
with Christandl, Hoeberechts, Nieuwboer, Vrana	
with Christandl, Hoeberechts, Nieuwboer, Vrana	
with Christandl, Hoeberechts, Nieuwboer, Vrana	
· · · · · · · · · · · · · · · · · · ·	

· · · ·
· · · ·

1. Tensors and	ranles	
matrix	rank minimal	kronecker product
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{M} = \sum_{i=1}^{n} u_i \otimes V_i$	A&B
	· easy to compute	$\cdot R(A \otimes B) = R(A)R(B)$
	• $R(M) \leq r$ iff all $(r+1) \times (r+1)$ submatrices have det = c	>
tensor	tensor rank minimal	
\square	$T = \sum_{i=1}^{1} u_i \otimes V_i \otimes W_i$	TØS
n)/n	• nP-hard	$\cdot R(\tau \otimes S) \leq R(\tau)R(S)$
· · · · · · · · · · · · · · · · · · ·	\rightarrow asymptotic tensor rank $\mathbb{R}(T)$	$) = \lim_{n \to \infty} R(T^{\otimes n})^{\gamma_n}$

2. Algebraic complexity theory n = =	
· · · · · · · · · · · · · · · · · · ·	
matrix mult. exponent	$2 \leq \omega \leq 2.3$
O(n ^w) arithmetic operations	$Conjecture: \omega = 2.$
The $R(T) = 2^{W}$ 1 matrix mult tensor $\in \mathbb{F}^{4} \otimes \mathbb{F}^{4} \otimes \mathbb{F}^{4}$	
Strassen's asymptotic rank conjecture: For an	ly concise tensor $T \in \mathbb{C} \otimes \mathbb{C} \otimes \mathbb{C}^{m}$
R(T) = m. What properties does R have? Computable?	Semicontinuous? Integer-valued?

3. Polynomials Theorem 1	V= C' {⊤∈V : R	'@C [*] @C [*] , A⊆ (T)≤rZ is	:V, r∈R ZarisEi-closed	· · · · · · · ·	· · · · · · ·	.								
$\frac{\text{Def}}{\text{meorem 2}} \underset{\mathcal{R}}{\text{E}[A]} := \sup \{ \mathcal{R}[T] : T \in A \}.$ $\frac{\text{Theorem 2}}{\text{meorem 2}} \underset{\mathcal{R}}{\text{R}[A]} := \underset{\mathcal{R}}{\text{R}[A]}$														
				• • • • • •										
Theorem 2 ⇒	Theorem 1 Le	$t A = \{ T \in V :$	$\mathcal{R}(\tau) \leq r_{f}^{2}$	Then RI	.A] ≤ r	• • • • • • • • •								
Theorem $2 \Rightarrow$ By Theorem 2,	$\frac{\text{Theorem}}{R} \left[\overline{A} \right] \leq 1$	$t A = \{ T \in V :$ r. So for all -	R(T)≤r ² . Γε Ā, R(T)	Then Ŗ[≤ r, so	$A] \leq r$ $ op \in A$									
Theorem 2 \Rightarrow By Theorem 2, Then $\overline{A} \subseteq A$	<u>Theorem</u> i Le , R, [Ā] ∈ .□	$t A = \{ T \in V :$ r. So for all -	R(T) ≤ r3. Γε Ā, R(T)	Then R[≤ r, so	.A] ≤ r ⊤e A									
Theorem 2 \Rightarrow By Theorem 2, Then $\overline{A} \subseteq A$	<u>Theorem</u> i Le ℝ[Ā]∈ □	$t A = \{ T \in V :$ r. So for all -	R(T) ≤ r3. Γε Ā, R(T)	Then Ŗ[≤ r, so	.A] ≤ r ⊤e A									
Theorem 2 \Rightarrow By Theorem 2, Then $\overline{A} \subseteq A$	Theorem I Le $\mathbb{R}[\overline{A}] \in$	$t A = \{ \tau \in V :$ r. So for all -	<i>R</i> (<i>T</i>) ≤ r _j . Γε Ā, <i>R</i> (<i>T</i>)	Then ℝ[≤ Γ, So	$[A] \leq r$ $T \in A$									

$\underline{Def}. A^{(n)} := \frac{1}{2}$	-⊗n. TEAZ.	· · · · · · · ·
Lemma 3 (Ā	$A^{(n)} \subseteq \operatorname{span}(A^{(n)}).$	· · · · · · · ·
Proof spo	$(A^{(n)}) = \bigcap_{k \in I} k = \ell l linear form on V^{\otimes n}$ vanishing on A	(n) }
To prove: for	iny such $l_{i}(\overline{A})^{(n)} \subseteq ker l$. Define $f : V \rightarrow \overline{F} : T \mapsto l(T^{\otimes})$	[•]).
Then f is a	polynomial function on V vanishing on A. Then f vanishes on \overline{A}	• · · · · · · ·
	. 🗸	
Then & Van	es on $(\overline{A})^{(n)}$	
Then f van	es on $(\overline{A})^{(n)}$	
Then l van	es on $(\overline{A})^{(n)}$ I	
Then l van	es on $(\overline{A})^{(n)}$ I	
Then f van	es on $(\overline{A})^{(n)}$ I	

<u>Theorem 2</u> $R[\overline{A}] = R[A]$														
<u>Proof</u> From $A \subseteq \overline{A}$, we have $\mathbb{R}[A] \subseteq \mathbb{R}[\overline{A}]$.														
To prove: $R[\overline{A}] \leq R[\overline{A}]$. Let $T \in \overline{A}$. By Lemma 3, $T^{\otimes n} \in Span A^{(n)}$.														
So there are $S_{1, \dots, S_{p(n)}} \in A$ and $\alpha_{1, \dots, \alpha_{p(n)}} \in \mathbb{F}$ such that $T^{\otimes n} = \sum \alpha_{i} S_{i}^{\otimes n}$														
Note that p(n) grows at most polynomially, because														
$p(n) \in \dim \operatorname{span} A^{(n)} \in \dim \operatorname{Sym}^n(V) = \begin{pmatrix} \dim(V) + n - 1 \\ \dim(V) - 1 \end{pmatrix}$														
Let $m \in IN$. Write $T^{\otimes nm} = \sum_{i_1, \dots, i_m = 1}^{m} \bigotimes_{j=1}^{m} \alpha_{i_j} S_{i_j}^{\otimes n}$														
Then (subadd.) $R(T^{\otimes nm}) \leq p(n)^{m} \max_{\substack{i_{1}, \dots, i_{m} \in [p(n)]}} R(\overset{m}{\otimes} S^{\otimes n}_{i_{1}}).$														

Rearranging,
$R(\bigotimes_{j=1}^{m} S_{j}^{\otimes n}) = R(\bigotimes_{i=1}^{p(n)} S_{i}^{\otimes m_{i}n})$ for some m_{i} that sum to m_{i} .
Then (subm.) $R\left(\bigotimes_{i=1}^{p(n)}S_{i}^{\otimes m_{i}n}\right) \leq \frac{p(n)}{\prod}R(S_{i}^{\otimes m_{i}n}). (\text{For large } l, R(S_{i}^{\otimes l})^{l} \leq R(S_{i}) + \varepsilon.)$
$ \in TT(R(S_i) + \varepsilon)^{M_i n} \cdot TT \cdot B^{M_i n} $ i: $ m_i n \text{ large} m_i n \text{ small} $ $ Then $
$R(T^{\otimes nm})^{nm} \leq p(n)^{n} (R[A] + \varepsilon) B^{P(n) c/nm}$ Let $m \to \infty$, $R(T) \leq p(n)^{n} (R[A] + \varepsilon)$. Let $\varepsilon \to o$ and $n \to \infty$. \Box

		• •			• •		•
4. Consequences and more		• •	• •	• •	• •	• •	•
$d_1 = d_1 = d_2$	0 0 0	• •			• •		
$\mathcal{K} := \{ \mathcal{K}(T) \; T \in H \otimes \cdots \otimes H \; , d_{i}, _, d_{k} \in \mathbb{N} \}$		• •		• •	• •		•
					• •		
Theorem R is well-ordered. (Every non-increasing sequence Stabilize	s.)				• •		
Noetherianity of IF do IF de and R(T) > max, d; for a	oncis	se -		· ·	• •	• •	•
Theorem Over C, R is complete.	• • •	• •	• •	• •	• •	• •	
Baine property for affine varieties over C	• • •				• •		
		• •	• •	• •	• •		
Open problems		• •		• •	• •		
1 To R discrete (one below)?	• • •						
		• •	• •	• •	• •		
2 Is $f \rightarrow \epsilon V : R(\rightarrow) \leq r \sqrt{2}$ an imeducible variety?		• •		• •	• •		
J		• •			• •		
a lles burge semicostinuite of P		· ·		D I			
3. Use lower-semillar minung of r on concrete Strassen's as	mpte	2rtc	ran	e			
sequence of tensors. conjecture	• • •	• •	• •	• •	• •		•

				• •			• •			• •		•							• •			• •				• •		• •			• •			• •			•
				• •			• •												• •							• •					• •			• •			•
				• •			• •												• •							• •					• •			• •			•
				• •			• •												• •							• •					• •			• •			•
				• •			• •												• •							• •					• •			• •			•
				• •			• •												• •							• •					• •			• •			•
	• •			• •			• •			• •		•	• •		•				• •			• •				• •		• •			• •			• •			•
	• •			• •			• •			• •		•		•					• •			• •		• •		• •		• •			• •			• •			•
	• •			• •			• •			• •		•	• •	•					• •			• •		• •		• •		• •			• •		•	• •			•
	• •			• •			• •			• •		•	• •	•					• •			• •		• •		• •		• •			• •		•	• •			•
	• •			• •		•	• •			• •		•	• •	•					• •			• •	•	• •		• •		• •			• •		•	• •	•		•
•	• •			• •			• •	•		• •		•	• •	•				•	• •			• •		• •		•		• •			• •	•	•	• •	•		•
	• •	•		•	•		•			• •		•		•		•	•		• •	•	•	• •		• •		• •		• •	•		• •			• •			•
	• •			• •		•	•			•		•	• •	•					• •			• •		• •		• •	•	• •			• •		•	• •			•
•	• •		•	•			• •		•	• •		•	• •	•				•	• •			• •		• •		• •		• •			•			•			•
	• •			•		•	•			• •		•	• •	•					• •			• •		• •		• •	•	• •			• •			•			•
	• •			• •		•	• •		•	•		•	• •	•					• •		•	• •		• •		• •	•	• •			• •		•	• •			•
•			•	• •		•	• •	•	•	•		•	• •						• •		•	• •	•	• •	•	•	•	• •			• •			• •			•
	• •			• •			• •			• •		•							• •			• •		• •		• •		• •			•			•			•
							•				•	•		•		•	•		• •	•						• •				•	•			•			•
•			•	• •			• •		•				• •						• •							• •								• •			
						•				• •												• •		• •		• •		• •						• •			
						•	• •						• •										•	• •			•										
													• •					•																			Ċ
													• •					•																			Ċ