On rank and subrank of the matrix multiplication tensors

Jeroen Zuiddam

University of Amsterdam
Matrix multiplication tensors

- characterize computational complexity of multiplying matrices
Matrix multiplication tensors

- Characterize computational complexity of multiplying matrices

- For this we need to understand tensor rank and subrank

helps
Matrix multiplication tensors

- characterize computational complexity of multiplying matrices

- for this we need to understand tensor rank and subrank

- these tensors are highly structured

↑ closed under powering
Definition

\[\mathbf{M}_n = \sum e_{ij} \otimes e_{jk} \otimes e_{ki} \in \mathbb{F}^{n^2 \times n^2 \times n^2} \]
Definition

\[\text{MM}_n := \sum e_{ij} \otimes e_{jk} \otimes e_{ki} \in \mathbb{F}^{n^2 \times n^2 \times n^2} \]

Complexity

\[\begin{array}{ccc}
\begin{array}{c}
{n} \\
A \cdot B
\end{array} & \leftrightarrow & R(\text{MM}_n) \\
\text{number of scalar +/- needed?} & \uparrow & \text{tensor rank}
\end{array} \]
Definition

\[\text{Definition} \]

\[\text{MM}_n := \sum_{eij} \otimes e_{jk} \otimes e_{ki} \in \mathbb{F}^{n^2 \times n^2 \times n^2} \]

Complexity

\[\text{Complexity} \]

\[\text{number of scalar +/- needed?} \]

\[\text{R(\text{MM}_n)} \]

↓

tensor rank

Structured

\[\text{Structured} \]

\[\text{MM}_a \otimes \text{MM}_b = \text{MM}_{ab} \]
Definition

\[MM_n = \sum e_{ij} \otimes e_{jk} \otimes e_{ki} \in \mathbb{R}^{n^2 \times n^2 \times n^2} \]

Complexity

Number of scalar +/- needed?

\[\begin{bmatrix} A \\
B \end{bmatrix} \quad \mapsto \quad R(MM_n) \]

Tensor rank

Structured

\[MM_a \otimes MM_b = MM_{ab} \]

Exponent

\[
\lim_{m \to \infty} R \left((MM_2)^{\otimes m} \right)^{1/m} = 2^w
\]
Tensor rank R
Create tensor from small diagonal tensor

Subrank Q
Create large diagonal tensor from tensor
Tensor rank R

Create tensor from small diagonal tensor

\[T = U \otimes V \otimes W \cdot \sum_{i=1}^{r} e_i \otimes e_i \otimes e_i \]

Create large diagonal tensor from tensor

\[(T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i) \]
Tensor rank \(R \)

Create tensor from small diagonal tensor

\[
T = U \otimes V \otimes W \cdot \sum_{i=1}^{r} e_i \otimes e_i \otimes e_i
\]

\((T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i)\)

\[\uparrow \text{find} \]

Subrank \(Q \)

Create large diagonal tensor from tensor

\[
\sum_{i=1}^{s} e_i \otimes e_i \otimes e_i = U \otimes V \otimes W \cdot T
\]

\[\uparrow \text{find} \]
Tensor rank R

Create tensor from small diagonal tensor

\[T = U \otimes V \otimes W \cdot \sum_{i=1}^{r} e_i \otimes e_i \otimes e_i \]

\[T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i \]

Subrank Q

Create large diagonal tensor from tensor

\[\sum_{i=1}^{s} e_i \otimes e_i \otimes e_i = U \otimes V \otimes W \cdot T \]

Applications:

- Matrix multiplication
- Circuit complexity [Raz]

Applications:

- Matrix multiplication (also!)
- Additive combinatorics
Subramle application: Matrix multiplication barriers
Subraman application: Matrix multiplication barriers

History of bounds on exponent w

- best upper bound: 3
- best lower bound: 2

Sixties | Eighties | Now
Subrank application: Matrix multiplication barriers

History of bounds on exponent ω

- best upper bound
- best lower bound
- lower bound under extra assumptions, "barrier"

Sixties Eighties Now
Ordering

\[S \leq T \iff S = U \oplus V \oplus W \cdot T \text{ for some } U, V, W \]
Ordering

\[S \leq T \text{ iff } S = U \odot V \odot W \cdot T \text{ for some } U, V, W \]

Rank upper bound phrased in ordering

\[MM_m \leq \sum_{i=1}^{r} e_i \odot e_i \odot e_i \quad \Rightarrow \quad w \leq \log_m r \]
Ordering

\[S \leq T \text{ iff } S = U \otimes V \otimes W \cdot T \text{ for some } U, V, W \]

Rank upper bound phrased in ordering

\[
MM_m \leq \sum_{i=1}^{r} e_i \otimes e_i \otimes e_i \quad \Rightarrow \quad \omega \leq \log_m r
\]

In practice, we go via specific "intermediate" tensor \(T \)

\[
MM_m \leq T^{\otimes n} \leq I_r
\]
Ordering

\[S \leq T \iff S = U \otimes V \otimes W \cdot T \] for some \(U, V, W \)

Rank upper bound phrased in ordering

\[\text{MM}_n \leq \sum_{i=1}^{r} e_i \otimes e_i \otimes e_i \quad \Rightarrow \quad w \leq \log_m r \]

In practice, we go via specific "intermediate" tensor \(T \)

\[\text{MM}_n \leq T \otimes n \leq I_r \]

Theorem (Strassen) \(\uparrow \) essentially maximal subrank \(m^{2-o(1)} \)
Ordering

\[S \leq T \iff S = U \otimes V \otimes W \cdot T \text{ for some } U, V, W \]

Rank upper bound phrased in ordering

\[\text{MM}_m \leq \sum_{i=1}^{r} e_i \otimes e_i \otimes e_i \Rightarrow \omega \leq \log_m r \]

In practice, we go via specific "intermediate" tensor \(T \)

\[\text{MM}_m \leq T^\otimes n \leq I_r \]

Theorem (Strassen) \(\uparrow \) essentially maximal subrank \(m^{2-o(1)} \)

Barrier Theorem (CVZ) small subrank of \(T^\otimes n \) implies \(\text{barrier} \)
Two directions in the rest of the talk:

1. How to upper bound subrank? for barriers and other applications

2. How to circumvent these barriers and improve upper bound on w?
Methods to upper bound subrank:

- Tensor rank: decompose into sum of simple tensors: $u \otimes v \otimes w$
Methods to upper bound subrank:

- **Tensor rank**: Decompose into sum of simple tensors: $u \otimes v \otimes w$
 - Change notion of "simple"
- **Slice rank [Tao]**: Decompose into:
 $$\sum_{j} u \otimes v_{j} \otimes w_{j}, \sum_{j} u_{j} \otimes v_{j} \otimes w_{j}, \sum_{j} u_{j} \otimes v_{j} \otimes w_{j}$$
Methods to upper bound subrank:

- Tensor rank: decompose into sum of simple tensors: $u \otimes v \otimes w$
 - Change notion of "simple"

- Slice rank [Tao]: decompose into:
 \[\sum_{j} u \otimes v_j \otimes w_j, \sum_{j} u_j \otimes v \otimes w_j, \sum_{j} u_j \otimes v_j \otimes w \]

- Analytic rank [Gowers & Wolf] (over prime char.) counting, bias
Methods to upper bound subrank:

- Tensor rank: decompose into sum of simple tensors: \(u \otimes v \otimes w \)

 Change notion of "simple"

- Slice rank [Tao]: decompose into:
 \[
 \sum_j u \otimes v_j \otimes w_j, \ \sum_j u_j \otimes v \otimes w_j, \ \sum_j u_j \otimes v_j \otimes w
 \]

- Analytic rank [Gowers & Wolf] (over prime char.) counting, bias

 Extend to char. 0

- Geometric Rank [Kopparty-Moshkovitz-Z] dimension of variety
Methods to upper bound subrank:

- **Tensor rank**: decompose into sum of simple tensors: $u \otimes v \otimes w$

 Change notion of "simple"

- **Slice rank** [Tao]: decompose into:

 $$\sum_j u \otimes v_j \otimes w_j, \sum_j u_j \otimes v \otimes w_j, \sum_j u_j \otimes v_j \otimes w$$

- **Analytic rank** [Gowers & Wolf] (over prime char.) counting, bias

 Extend to char. 0

- **Geometric Rank** [Kopparty-Moshkovitz-Z] dimension of variety

- **G-stable rank** [Derksen] one-parameter subgroups, invariant theory
Geometric rank $\text{GR}(T)$

$$\text{codim} \left\{ (x, y) \in F^n \times F^n : \forall z \ T(x, y, z) = 0 \right\}$$
Geometric rank \(\text{GR}(T) \)

\[
\text{codim} \left\{ (x,y) \in \mathbb{F}^n \times \mathbb{F}^n : \forall z \ T(x,y,z) = 0 \right\}
\]

Theorem [Kopparty-Moshkovitz-Z]

\[Q(T) \leq \text{GR}(T) \leq \text{SR}(T) \]
Geometric rank $\text{GR}(T)$

$$\text{codim} \{(x, y) \in \mathbb{F}^n \times \mathbb{F}^n : \forall z \ T(x, y, z) = 0\}$$

\underline{Theorem} [Kopparty-Moshkovitz-Z]

- $Q(T) \leq \text{GR}(T) \leq \text{SR}(T)$
 \[\text{[Strassen 1988]}\]
- $\text{GR}(MM^m_m) = \lceil \frac{3}{4}m^2 \rceil \quad \Rightarrow \quad \text{Solves problem: } Q(MM^m_m) = \lceil \frac{3}{4}m^2 \rceil$.
Geometric rank $GR(T)$

$$\text{codim } \{ (x, y) \in \mathbb{F}^n \times \mathbb{F}^n : \forall z \ T(x, y, z) = 0 \}$$

Theorem [Kopparty-Moshkovitz-Z]

- $Q(T) \leq GR(T) \leq SR(T)$

 $\leftarrow [\text{Strassen 1988}]$

- $GR(MM_m) = \left\lceil \frac{3}{4} m^2 \right\rceil$ \Rightarrow Solves problem: $Q(MM_m) = \left\lceil \frac{3}{4} m^2 \right\rceil$.

- invariant under permuting x, y and z

- "extends" analytic rank to char. 0
Geometric rank \(\text{GR}(T) \)

\[
\text{codim \{ (x, y) \in \mathbb{F}^n : \forall z \ T(x, y, z) = 0 \}}
\]

Theorem [Kopparty-Moshkovitz-Z]

- \(Q(T) \leq \text{GR}(T) \leq \text{SR}(T) \)
 - \(\text{GR}(\text{MM}_m) = \left\lceil \frac{3}{4} m^2 \right\rceil \Rightarrow \text{Solves problem: } Q(\text{MM}_m) = \left\lceil \frac{3}{4} m^2 \right\rceil \).
- Invariant under permuting \(x, y \) and \(z \)
- "Extends" analytic rank to char. 0

Theorem [Moshkovitz-Cohen] \(\text{GR} \) equals \(\text{SR} \) up to constant!

Theorem [Derksen-Makam-Z] Huge gap between \(Q \) and \(\text{GR} \).
2. How to improve upper bounds on \(w \)? (circumvent barriers?)

Traditional

- **Rank bounds**

\[
MM_m \leq I_r \quad \Rightarrow \quad w \leq \log_m r
\]
2. How to improve upper bounds on w? (circumvent barriers?)

Traditional

- Rank bounds
 \[MM_m \leq I_r \Rightarrow w \leq \log_m r \]

- Schönhage's tau theorem
 \[\bigoplus_{i} MM_{m_i} \leq I_r \Rightarrow \sum_{i} m_i^w \leq r \]
• Schönhage's tau theorem

\[\oplus \mu \mu m_i \leq \text{Ir} \quad \Rightarrow \quad \sum_i m_i^w \leq r \]
• Schönhage's tau theorem

\[\bigoplus_{i} m_i \leq r \Rightarrow \sum_{i} m_i^{w} \leq r \]

Non-traditional

Strassen's theory of asymptotic spectra

Positivstellensatz

Tensor inequalities \[\Leftrightarrow\] Real geometry

\[\chi \in [1, \infty) \]
- Schönhage's tau theorem
 \[\bigoplus_i M_i \leq I_r \implies \Sigma_i m_i^w \leq r \]

- Non-traditional

- Strassen's theory of asymptotic spectra

- Strassen's generalized tau theorem (from non-trivial connectedness)

- Positivstellensatz
 Tensor inequalities \(\iff \) Real geometry
 \[\mapsto \chi \in [1, \infty) \]
- Schönhage's tau theorem

\[\oplus \mathbf{MM}_{m_i} \leq \mathbf{r} \quad \Rightarrow \quad \sum_i m_i^w \leq r \]

Non-traditional

Strassen's theory of asymptotic spectra

- Strassen's generalized tau theorem (from non-trivial connectedness)

\[\oplus \mathbf{MM}_{m_i} \leq \oplus \mathbf{MM}_{m_j} \quad \Rightarrow \quad \sum_i m_i^w \leq \sum_j m_j^w \]

Positivstellensatz

Tensor inequalities \(\longrightarrow \) Real geometry

\(\Rightarrow \) \(\chi \in \Gamma, \infty \)

Upcoming paper with Wigderson: survey, exposition, extensions