Lecture 10 Semicontinuity of asymptotic rank

- 1. Asymptotic range
- 2. Semicontinuity
- 3. Proof
- 4. Consequences
- 5. Discreteness
- 6. Asymptotic spectrum distance

1. Asymptotic rank

$$R(\langle 2,2,2\rangle) = 2^{\omega}$$

Central problems:

- (1) Determine whether W = 2 or W > 2? $R(\langle 2,2,2 \rangle) = 4$ or > 4?
- (2) Is there any tensor $T \in \mathbb{F}^n \otimes \mathbb{F}^n \otimes$
- (3) What is the structure (geometric, topological, algebraic,...) of $\{\mathcal{R}(T): T\in \mathcal{F}^{n_0} \notin \mathcal{F}^{n_2} \otimes \mathcal{F}^{n_3}, n \in \mathbb{N}\}$?
- (4) What properties does R have? Computable? Semicontinuous?

2. Semicontinuity $V = \mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^n$

Theorem {TEV: RLT) = ry is Zariski-closed.

Remarks:

(1) Meaning: Yd,r, I polynomials p1, -, Pe, VTEV.

$$R(T) \leq r \Leftrightarrow P_1(T) = \cdots = P_\ell(T) = 0$$
.

So there is an algorithm to decide upper bounds.

(2) Consequence:

$$T_1, T_2, ... \rightarrow T$$
 and $\forall i, R(T_i) \leq r$ $\Rightarrow R(T) \leq r$ (Euclidean distance)

Theorem $\forall F \in X$, $\{T \in V : F(T) \leq r \}$ is Zariski-closed. Theorem $\forall T \in V$, $\{S \in V : S \leq T \}$ is Zariski-closed. 3. Proof

Theorem I $\{T \in V : R(T) \leq r\}$ is Zariski-closed.

Def R[A] := sup { R(T) : TEA} for A = V

Theorem 2 R[A] = R[A]

Theorem 2 >> Theorem 1

- · Let $A = \{ T \in V : R(T) \leq r \}$. Then $R[A] \leq r$.
- · By Theorem 2, $\mathbb{R}[\bar{A}] \leq r$.
- · So for all $T \in \overline{A}$, $R(T) \leq r$, so $T \in A$.
- · Then AcA [

Two ingredients:

Lemma R(S⊕T) ≤ R(S)+ R(T)

Prof Recall: FEX, R(SOT) = F(SOT) = F(S) + F(T) = R(S) + R(T). [

Lemma $\forall A \subseteq \mathbb{C}^d, \forall n, \ \{v^{\otimes n} : v \in \overline{A}\} \subseteq \operatorname{span} \{v^{\otimes n} : v \in A\}.$

Example $\overline{A} = \bigcap_{p:p(A)=0} \{p=0\} \subseteq \operatorname{span} A = \bigcap_{l:l(A)=0} \{l=0\}$.

Proof. Let l be a linear form vanishing on the RHS

- $f \cdot T \mapsto \ell(T^{\otimes n})$ is a polynomial vanishing on A
- So f vanishes on A
- Then & vanishes on the LHS [

Proof:

To prove:
$$\leq$$

• Let
$$T \in \overline{A}$$
. Then $T^{\otimes n} = \sum_{i=1}^{pdy(n)} \alpha_i S_i^{\otimes n}$ with $S_i \in A$ (Lemma 3)

•
$$\mathbb{R}(T^{\otimes n}) \leq \sum_{i=1}^{poly(n)} \mathbb{R}(S_i^{\otimes n}) \leq poly(n) \cdot \mathbb{R}[A]^n$$
 (subadditivity of \mathbb{R})

 $- \leq \dim \operatorname{Sym}^n(V) = \binom{n + d^3 - 1}{d^3 - 1}$

.
$$R(T) \leq R[A]$$
 (take n-th root and $n \to \infty$)

4. Consequences

 $\mathcal{R} := \left\{ \mathcal{R}(\top) : \top \in \mathbb{C}^{d} \otimes \mathbb{C}^{d} \otimes \mathbb{C}^{d}, d \in \mathbb{N} \right\}$

What can we say about the structure of R?

Theorem R is closed under applying any polynomial $p \in N[x]$. (So R has "many" elements.)

Proof If ϕ maximizes max $_{\phi \in X} \phi(T)$ then it also maximizes max $_{\phi \in X} \phi(\rho(T))$, and $\phi(\rho(T)) = \rho(\phi(T))$.

Theorem R is well-ordered

(Every non-increasing sequence stabilizes; discrete from above.) gap to the right

Theorem R is complete over C

(Euclidean - closed)

limit in

Theorem $R := \{R(T) | T \in \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d, d \in \mathbb{N}\}$ is well-ordered Lemma $\forall d, R_d := \{R(T) | T \in \mathbb{C}^d \otimes \mathbb{C}^d \}$ is well-ordered Proof Let $A_r = \{T \in \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d | R(T) \leq r\}$. Let $C \geq r_0 \geq r_1 \in \mathbb{R}$.

Let $\Gamma_1 \gg \Gamma_2 \gg \cdots \in \mathbb{R}_d$.

Then $A_{r_1} \supseteq A_{r_2} \supseteq \cdots$ is a descending chain of Zaniski-closed sets.

By Noetherianity, this Stabilizes: $\exists N, \forall n \geq N, A_{r_n} = A_{r_{n+1}}$.

Let $T_N \in V$ such that $R(T_N) = r_N$.

Then $\forall n \ge N$, $T_N \in A_{r_n}$. Then $r_n \ge r_N$ so $r_n = r_N$. \square Proof of Theorem Let $r_1 \ge r_2 \ge \cdots \in \mathbb{R}$. Then $\forall i, \exists T_i \text{ concise}, \Re(T_i) = r_i$,

So that $T_i \in \mathbb{H}^{d_1} \otimes \mathbb{H}^{d_2} \otimes \mathbb{H}^{d_3}$ for some $d_1, d_2, d_3 \leq \Gamma_i$. Then all Γ_i are contained in the union of $\{R(T): T \in \mathbb{H}^{d_1} \otimes \mathbb{H}^{d_2} \in \mathbb{H}^{d_3}\}$ over all $d_i \leq \Gamma_i$, which is well-ordered (finite union). \square Theorem $\mathcal{R} := \left\{ \mathcal{R}(\top) . \top \in \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d, d \in \mathbb{N} \right\}$ is complete Def. $\mathcal{R}[X] := \sup_{T \in X} \mathcal{R}(\top)$.

Lemma. Let X non-empty and Zarisbi-closed Then $\exists T \in X$, R(T) = R[X]. Proof: Baire category theorem.

Lemma $\forall d, Rd := \{R(T) : T \in \mathbb{C}^{4} \otimes \mathbb{C}^{4} \otimes \mathbb{C}^{d}\}$ is complete

Proof R_d is well-ordered, so decreasing sequences in R_d have a limit in R_d Let $r_1 < r_2 < \cdots \in R_d$ converge to $r \in R$.

 $R[V \in \Gamma] \subseteq \Gamma$ (def) and $R[V \in \Gamma] \gg \Gamma$; $\forall i \in SO$ $R[V \in \Gamma] = \Gamma$.

So I TE Ver, R(T) = R[Ver] = r, so re Rd. 1

Proof of Theorem. Similar finite union argument as before. a.

Open problems

(1) Is
$$\mathcal{R} := \left\{ \mathcal{R}(T) . T \in \mathbb{C}^{d} \otimes \mathbb{C}^{d} \otimes \mathbb{C}^{d} d \in \mathbb{N} \right\}$$
 discrete from below?

(2) Is
$$\{ \top \in V : \mathbb{R}(\top) \subseteq \Gamma \}$$
 an irreducible variety?

Strassen's asymptotic rank
$$\Rightarrow$$
 (2) \Rightarrow (1)

5. Discreteness

We don't know if R is discrete.

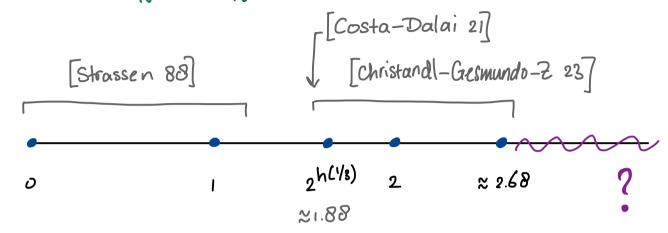
Theorem { SR(T): TEC OC OC, nEN } is discrete.

Ingredients

- $SR(T) = min_{\theta} F_{\theta}(T)$ quantum functionals
- · Yn, {A(T): TE Cⁿ⊗ Cⁿ⊗ Cⁿ g is finite

 moment polytope
- · { SR(T): TE C" & C" & C" } is finite (so discrete)
- · YTE Cⁿ o Cⁿ o Cⁿ o Cⁿ concise, Q(T) ~ win (N1, N2, N3) 1/3
- $\forall T \in C^{n_1} \circ C^{n_2} \circ C^{c}$ concise and $n_1 > N(c)$, then Q(T) = c.

Known: Values of Q and SR



- · Countably many values over C [Blatter - Draisma - Rupniewski 22a7
- Well-ordered over finite fields (no accumulation points from above)
 [Blatter-Draisma-Rupniewski 226]

Distance $d(S,T) := \sup_{F \in X} |F(S) - F(T)|$

Lemma d is a distance on asymptotic equivalence classes.

Lemma. $d(S,T) \leq a/b \iff \langle b \rangle \otimes S \lesssim \langle b \rangle \otimes S \oplus \langle a \rangle$

Lemma. If $S_1, S_2, ... \to T$, then $\mathbb{R}(S_i) \to \mathbb{R}(T)$ and $\mathbb{Q}(S_i) \to \mathbb{Q}(T)$.

Proof Let $\varepsilon > 0$. There is N s.t for all i > N and all $F \in X$, $|F(S_i) - F(T)| < \varepsilon$ Let F_{S_i} , $F_T \in X$ s.t. $F_{S_i}(S_i) = \Theta(S_i)$ and $F_T(T) = \Theta(T)$ (duality)

 $\Theta(T) = F_{T}(T) > F_{T}(S_{i}) - \varepsilon \ge \Theta(S_{i}) - \varepsilon$ (same with T and S_{i} swapped) \Box

Can we approximate $\langle n_i n_i n_j \rangle$ by tensors that are easier to understand? Recent work: this works well for graphs!