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1
. Asymptotic rank

& (72 ,
2

,27) = 2W

-Central problems :

(1) Determine whether w = 2 or w > 2 ? R((2 , 2 ,2)) = n or > 4 ?

(2) Is there
any tensor

T #** # " with &(T) > n ?

13) What is the structure (geometric , topological , algebraic.... ) of

[R(T) : TCF* # *QF3
, ne Ny ?

(4) What properties does R have ? Computable ? Semicontinuous ?



2.Semicontinuity V = Cook

Theorem ETEV : RCT)ary is Zariski-closed.

Remarks :

() meaning : Vd
,
r

,
7 polynomials pr .

-

- Pe .
VTEV .

B(T)1r p , (T) =... = pe(T) = 0
.

So there is an algorithm to decide upper bounds.

(2) Consequence :

T
.Tz .

...
- T and Fi, (Tier => R(T) =

(Euclidean distance (

Theorem FFEX
,
[TEV : F(T) er] is Zariski-closed .

Theorem FTEV, SEV : SETy is Zariski-closed.



3 . Proof

Theorem 1
. STEV : &(T) = r] is Zariski-closed.

Def RIA] : = sup[E(T) : TEA] for AEV

Theorem 2. [A] = RIA] ·

Theorem 2 = Theorem !

· Let A = 2TeV : E (T) = r3 .

Then RIA] = r.

· By Theorem 2
, RI] = r.

· So for all TE
. &(T) =r

,
so TE A.

· Then &A
.

I



Two ingredients :

Lemma &(SET) = R(S) + &(T)

Proof Recall : JFEX
,
R(SOT) = F(SOT) = F(S) + F(T) = ((S)+ (T) .

B

Lemma FACK&, En
,
[v*4 : ve] Spanfron : veA].

Example A = 1 [p = 03 [spanA = 1 21 = 0].
p : p(A) = 0 2 : ((A) = 0

poly lin . form

Proof. Let t be a linear form vanishing on the RHS

· f : The ((T*) is a polynomial vanishing on A

· So f vanishes on A

· Thene vanishes on the LHS A



Theorem 2 RIA] = R[A]

Proof :
= dim Sym(V) = (n+

d,
To prove : 1 -

L

①n
· Let TEA

.

Then Polynon
with SieA (ema,a

· R(TOn) PolyR(S*4) = poly(n) · &[A]" (subadditivity of B)

· R(T) = [A] (tabe nth root and n - d) is



4 . Consequences

R : = [E(T) :
Te9 deN]

What can we say about the structure of R ?

Theorem & is closed under applying any polynomial peN[X] .

(So & has "many" elements .)

Proof IfO maximizes maxex(T) then it also maximizes maxgex &(PCT),
and q(p(T)) = p(q(T) .

1

Theorem & is well-ordered ·

......... -
*

(Every non-increasing sequence stabilizes ; discrete from above .) gaptothe

Theorem R is complete over $
&

& & &

(Euclidean-closed ( ↑
limit in R



Theorem R : = [E(T) :
TECOCK

, deN] is well-ordered

Lemma Fd
, Ra := [R(T) : TEC@9} is well-ordered

Proof Let Ar = &Te&9 : &(T) = r] .
Let r

, = rz < ... E Rd.

Then Ar
.
? Arz= ... is a descending chain of Zariski-closed sets.

By Moetherianity ,
this stabilizes : JN

,
En > N

, Arn = Arnt:
Let TNEV such that & (TN)=N .

Then Fr N
, TNEArn .

Then in =y so in = N .
I

Proof of Theorem Let r
, zrz ... ER

. then Fi
,
JT

,
concise

, RCTi) = ri ,
so that Tie#* #* #93 for some di, da , da = ri .

Then all r
, are contained in the union of ERCT) :TEFF* #93]

over all dir ,
which is well-ordered (finite union)

. B.



Theorem R : = [E(T) :
TECOCK

, deN] is complete

Def . RIX] : = suPTEX &(T) .

Lemma
.

Let X non-empty and Zariski-closed. Then ITEX
, RCT)= [X].

Proof : Baire category theorem

Lemma Fd
,
Ra := [R(T) : TEC@9} is complete

Proof Ra is well-ordered
,

so decreasing sequences in Rehave a limit in Rd
Let r. <rz 2 ... E Ra converge to reIR.

Ver := ETE(9 : R(T) -wh is Zariski-closed
.

REVer] =r (def) and RIVer][ri Fi so RIVer] = r.

So 7 TE Ver, (T) = RIVer] = r
,

so rERd .
B

Proof of Theorem. Similar finite union argument as before. 1
.



Openproblems

(1) Is R : = [E(T) :TEC& deN] discrete from below ?

(2) Is STEV : &(+ ) = ry an reducible variety ?

Strassen's asymptotic rant=
> (2) = (1)

conjecture



5. Discreteness

We don't know ifR is discrete.

Theorem [SR(T) : TEC"@KeC"
,
new Y is discrete

.

Ingredients
· SR(T) = ming Fo(T) quantum functionals

· En
, [A(T) : TECOC"@ChY is finite
↑ moment polytope

* ESR(T) : TECOC"CV] is finite (so discrete)

· FTEC"K* &* concise
, QCT) min (n , 12.13)"3

· FTEC"K"OK" concise and n
. 2 N(c)

,
then &(T) = c

.



known : values of Q and SR
-

- [Costa-Dalai 21]

[strassen 80] ↓ [Christandl-Gesmundo -E 23]
--

⑨ & · ·s

↳ I 2h(Y3) 2 ~ 2
.

68 &
~ 1 .
88

· Countably many values over $

[Blatter-Draisma-Rupniewski 22a]

· Well-ordered over finite fields (no accumulation points from above)

[Blatter-Draisma-Rupniewski 22b]



arxiv.org/abs/2404.167636. Asymptotic spectrum distance

Distance &(S
,T) : = sup (F(S) - F(T) 1.

FEX

Lemma d is a distance on asymptotic equivalence classes.

Lemma
. d(S

, +) = alb> (b)xS &(b) S # (a)

Lemma
. If S .. Sc .

...

-> T
,
then R(Si) + R(T) and Q(Si)eQ(T).

Proof Let 2 >0.
.
There is N S

.
t

· for all is N and all FEX,
IF(Si) - F(T))es

Let Fsi ,
F

+
EX 1.
t

. Fg
.
(Si)=(Si) and F

+
(T) = @(T) (duality)

⑦ (T) = F
+
(T) > F(Si) - E = @(Si) - c (same with T and Si swapped) 7

Can we approximate (nin ,n) by tensors that are easier to understand ?

Recent work : this works well for graphs !


