The Asymptotic Spectrum Distance, graph limits, and the Shannon capacity

Jersen Zuiddam

joint work with David de Boer and Protr Buys

. Determining the Shannon capacity of graphs (Shannon, 1956) is a long-standing open problem in combinatorics

- . Determining the Shannon capacity of graphs (Shannon, 1956) is a long-standing open problem in combinatorics
- . This problem asks for determining the rate of growth of the independence number of strong powers of graphs:

- . Determining the Shannon capacity of graphs (Shannon, 1956) is a long-standing open problem in combinatorics
- . This problem asks for determining the rate of growth of the independence number of strong powers of graphs:

$$\Theta(G) := \lim_{n \to \infty} \alpha(G^{n})^{n}$$

- . Determining the Shannon capacity of graphs (Shannon, 1956) is a long-standing open problem in combinatorics
- . This problem asks for determining the rate of growth of the independence number of strong powers of graphs:

$$\Theta(G) := \lim_{n \to \infty} \alpha(G^{n})^{n}$$

Wide range of upper and lower bound methods: Shannon (1956),
 Lovász (1979), Haemers, Alon, Schröver, ..., Google DeepMind

- . Determining the Shannon capacity of graphs (Shannon, 1956) is a long-standing open problem in combinatorics
- . This problem asks for determining the rate of growth of the independence number of strong powers of graphs:

$$\Theta(G) := \lim_{n \to \infty} \alpha(G^{n})^{n}$$

- Wide range of upper and lower bound methods: Shannon (1956),
 Lovász (1979), Haemers, Alon, Schröver, ..., Google DeepMind
- Despite this, even small instances have remained open, e.g.
 odd cycles of length = 7

Recent years: new dual characterization of Shannon capacity, asymptotic spectrum duality (Zuiddam 2018), has unified and extended known methods and structural theorems

- Recent years: new dual characterization of Shannon capacity, asymptotic spectrum duality (Zuiddam 2018), has unified and extended known methods and structural theorems
- · Originates from Strassen's work in algebraic complexity theory, and applies more generally to "asymptotic problems"

Survey: Wigolerson-Zuiddam (2025)

- · Recent years: new dual characterization of Shannon capacity, asymptotic spectrum duality (Zuiddam 2018), has unified and extended known methods and structural theorems
- · Originates from Strassen's work in algebraic complexity theory, and applies more generally to "asymptotic problems"

Survey: Wigolerson-Zuiddam (2025)

. This talk: building on asymptotic spectrum duality, we develop new graph limit approach to Shannon capacity via asymptotic spectrum distance

· Graph limit approach: To determine Shannon capacity of a "hard" graph, construct a sequence of easier to analyse graphs converging to it in asymptotic spectrum distance:

$$G_1, G_2, \dots \rightarrow C_7 \Rightarrow \Theta(G_1), \Theta(G_2), \dots \rightarrow \Theta(C_7)$$

· Graph limit approach: To determine Shannon capacity of a "hard" graph, construct a sequence of easier to analyse graphs converging to it in asymptotic spectrum distance:

$$G_1, G_2, ... \rightarrow C_7 \Rightarrow \Theta(G_1), \Theta(G_2), ... \rightarrow \Theta(C_7)$$

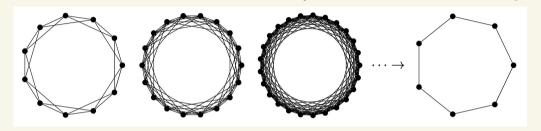
Questions:

- How to construct converging sequences?
- where to look for graph's that are "easier to analyse"?

We answer both!

Main results

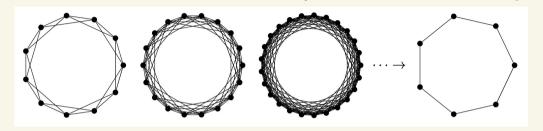
(1) General construction of converging sequences in asymptotic spectrum distance



-> New continuity properties of Lovász theta and other graph parameters

Main results

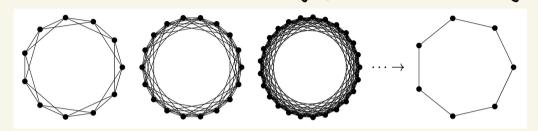
(1) General construction of converging sequences in asymptotic spectrum distance



- -> New continuity properties of Lovász theta and other graph parameters
- (2) Cauchy sequences of finite graphs that do not converge to any finite graph
 - -> Infinite graphs as limit points (Borsuk-like, dynamical systems)

Main results

(1) General construction of converging sequences in asymptotic spectrum distance



- -> New continuity properties of Lovász theta and other graph parameters
- (2) Cauchy sequences of finite graphs that do not converge to any finite graph
 - -> Infinite graphs as limit points (Borsuk-like, dynamical systems)
- (3) Obtain all best-known lower bounds on Shannon capacity of small add cycles from "finite version" of graph limit approach
 - \longrightarrow New lower bound $\Theta(C_{15}) \ge 7.30139$

2. Converging sequences

3. Infinite graphs as limit points

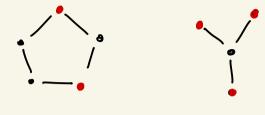
4. New lower bound for C15

Independent set:

Independent set:

Independence number $\alpha(G)$:

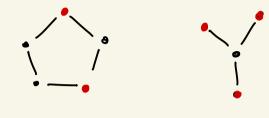
Independent set:



Independence number $\alpha(G)$: 2

Strong product G H: graph whose adjacency matrix is the tensor product of those of G and H

Independent set:



Independence number $\alpha(G)$: 2

Strong product $G \bowtie H$: graph whose adjacency matrix is the tensor product of those of G and H

Cohomomorphism $G \subseteq H$: if there is a map $V(G) \rightarrow V(H)$ preserving independent sets

$$\Theta(G) = \lim_{n \to \infty} \alpha (G^{\boxtimes n})^{1/n} = \sup_{n} \alpha (G^{\boxtimes n})^{1/n}$$

$$\Theta(G) = \lim_{n \to \infty} \alpha (G^{\boxtimes n})^{1/n} = \sup_{n \to \infty} \alpha (G^{\boxtimes n})^{1/n}$$

Duality theorem (Strassen 1988, Zuiddam 2018)
$$\Theta(G) = \min F(G)$$
 $F \in X$

$$\Theta(G) = \lim_{n \to \infty} \alpha (G^{\boxtimes n})^{1/n} = \sup_{n} \alpha (G^{\boxtimes n})^{1/n}$$

Duality theorem (Strassen 1988, Zuiddam 2018)
$$\Theta(G) = \min F(G)$$
 $F \in X$

Def. Asymptotic spectrum
$$X := \text{Set of all functions } F: \text{ graphs} \to \mathbb{R}_{20}$$
 that are \boxtimes -mult., \sqcup -add., K_1 -norm. and monotone under cohomomorphism $G \subseteq H \iff \overline{G} \to \overline{H}$

$$\Theta(G) = \lim_{n \to \infty} \alpha (G^{\boxtimes n})^{1/n} = \sup_{n} \alpha (G^{\boxtimes n})^{1/n}$$

Duality theorem (Strassen 1988, Zuiddam 2018) $\Theta(G) = \min F(G)$ $F \in X$

Def. Asymptotic spectrum $X := \text{Set of all functions } F: \text{ graphs} \to \mathbb{R}_{20}$ that are \boxtimes -mult., \sqcup -add., K_1 -norm. and monotone under cohomomorphism $G \subseteq H \iff \overline{G} \to \overline{H}$

EX X contains: Lovász theta, fractional Maemers bound (BuRh-Cox), fractional clique covering number,...

$$\Theta(G) = \lim_{n \to \infty} \alpha(G^{\otimes n})^{1/n} = \sup_{n \to \infty} \alpha(G^{\otimes n})^{1/n}$$

Duality theorem (Strassen 1988, Zuiddam 2018) $\Theta(G) = \min F(G)$ $F \in X$

Def. Asymptotic spectrum $X := \text{Set of all functions } F: graphs \to \mathbb{R}_{20}$ that are \boxtimes -mult., \sqcup -add., K_1 -norm. and monotone under cohomomorphism $G \subseteq H \iff \overline{G} \to \overline{H}$

EX X contains: Lovász theta, fractional Maemers bound (Burkh-Cox), fractional clique covering number,...

Def. Asymptotic spectrum distance: $d(G,H) = \max_{F \in X} |F(G) - F(H)|$

Def. Asymptotic spectrum distance: $d(G,H) = \max_{F \in X} |F(G) - F(H)|$

Def. Asymptotic spectrum distance: $d(G,H) = \max_{F \in X} |F(G) - F(H)|$ Lemma $G_i \to H \Rightarrow \Theta(G_i) \to \Theta(H)$ Def. Asymptotic spectrum distance: $d(G,H) = \max_{F \in X} |F(G) - F(H)|$ <u>Lemma</u> $G_i \to H \Rightarrow \Theta(G_i) \to \Theta(H)$

Proof Let E>0

Def. Asymptotic spectrum distance: $d(G,H) = \max_{F \in X} |F(G) - F(H)|$

<u>Lemma</u> $G_i \to H \Rightarrow \Theta(G_i) \to \Theta(H)$

Proof Let E>0

There is N s.t for all i>N and all $\mp \in X$, $|\mp(G_i)-\mp(H)| < \varepsilon$

Def. Asymptotic spectrum distance: $d(G,H) = \max_{F \in X} |F(G) - F(H)|$ Lemma $G_i \to H \Rightarrow \mathfrak{D}(G_i) \to \mathfrak{D}(H)$ Proof Let $\varepsilon > 0$

There is N s.t for all i>N and all $\mp \epsilon X$, $|\mp(G_i)-\mp(H)| < \epsilon$

Let F_{G_i} , $F_H \in X$ s.t. $F_{G_i}(G_i) = \Theta(G_i)$ and $F_H(H) = \Theta(H)$ (duality)

Def. Asymptotic spectrum distance: $d(G,H) = \max_{F \in X} |F(G) - F(H)|$ Lemma $G_i \to H \Rightarrow \mathfrak{D}(G_i) \to \mathfrak{D}(H)$ Proof Let $\varepsilon > 0$ There is N s.t for all i > N and all $F \in X$, $|F(G_i) - F(H)| < \varepsilon$

Let
$$F_{G_i}$$
, $F_H \in X$ s.t. $F_{G_i}(G_i) = \Theta(G_i)$ and $F_H(H) = \Theta(H)$ (duality)
 $\Theta(H) = F_H(H) > F_H(G_i) - \varepsilon \ge \Theta(G_i) - \varepsilon$ (same with H and G_i swapped) \square

Def. Asymptotic spectrum distance:
$$d(G,H) = \max_{F \in X} |F(G) - F(H)|$$

Frof Let $\varepsilon > 0$

There is N s.t for all $i > N$ and all $F \in X$, $|F(G_i) - F(H)| < \varepsilon$

Let F_{G_i} , $F_H \in X$ s.t. $F_{G_i}(G_i) = \Theta(G_i)$ and $F_H(H) = \Theta(H)$ (duality)

 $\Theta(H) = F_H(H) > F_H(G_i) - \varepsilon > \Theta(G_i) - \varepsilon$ (same with H and G_i swapped) \square

<u>Lemma</u> The following are equivalent: (1) $d(G,H) \leq \frac{a}{b}$

Def. Asymptotic spectrum distance:
$$d(G,H) = \max_{F \in X} |F(G) - F(H)|$$

Lemma $G_i \to H \Rightarrow \Theta(G_i) \to \Theta(H)$

Proof Let $\varepsilon > 0$

There is N s.t for all $i > N$ and all $F \in X$, $|F(G_i) - F(H)| < \varepsilon$

Let F_{G_i} , $F_H \in X$ s.t. $F_{G_i}(G_i) = \Theta(G_i)$ and $F_H(H) = \Theta(H)$ (duality)

 $\Theta(H) = F_H(H) > F_H(G_i) - \varepsilon > \Theta(G_i) - \varepsilon$ (same with H and G_i swapped)

Lemma The following are equivalent: (1) $d(G,H) \leq \frac{\alpha}{b}$

Def. Asymptotic spectrum distance:
$$d(G,H) = \max_{F \in X} |F(G) - F(H)|$$

Lemma $G_i \to H \Rightarrow \Theta(G_i) \to \Theta(H)$
Proof Let $\varepsilon > 0$
There is N st for all $i > N$ and all $F \in X$, $|F(G_i) - F(H)| < \varepsilon$
Let F_{G_i} , $F_H \in X$ s.t. $F_{G_i}(G_i) = \Theta(G_i)$ and $F_H(H) = \Theta(H)$ (duality)
 $\Theta(H) = F_H(H) > F_H(G_i) - \varepsilon \ge \Theta(G_i) - \varepsilon$ (same with H and G_i swapped) \square

Lemma The following are equivalent: (1)
$$d(G,H) \leq \frac{a}{b}$$

(2)
$$(G \sqcup \dots \sqcup G)^{\boxtimes n} \leq (\underbrace{H \sqcup \dots \sqcup H}_{a} \sqcup \underbrace{\dots \bullet}_{a})^{\boxtimes (n+o(n))}$$

and G,H swapped

(3)
$$(E_b \boxtimes G)^{\boxtimes n} \leq ((E_b \boxtimes H) \sqcup E_a)$$

2. Converging sequences

Def [Zhu, Hell-Nešetřil] Fraction graph $E_{a/b}$ has vertex set $\mathbb{Z}/a\mathbb{Z}$ and an edge $u \sim v$ iff |u-v| < b (mod a)

2. Converging sequences

Def [Zhu, Hell-Nešetřil] Fraction graph $E_{a/b}$ has vertex set $\mathbb{Z}/a\mathbb{Z}$ and an edge $u \sim v$ iff |u-v| < b (mod a)

$$E_{\frac{5}{2}} = E_{\frac{3}{1}} = E_{\frac{3}} = E_{\frac{3}{1}} = E_{\frac{3}{1}} = E_{\frac{3}{1}} = E_{\frac{3}{1}} = E_{$$

2. Converging sequences

Def [Zhu, Hell-Nešetřil] Fraction graph $E_{a/b}$ has vertex set $\mathbb{Z}/a\mathbb{Z}$ and an edge $u \sim v$ iff |u-v| < b (mod a)

$$E_{\frac{5}{2}} = \underbrace{E_{\frac{3}{1}}}_{1} = \underbrace{E_{\frac{3}{3}}}_{1} = \underbrace{E_{\frac{3}{3}}}$$

Lemma [Hell-nesetřil]
$$E_{a/b} \in E_{c/d}$$
 iff $\frac{a}{b} \in \frac{c}{d}$ (in \mathbb{Q})

2. Converging sequences

Def [Zhu, Hell-Nešetřil] Fraction graph $E_{a/b}$ has vertex set $\mathbb{Z}/a\mathbb{Z}$ and an edge $u \sim v$ iff |u-v| < b (mod a)

$$E_{\frac{5}{2}} = E_{\frac{3}{1}} = E_{\frac{3}{3}} = E_{\frac{3}} = E_{\frac{3}{3}} = E_{\frac{3}{3}} = E_{\frac{3}{3}} = E_{\frac{3}{3}} = E_{$$

Lemma [Hell-nešetřil]
$$E_{a/b} \in E_{c/d}$$
 iff $\frac{a}{b} \in \frac{c}{d}$ (in \mathbb{Q})

Theorem A For any $a/b \ge 2$, if $c_{n/d_n} \rightarrow a/b$ from above, then $E_{c_{n/d_n}} \rightarrow E_{a/b}$.

2. Converging sequences

Def [Zhu, Hell-Nešetřil] Fraction graph $E_{a/b}$ has vertex set $\mathbb{Z}/a\mathbb{Z}$ and an edge $u \sim v$ iff |u-v| < b (mod a)

$$E_{\frac{5}{2}} = \underbrace{E_{\frac{3}{1}}}_{1} = \underbrace{E_{\frac{3}{3}}}_{1} = \underbrace{E_{\frac{3}{3}}}$$

Lemma [Hell-nešetřil]
$$E_{a/b} \in E_{c/d}$$
 iff $\frac{a}{b} \in \frac{c}{d}$ (in \mathbb{Q})

Theorem A For any $a/b \ge 2$, if $c_{n/d_{n}} \rightarrow a/b$ from above, then $E_{c_{n/d_{n}}} \rightarrow E_{a/b}$.

Theorem B For any irrational r > 2, if $cn/dn \rightarrow r$, then Ecn/dn is Cauchy.

Ingredients

Lemma 1. [Vrana] G vertex transitive, SSV(G), FEX, then

$$\mp(G[S]) \leq \mp(G) \leq \frac{|G|}{|S|} \cdot \mp(G[S]).$$

Ingredients

Lemma 1. [Vrana] G vertex transitive, SSV(G), FEX, then

$$\mp(G[S]) \leq \mp(G) \leq \frac{|G|}{|S|} \cdot \mp(G[S]).$$

Lemma 2 [Hell-Nešetřil] Any fraction graph $E_{p/g}$ minus a vertex is equivalent to some fraction graph $E_{p/g'}$ for p' < p, q' < q with $p \cdot q' - q \cdot p' = 1$.

Ingredients

Lemma 1. [Vrane] G vertex transitive, SSV(G), FEX, then

$$\mp(G[S]) \leq \mp(G) \leq \frac{|G|}{|S|} \cdot \mp(G[S]).$$

Lemma 2 [Hell-Nešetřil] Any fraction graph $E_{p/g}$ minus a vertex is equivalent to some fraction graph $E_{p/g}$, for p'< p, q'< q with $p\cdot q'-q\cdot p'=1$.

Consequence:
$$\mp (E_{P/q'}) \leq \mp (E_{P/q}) \leq \frac{P}{P-1} \mp (E_{P/q'})$$

Theorem A For any $a/b \ge 2$, if $c_{n/d_{n}} \rightarrow a/b$ from above, then $E_{c_{n/d_{n}}} \longrightarrow E_{a/b}$.

Proof sketch:

Theorem A For any $a/b \ge 2$, if $c_{n/d_{n}} \rightarrow a/b$ from above, then $E_{c_{n/d_{n}}} \rightarrow E_{a/b}$.

Proof sketch: Let a,b coprime.

Theorem A For any $a/b \ge 2$, if $cn/d_n \to 9/b$ from above, then $E_{cn/d_n} \to E_{a/b}$.

Proof sketch: Let a, b coprime.

There are x,y with $x \cdot b - y \cdot a = 1$.

Theorem A For any $a/b \ge 2$, if $cn/d_n \to 9/b$ from above, then $E_{cn/d_n} \to E_{a/b}$.

Proof sketch: Let a, b coprime.

There are x,y with $x \cdot b - y \cdot a = 1$.

Then $c_n \cdot b - d_n = 1$ for $c_n = x + a \cdot n$ and $d_n = y + b \cdot n$

Theorem A For any $a/b \ge 2$, if $c_{n/d_{n}} \rightarrow 9/b$ from above, then $E_{c_{n/d_{n}}} \rightarrow E_{a/b}$.

Proof sketch: Let a, b coprime.

There are x,y with $x \cdot b - y \cdot a = 1$.

Then $c_n \cdot b - d_n = 1$ for $c_n = x + a \cdot n$ and $d_n = y + b \cdot n$

So:
$$F(E_{a/b}) \leq F(E_{cn/a_n}) \leq \frac{c_n}{c_{n-1}} F(E_{a/b})$$

Theorem A For any $a/b \ge 2$, if $c_{n/d_{n}} \rightarrow 9/b$ from above, then $E_{c_{n/d_{n}}} \rightarrow E_{a/b}$.

Proof sketch: Let a, b coprime.

There are x,y with $x \cdot b - y \cdot a = 1$.

Then $c_n \cdot b - d_n = 1$ for $c_n = x + a \cdot n$ and $d_n = y + b \cdot n$

So:
$$F(E_{a/b}) \leq F(E_{cn/a_n}) \leq \frac{c_n}{c_{n-1}} F(E_{a/b})$$

Let $n \to \infty$, then $c_n \to \infty$. \square

Theorem A For any $a/b \ge 2$, if $c_{n/d_{n}} \rightarrow 9/b$ from above, then $E_{c_{n/d_{n}}} \rightarrow E_{a/b}$.

Proof sketch: Let a, b coprime.

There are x,y with $x \cdot b - y \cdot a = 1$.

Then $c_n \cdot b - d_n = 1$ for $c_n = x + a \cdot n$ and $d_n = y + b \cdot n$

So:
$$F(E_{a/b}) \leq F(E_{cn/a_n}) \leq \frac{c_n}{c_{n-1}} F(E_{a/b})$$

Let $n \to \infty$, then $C_n \to \infty$. \square

Theorem B For any irrational r > 2, if cn/an - r, then Ecn/an is Cauchy.

Proof sketch:

Theorem A For any $a/b \ge 2$, if $c_{n/d_n} \rightarrow 9/b$ from above, then $E_{c_{n/d_n}} \rightarrow E_{a/b}$.

Proof sketch: Let a, b coprime.

There are x,y with $x \cdot b - y \cdot a = 1$.

Then $c_n \cdot b - d_n = 1$ for $c_n = x + a \cdot n$ and $d_n = y + b \cdot n$

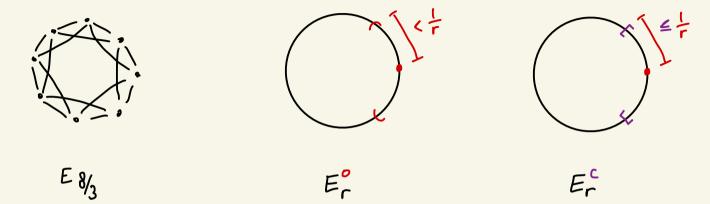
So: $F(E_{a/b}) \leq F(E_{cn/d_n}) \leq \frac{c_n}{c_{n-1}} F(E_{a/b})$

Let $n \to \infty$, then $C_n \to \infty$. \square

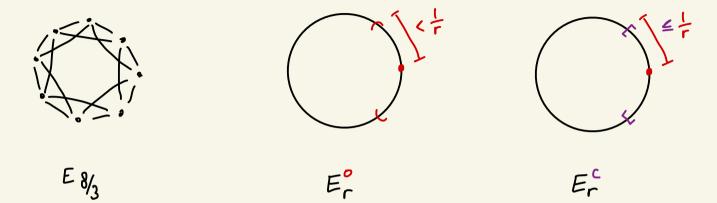
Theorem B For any irrational r > 2, if cn/an - r, then Ecn/an is Cauchy.

Proof sketch: Continued fraction convergents: $\frac{P_0}{q_0} < \frac{P_2}{q_2} ... < r < ... \frac{P_3}{q_3} < \frac{P_1}{q_1}$ Satisfy: $q_n \cdot P_{n-1} - P_n \cdot q_{n-1} = (-1)^n$.

3. Infinite graphs as limit points



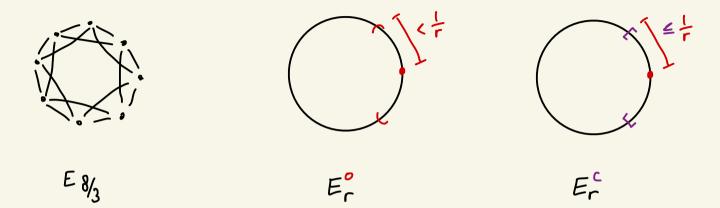
3. Infinite graphs as limit points



Theorem

For any irrational r>2, $d(E_r, E_r) = 0$ and if $a_n/b_n \rightarrow r$, then $E_{a_n/b_n} \rightarrow E_r$

3. Infinite graphs as limit points



Theorem

For any irrational r>2, $d(E_r, E_r^c) = 0$ and if $an/b_n \rightarrow r$, then $E_{an/b_n} \rightarrow E_r^c$

Theorem

$$d(E_{P/q}^{c}, E_{P/q}^{o}) = 0$$
 iff $a_{n/b_{n}} \rightarrow P/q$ from below $\Rightarrow E_{a_{n/b_{n}}} \rightarrow E_{P/q}$.

. "Finite version" of graph limit approach:

auxiliary graph H close to target graph

. "Finite version" of graph limit approach:

auxiliary graph H close to target graph

· Orbit independent sets:

$$\Theta(C_5) = \sqrt{5}$$

$$\alpha(C_5) = 5$$

$$\{t \cdot (1,2) : t \in \mathbb{Z}_5\}$$

$$(Shannon 1956)$$

. "Finite version" of graph limit approach:

auxiliary graph H close to target graph

· Orbit independent sets:

$$\Theta(C_5) = \sqrt{5}$$

$$\alpha(C_5) = 5$$

$$\frac{t \cdot (1,2)}{5} : t \in \mathbb{Z}_5$$

\overline{G}	H	orbit independent set in $H^{\boxtimes k}$	reduction	$\leq \Theta(G)$
$E_{5/2}$	$E_{5/2}$	$\{t\cdot (1,2):t\in \mathbb{Z}_5\}$	H = G	2.23 [Sha56]
$E_{7/2}$	$E_{382/108}$	$\{t \cdot (1,7,7^2,7^3,7^4) : t \in \mathbb{Z}_{382}\}$	$G \leq H$	3.25 [PS19]
$E_{9/2}$	$E_{9/2}$	${s \cdot (1,0,2) + t \cdot (0,1,4) : s, t \in \mathbb{Z}_9}$	H = G	$4.32 \; [\mathrm{BMR}^+ 71]$
$E_{11/2}^{'}$	$E_{148/27}^{'}$	$\{t \cdot (1,11,11^2) : t \in \mathbb{Z}_{148}\}$	$H \leq G$	$5.28 \; [\mathrm{BMR}^+71]$
$E_{13/2}$	$E_{247/38}$	$\{t \cdot (1,19,117) : t \in \mathbb{Z}_{247}\}$	$H \leq G$	$6.27 \ [\mathrm{BMR}^+71]^{18}$
$E_{15/2}$	$E_{2873/381}$	$\{t \cdot (1, 15, 1073, 1125) : t \in \mathbb{Z}_{2873}\}$	$G \leq H$	7.30 (Section 6.2)

Some open problems:

- (1) Determine $\Theta(G)$ via graph limit approach?
- (2) Convergence from below for fraction graphs?
- (3) Are infinite graphs complete?
- (4) What other problems allow asymptotic spectrum duality/distance?