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·
This problem asks for determining the rate of growth of
the independence number of strong powers of graphs :

& (G) := time a (G)
In

n- co

·Wide range of upper and lower bound methods : Shannon (1956),
Lorsz (1979) , Haemers , Alon , Schrijver, ..., Google DeepMind

· Despite this
,
even small instances have remained open , e .g.

odd cycles of length = 7
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·
This talk : building on asymptotic spectrum duality , we develop
new graph limit approach to Shannon capacity

via

asymptotic spectrum distance
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Questions :

- How to construct converging sequences ?
1/

-where to look for graphs that are easier to analyse" ?
We answer both !
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(3) Obtain all best-known lower bounds on Shannon capacity of
small odd cycles from "finite version" of graph limit approach

-> New lower bound (C ,5) = 7. 30139



1
.

Shannon capacity and asymptotic spectrum distance

2. Converging sequences

3. Infinite graphs as limit points

4 .
New lower bound for C,5
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Independence number (G) : 2 3

Strong product GH : graph whose adjacency matrix is the

tensor product of those of G and H

Cohomomorphism GM : if there is a map VIG) - V(H) preserving
independent sets
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Lemma Gi + H = G(Gi)- G(H)

Proof Let 2 > o
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Let Fai , FuEX It. FG(Gi)= (Gi) and FH(M) = &(H) (duality)
⑦ (H) = Fu(n) > Fu(Gi) - E = @(Gi) - c (same with U and G ; swapped) 7

Lemma The following are equivalent : (1) d(G
,
U)=

(2) (GW ...** (MWH(n
+ on)

and G
,
H swapped--

b a

(n + o(n) 11

(3) (Es & G)
*

= ((Ey @ U)WFal
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Ingredients
Lemma 1 [Vrana] G verte transitive

,
SEVIG)

,

FEX
,
then

-

F(GIS] = F(G) =LFGIST) .

Lemma2 [Hell-nesetril] Any fraction graph Ep/g minus a vertex

is equivalent to some fraction graph Ep/g for p'<p , qq
with p . q'-q . p.= 1.

Consequence : FLEpyq) = FLEpq)pF(Epiq)
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Proof Sketch : Let a

,
b coprime .

There are x
,y with x . b -y

. a = 1.

then cub-dna = 1 for cn = X + a . n and dn = y + b
. n

So :
F(Ea) = F(Ecan)= +(a)

Let n + 0
,
then Geo. I

TheoremB For any irrational r22, if Cr/dn-r, then Eculdn is Cauchy.

Proof Sketch : continued fraction convergents:...
Satisfy : AriPn1 - Priq = (1)"

.

[
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Theorem
-

For any irrational r 2 , d(Er, Er = 0 and if an/ba-r , then Earlyn- EU

Theorem
-

d (EP1q . Epiq) = o iff an/brtPlq from below => Earyn -> Eplq
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Some open problems :

(1) Determine & (G) via graph limit approach ?

(2) Convergence from below for fraction graphs ?

(3) Are infinite graphs complete ?

(4) What other problems allow asymptotic spectrum duality/distance ?


