Composition in MT

(halil Sima'ar

Latent Reordering Grammar

Compositional Structure in MT

Khalil Sima'an

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam, The Netherlands

Composition in MT

(halil Sima'ar

Reordering Grammar and Compositional Structure

With Miloš Stanojević

Recursive Translation Equivalence (Phrase Pairs)

Composition in MT

halil Sima'a

Translation equivalents in a parallel corpus:

Sentential trans. equiv. are source-target sentence pairs (given) Atomic translation equivalents = word alignments (induced)

Assumption Translation equivalents limited to phrase pairs

Seek a tree structure explaining sentence level from atomic level:

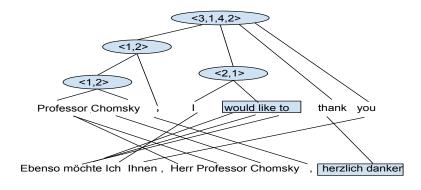
- All phrase pairs covered in a recursive tree structure.
- Tree structure shows subsumption of phrase pairs (composition)
- Tree structure shows recursive reordering (composition)

Which tree structure?

Intuition: Permutation Trees (PETs)

Composition in MT

(halil Sima'a



Interpretation root node: Put first child as third, second as first... Operators are not necessarily binary! (non-ITG).

Factorizing permutations for SCFGs: Permutation Trees (Gildea and Zhang 2006; Zhang et al 2007) Factorizing word alignments (Sima'an and Maillette DBW 2011)

Properties: Permutation Trees (PETs)

Composition in MT

(halil Sima'a

Formal properties (Albert and Atkinson 2005):

- The operators on the PET are unique and non-decomposable: **Prime Permutations!** Example Prime Perms: ⟨1,2⟩, ⟨2,1⟩, ⟨2,4,1,3⟩, ⟨3,1,4,2⟩...
- Every permutation decomposes/factorizes into PETs

Coverage and composition properties:

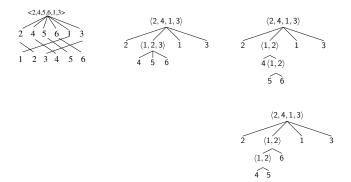
- Every phrase pair is covered by a node in a PET!
- Subsumption of phrases == parent-child for nodes.
- Multiple PETs for same permutation (same operators, different binary bracketting)

Hierarchical Alignment Trees (HATs - Sima'an and MdBW 2011) extend PETs and have similar properties.

Another example: Factorizing permutations

Composition in MT

Suppose the alignments are simplified into permutations over minimal translation units:



Multiple permutation Trees (PETs) per word alignment.

The Hidden Treebank

Composition in MT

halil Sima'a

Word-aligned parallel corpus == Treebank over source sentences:

- PETs obtained from factorizing word alignments. Explaining phrase composition recursively
- PETs go beyong ITG (binarizable permutations). Prime Permutations of any arity.
- Hidden treebank Many PETs from a word alignment. An ambiguous treebank!
- Unlabeled trees: PET nodes do not have labels. Transduction operators on the nodes but no labels.

What to do with a (Hidden) Treebank?

Reminder from treebank parsing

Composition in MT

halil Sima'a

Little reminder from treebank parsing:

- Wall Street Journal treebank for English
- Extract PCFG from treebank (or subtrees)
- Automatically refine treebank labels to fit data

Label refinement with EM

(cf. Prescher 2005; Matsuzaki et al 2005; Petrov 2006/7)

■ ⇒ A PCFG with labels refined to fit data

Refinement reduced ambiguity and increases accuracy.

Among the best results in monolingual parsing.

Apply similar approach to word alignments?

Challenges with PETs Treebank

Composition in MT

(halil Sima'a

PETs Treebank For every word aligned sentence pair:

- **1** Write target positions as a permutation of source positions.
- **2** Factorize permutation into PETs over source sentence.

Manual clustering (Maillette DBW & Sima'an SSST 2013,2014)

Pecularities for applying EM for label refinement:

- No labels! Our PETs do not have node labels like NP, VP!

 Solution Prime Permutations as initial labels.

 Refine prime permutations: Reordering labels!!
 - Hidden! Word alignment defines many PETs, not one! Solution Pack PETs into parse-forest in $O(n^3)$ Induce distribution over PETs!

What to do with Reordering PCFG after learning?

Possible Uses of Reordering Grammar

Composition in MT

- As pre-ordering model
 - As reordering model in phrase systems
 - As synchronous grammar for MT

This talk: Preordering only

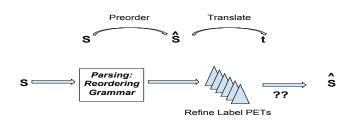
Related work on inducing preordering all with ITG:

- Tromble and Eisner EMNLP 2009. Learn Kendall tau reordering table and use binary trees.
- DeNero and Uszkoreit EMNLP 2011. Induce unlabeled binary tree (brackets), and separately train a reordering model.
- Neubig et al EMNLP 2012. Induce binary trees with separate reordering as well.

First Use Case: Preordering s to ŝ

Composition in MT

halil Sima'a



- 1 Learn (EM) label refined PCFG (Reordering G.)
- 2 Use Reordering Grammar to parse a source sentence Refined node labels correspond to prime perms!
- 3 Obtain reordered version of source sentence.

Reordering Grammar: Because labels are Prime Permutations

Some technical difficulties and solutions

Composition in MT

halil Sima'a

Complexity! Explosion of number of rules.

Unary rule trick makes this manageable.

Unary trick: only pairs of labels

Reordering! We need reordering *not parse trees!* Given refined PCFG \mathcal{G} :

$$rg \max_{\pi} P(\pi) = rg \max_{\pi} \sum_{\Delta \in PETs(\pi)} \sum_{d(\Delta) \in \mathcal{G}} \prod_{r \in d(\Delta)} P(r)$$

Highest probability permutation is NP-Complete (Sima'an 1996)

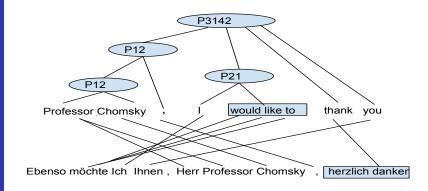
Minimum-Bayes Risk Decoding for reordering computed from PCFG expectations over labele refined PETs optimizing Kendall tau

Details to be released soon

Initial Labels in Hidden Treebank

Composition in MT

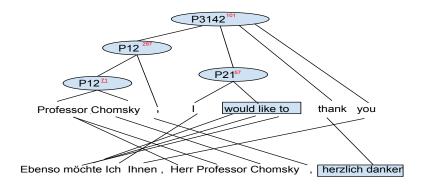
(halil Sima'aı



Refined labels after learning

Composition in MT

Khalil Sima'a



Crucial: Refined labels == Unambiguous for reordering

Experiments English-Japanese

Composition in MT

halil Sima'a

corpus	#sents	#words	#words
corpus		source	target
train reordering	786k	21M	_
train translation	950k	25M	30M
tune translation	2k	55K	66K
test translation	3k	78K	93K

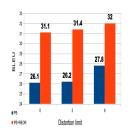
- English-Japanese NTCIR-8 Patent Translation (PATMT).
- Standard dev set (NTCIR-7) en test sets (NTCIR-9).
- Reordering Grammar: 10 iterations of EM (2 days).
- Testing on test set 11 hours.

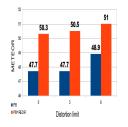
Back-end Phrase-Based System \hat{s} \rightarrow t: 5-gram LM; tuning 3-times with kb-Mira and evaluate with Multeval.

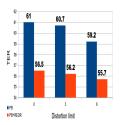
Preordering vs. distortion limit

Composition in MT

Varying distortion limit in back-end system:







Baseline in blue and preordering in red.

- (1) Major improvement by preordering.
- (2) Preordering Grammar works well with all distortion limits!

Preordering with MSD Reordering

Composition in MT

halil Sima'a

Lexicalized (MSD) reordering back-end system + distortion=6:

Metric	System	Avg	p-value
BLEU ↑	PB MSD	29.6	-
	PB MSD + REOR	32.4	0.00
METEOR ↑	PB MSD	50.1	-
	PB MSD + REOR	51.3	0.00
TER ↓	PB MSD	58.0	-
	$PB\;MSD+REOR$	55.3	0.00

MSD improves over distortion model but

Preordering Grammar still gives major improvement.

Preordering vs Hierarchical Model (Hiero)

Composition in MT

Preordering does not have access to target words.

Hence: Preordering cannot solve all reorderings!

But how does Preordering Grammar fair against Hiero?

Preordering vs Hierarchical Model (Hiero)

Composition in MT

Preordering does not have access to target words.

Hence: Preordering cannot solve all reorderings!

But how does Preordering Grammar fair against Hiero?

Metric	System	Avg	p-value
BLEU ↑	Hiero	32.6	-
	$PB\;MSD + REOR$	32.4	0.16
METEOR ↑	Hiero	52.1	-
	$PB\;MSD+REOR$	51.3	0.00
TER ↓	Hiero	54.5	-
	$PB\;MSD+REOR$	55.3	0.00

Preordering Grammar insignificantly different from Hiero!

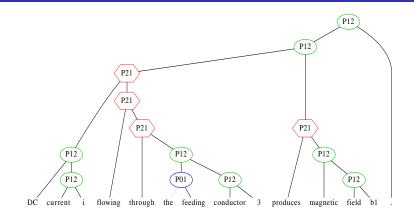
Preordering Grammar only on source side!

- No synchronous grammar: PCFG
- No lexicalized reordering: reordering labels
- No long tables: compositional and learned from data!

Summary of results and example

Composition in MT

halil Sima'a



- the article "the" does not have an equivalent in Japanese,
- verbs go after their object
- use postpositions instead of prepositions
- prefer grouping certain syntactic units (in this example NPs and VPs)

Summary of talk

Composition in MT

(halil Sima'a

Topic Composition and translation equivalence.

- How to fit monolingual syntax to MT?
- This demands statistical learning on parallel data
- Not a proper fit and not likely to always improve
- Reverse question for MT:

Which structure underlies data?

- Factorizing word alignments (or learning bilingual trees)
- PETs and Hierarchical Alignment Trees (HATs)
- Reordering Grammar learned by refining permutations
- Gives improved performance for pre-ordering