Latent Reordering Grammar

Compositional Structure in MT

Khalil Sima’an

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam, The Netherlands
Reordering Grammar and Compositional Structure

With Miloš Stanojević
Recursive Translation Equivalence (Phrase Pairs)

Translation equivalents in a parallel corpus:

Sentential trans. equiv. are source-target sentence pairs (given)

Atomic translation equivalents = word alignments (induced)

Assumption Translation equivalents limited to phrase pairs

Seek a tree structure explaining sentence level from atomic level:

- All phrase pairs covered in a recursive tree structure.
- Tree structure shows subsumption of phrase pairs (composition)
- Tree structure shows recursive reordering (composition)

Which tree structure?
Intuition: Permutation Trees (PETs)

Interpretation root node: Put first child as third, second as first...
Operators are not necessarily binary! (non-ITG).

Factorizing permutations for SCFGs: Permutation Trees (Gildea and Zhang 2006; Zhang et al 2007)
Factorizing word alignments (Sima’an and Maillette DBW 2011)

Ebenso möchte Ich Ihnen, Herr Professor Chomsky, herzlich danken.
Professor Chomsky, I would like to thank you.
Properties: Permutation Trees (PETs)

Formal properties (Albert and Atkinson 2005):

- The operators on the PET are unique and non-decomposable: **Prime Permutations**!

 Example Prime Perms: \(\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 4, 1, 3 \rangle, \langle 3, 1, 4, 2 \rangle \ldots \)

- Every permutation decomposes/factorizes into PETs

Coverage and composition properties:

- Every phrase pair is covered by a node in a PET!
- Subsumption of phrases \(\Rightarrow \) parent-child for nodes.
- Multiple PETs for same permutation (same operators, different binary bracketting)

Hierarchical Alignment Trees (HATs – Sima’an and MdBW 2011) extend PETs and have similar properties.
Another example: Factorizing permutations

Suppose the alignments are simplified into permutations over minimal translation units:

Multiple permutation Trees (PETs) per word alignment.
Word-aligned parallel corpus \iff Treebank over source sentences:

- PETs obtained from factorizing word alignments. Explaining phrase composition recursively

- PETs go beyong ITG (binarizable permutations). Prime Permutations of any arity.

- Hidden treebank Many PETs from a word alignment. An ambiguous treebank!

- Unlabeled trees: PET nodes do not have labels. Transduction operators on the nodes but no labels.

What to do with a (Hidden) Treebank?
Reminder from treebank parsing

Little reminder from treebank parsing:

- Wall Street Journal treebank for English
- Extract PCFG from treebank (or subtrees)
- Automatically refine treebank labels to fit data

Label refinement with EM

(cf. Prescher 2005; Matsuzaki et al 2005; Petrov 2006/7)

⇒ A PCFG with labels refined to fit data

Refinement reduced ambiguity and increases accuracy.

Among the best results in monolingual parsing.

Apply similar approach to word alignments?
Challenges with PETs Treebank

PETs Treebank For every word aligned sentence pair:

1. Write target positions as a permutation of source positions.
2. Factorize permutation into PETs over source sentence.

Manual clustering (Maillette DBW & Sima’an SSST 2013,2014)

Peculiarities for applying EM for label refinement:

No labels! Our PETs do not have node labels like NP, VP!
Solution Prime Permutations as initial labels.
Refine prime permutations: Reordering labels!!

Hidden! Word alignment defines many PETs, not one!
Solution Pack PETs into parse-forest in $O(n^3)$
Induce distribution over PETs!

What to do with Reordering PCFG after learning?
Possible Uses of Reordering Grammar

- As pre-ordering model
- As reordering model in phrase systems
- As synchronous grammar for MT

This talk: Preordering only

Related work on inducing preordering all with ITG:

- DeNero and Uszkoreit EMNLP 2011. Induce unlabeled binary tree (brackets), and separately train a reordering model.
- Neubig et al EMNLP 2012. Induce binary trees with separate reordering as well.
First Use Case: Preordering s to \hat{s}

1. Learn (EM) label refined PCFG (Reordering G.)
2. Use Reordering Grammar to parse a source sentence
 Refined node labels correspond to prime perms!
3. Obtain reordered version of source sentence.

Reordering Grammar: Because labels are Prime Permutations
Some technical difficulties and solutions

Complexity! Explosion of number of rules.
Unary rule trick makes this manageable.
Unary trick: only pairs of labels

Reordering! We need reordering *not parse trees!*
Given refined PCFG G:

$$
\arg \max_{\pi} P(\pi) = \arg \max_{\pi} \sum_{\Delta \in PETs(\pi)} \sum_{d(\Delta) \in G} \prod_{r \in d(\Delta)} P(r)
$$

Highest probability permutation is NP-Complete (Sima’an 1996)

Minimum-Bayes Risk Decoding for reordering computed from PCFG expectations over label refined PETs optimizing Kendall tau

Details to be released soon
Ebenso möchte Ich Ihnen, Herr Professor Chomsky, herzlich danken.

Professor Chomsky, I would like to thank you.

Ebenso möchte Ich Ihnen, Herr Professor Chomsky, herzlich danken.
Refined labels after learning

Crucial: Refined labels == Unambiguous for reordering

Professor Chomsky, I would like to thank you.

Ebenso möchte ich Ihnen, Herr Professor Chomsky, herzlich danken.
Experiments English-Japanese

<table>
<thead>
<tr>
<th>corpus</th>
<th>#sents</th>
<th>#words source</th>
<th>#words target</th>
</tr>
</thead>
<tbody>
<tr>
<td>train reordering</td>
<td>786k</td>
<td>21M</td>
<td>–</td>
</tr>
<tr>
<td>train translation</td>
<td>950k</td>
<td>25M</td>
<td>30M</td>
</tr>
<tr>
<td>tune translation</td>
<td>2k</td>
<td>55K</td>
<td>66K</td>
</tr>
<tr>
<td>test translation</td>
<td>3k</td>
<td>78K</td>
<td>93K</td>
</tr>
</tbody>
</table>

- Standard dev set (NTCIR-7) en test sets (NTCIR-9).
- Reordering Grammar: 10 iterations of EM (2 days).
- Testing on test set 11 hours.

Back-end Phrase-Based System $\hat{s} \rightarrow t$: 5-gram LM; tuning 3-times with kb-Mira and evaluate with Multeval.
Preordering vs. distortion limit

Varying distortion limit in back-end system:

Baseline in blue and preordering in red.

(1) Major improvement by preordering.

(2) Preordering Grammar works well with all distortion limits!
Preordering with MSD Reordering

Lexicalized (MSD) reordering back-end system + distortion=6:

<table>
<thead>
<tr>
<th>Metric</th>
<th>System</th>
<th>Avg</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLEU ↑</td>
<td>PB MSD</td>
<td>29.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PB MSD + REOR</td>
<td>32.4</td>
<td>0.00</td>
</tr>
<tr>
<td>METEOR ↑</td>
<td>PB MSD</td>
<td>50.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PB MSD + REOR</td>
<td>51.3</td>
<td>0.00</td>
</tr>
<tr>
<td>TER ↓</td>
<td>PB MSD</td>
<td>58.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PB MSD + REOR</td>
<td>55.3</td>
<td>0.00</td>
</tr>
</tbody>
</table>

MSD improves over distortion model but Preordering Grammar still gives major improvement.
Preordering vs Hierarchical Model (Hiero)

Preordering does not have access to target words.
Hence: Preordering cannot solve all reorderings!

But how does Preordering Grammar fair against Hiero?
Preordering vs Hierarchical Model (Hiero)

Preordering does not have access to target words.
Hence: Preordering cannot solve all reordering!

But how does Preordering Grammar fair against Hiero?

<table>
<thead>
<tr>
<th>Metric</th>
<th>System</th>
<th>Avg</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLEU ↑</td>
<td>Hiero</td>
<td>32.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PB MSD + REOR</td>
<td>32.4</td>
<td>0.16</td>
</tr>
<tr>
<td>METEOR ↑</td>
<td>Hiero</td>
<td>52.1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PB MSD + REOR</td>
<td>51.3</td>
<td>0.00</td>
</tr>
<tr>
<td>TER ↓</td>
<td>Hiero</td>
<td>54.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PB MSD + REOR</td>
<td>55.3</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Preordering Grammar insignificantly different from Hiero!

Preordering Grammar only on source side!
- No synchronous grammar: PCFG
- No lexicalized reordering: reordering labels
- No long tables: compositional and learned from data!
Summary of results and example

- the article “the” does not have an equivalent in Japanese,
- verbs go after their object
- use postpositions instead of prepositions
- prefer grouping certain syntactic units (in this example NPs and VPs)
Summary of talk

Topic Composition and translation equivalence.

- How to fit monolingual syntax to MT?
- This demands statistical learning on parallel data
- Not a proper fit and not likely to always improve

Reverse question for MT:

Which structure underlies data?

- Factorizing word alignments (or learning bilingual trees)
- PETs and Hierarchical Alignment Trees (HATs)
- Reordering Grammar learned by refining permutations
- Gives improved performance for pre-ordering