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MT at ILLC-UvA

Statistical Language Processing and Learning Lab.

Main topics within SLPL

Machﬁne Translation

* Syntax-driven SMT (learning, decoding)
« Learning latent reordering for translation

* Hierarchical models with morph. And syntax

« Data-powered Adaptation

Linguistics Statistical Learning

« SLPL Lab (Growing: 8 PhD students; 4 postdocs; Programmer)
* Five projects on Statistical MT (2012—2019)

This talk: Big Data and DatAptor (Feb 2013 - Feb 2017)



BIG DATA
What Comes to Mind?



BIG DATA

" Data Data Data Data ...

(Repeated many many ﬂmes)



BIG DATA

Everyone wants big data

(Does anyone know what for?)



BIG DATA
What comes to mind?

» Efficient computing e Saturated statistics

Big storage + Fast search o
. Diversity Just count and divide

Quiality differences Simple models are enough

Noise; Difficult statistics ... [cf. The Unreasonable Effectiveness of

Data. Halevy, Norvig and Pereira 2009.]
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Quality differences. Simple models are enough.
Noise, difficult statistics ... [cf. The Unreasonable Effectiveness of

Data. Halevy, Norvig and Pereira 2009.]

Diversity also offers advantages
» Language use (different domains)

* Translators practice and guidelines
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DaitApior Project



DatAptor Project 2013-2017
veclhimelegly IFeundaiion Si (KINC)

Data-Powered Partners (User Board)
Domain-Specific ©OTAUS
. . - ECDGT
Translation Services
* Intel Inc.
on Demand . Symantec

Researchers (SLPL, ILLC, UvA)

Dr Khalil Sima'an (principal investigator)

Dr Christof Monz (senior researcher)

Dr Bart Mellebeek (postdoc: Jan 2013)
Milos Stanojevic (PhD student: March 2013)

Vacancies: postdoc + programmer



DatAptor Motivation
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Versatile adaptation needed

* Potential demand vs. current demand
» Continuously increasing text volumes

 Large variablility in kinds of texts (domains)

 Changing translation market

+ Changing domains, e.g. shifting international
trade/cultural/... exchange

+ Changing acceptance for automatic translation

Versatile adaptation of MT Engines? How?



So many domains... so little time...

Versatile Build an MT System

sports; news; politics; financial; banking;
« For every domain of language use  » automotive; drugs; food;

scientific articles: ....

° AUtomatica”y and rapidly —> Minimal human intervention
 On demand: user specs. 5 User supplied example texts to be
translated

A population of MT Systems!



Current Practice
Tiny Data Adaptation



Current Practice
Tiny Data Adaptation

\ PRI
DATAin $ « = «» MTIn
D AT A out \‘ | ' 4

(News)




Current Practice
Tiny Data Adaptation

a DATAo.ut

(News)




Tiny Data Adaptation

Current Practice

Task
Build MT system from tiny in-domain data
using whatever out-of-domain data exists

Theoretically Challenging, interesting, very difficult

Practice Assumptions maybe too strong

Alternative Scenario
BIG DATA Adaptation




Big Data == Diversity




DatAptor Hypothesis
Blg Data

Metaphore

Imagine a world of translators

A translator: background + experience
A translator for every situation

For every new translation order
Find the best suitable translator




DatAptor Hypothesis
Blg Data == D]versity

Metaphore
Imagine a world of translators

» A translator for every situation
« Atranslator with own background and experience

For every new translation order

Find the best suitable translator

If (Big Data == A World of Domains”)
Diversity enables rapid adaptation to new domain
“Find the most suitable MT system in the Data”



DatAptor Challenges |

INPUT: User documents fromm some domain + BIG DATA

OUTPUT: SMT system adapted for domain

 Distill from BIG DATA a suitable training data
Weigh some documents as more relevant than others

 Train SMT system on distilled data.

Map of BIG DATA
« Efficiency for distilling suitable training data
Map: the more related, the closer to each other on the map

 How to measure domain similarity?

Statistical (hierarchical-)topic similarity; translation-equivalence and
Instance weighting ...



BIG DATA
VS.

BIG Trans. DATA



BIG T-DATA
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~ Translation Data
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BIG DATA

Translation Equations

Vil=7
Meaning Equations

Domain Diversity

Topic Similarity(?)
Vel = Il 5+2="7

Semantic Equation
Vil = (VHI) = (B+2) = 7

Semantic Similarity(?)

AN




~ Translation Data

Translation Equations

Vi
Meaning Equations

VIl = Wil 542=1
Semantic Equation

=]
—

Vil = (V1) = (5+2) =

BIG T-DATA

BIG DATA

Domain Diversity

Topic Similarity(?)

7

More ... Many More
Accurate
Topic/Semantic
Equations/Similarity relations

Semantic Similarity(“
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DatAptor Challenges Il

» User-Driven Data-Powered Adaptation
* Recursive, Hierarchical Meaning Equations

Structures translation equations, Better reordering

Better fit with morpho-syntax; = Deeper’” meaning equations

=Y
=Y + =0




To conclude

Big Trans. Data
 Enables Data-Powered Adaptation (DatAptation)

» Statistics over Meaning Equations”
 More than MT? Language understanding!

Thank you!
k.simaan@uva.nl
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