Exercise 1. Let *B* be a cyclic group (finite or infinite).

(a) Give an injective resolution of B in the category Ab of abelian groups.

Let A be an abelian group. Recall that the right derived functors of the left exact functor $\operatorname{Hom}(A, -)$ are denoted by $\operatorname{Ext}^{i}(A, -)$. Now let A and B be cyclic groups (finite or infinite). (b) Compute $\operatorname{Ext}^{i}(A, B)$ for all $i \geq 0$.

Exercise 2. Let X be a regular integral scheme separated and of finite type over a field k. Assume that dim X = 1. Consider the exact sequence

$$(*) \qquad 0 \to \mathcal{O}_X \to \mathcal{K}_X \to \mathcal{K}_X / \mathcal{O}_X \to 0$$

in $\operatorname{Mod}(\mathcal{O}_X)$, where \mathcal{K}_X is the constant sheaf associated to the function field K_X of X. (a) Let |X| denote the set of closed points of X. Show that there is a natural isomorphism

$$\mathcal{K}_X/\mathcal{O}_X \xrightarrow{\sim} \bigoplus_{P \in |X|} i_*(K_X/\mathcal{O}_P)$$

where we consider K_X/\mathcal{O}_P as \mathcal{O}_P -module, and $i: \{P\} \to X$ is the inclusion map.

- (b) Show that the exact sequence (*) is a flasque resolution of \mathcal{O}_X .
- (c) Show that there is a natural isomorphism of k-vector spaces

$$\mathrm{H}^1(X, \mathcal{O}_X) \xrightarrow{\sim} \mathrm{Coker}(K \to (\mathcal{K}_X/\mathcal{O}_X)(X)).$$

(d) Show (without using Grothendieck's vanishing theorem) that $\mathrm{H}^{i}(X, \mathcal{O}_{X}) = (0)$ for i > 1.

(e) In the case $X = \mathbf{P}_k^1$, show that $\mathrm{H}^1(X, \mathcal{O}_X) = (0)$.