AAG, WEEK 8: EXERCISES

- (1) Let $f: X \to Y$ be a finite morphism. Assume that Y is locally noetherian. Show that X is locally noetherian. Show that $f_*\mathcal{F}$ is coherent for every coherent \mathcal{O}_X -module \mathcal{F} .
- (2) Let R be a commutative ring, V a free R-module of finite rank and $\psi: V \times V \to R$ an R-bilinear form. Consider the functors

$$S \mapsto \operatorname{Aut}_S(S \otimes_R V)$$

and

$$S \mapsto \left\{ \alpha \in \mathrm{GL}(V)(S) \mid \forall x, y \in S \otimes_R V, \psi(\alpha(x), \alpha(y)) = \psi(x, y) \right\}$$

from R-algebras to groups.

- (a) Show that these are representable by affine group schemes (which we denote by $\operatorname{GL}(V)$ and $\operatorname{O}(V, \psi)$ respectively). Show that the natural map $\operatorname{O}(V, \psi) \to \operatorname{GL}(V)$ is a closed immersion.
- (b) Let $R = \text{Spec } \mathbf{Z}, V = \mathbf{Z}^n$ and ψ the standard inner product. Show that the determinant defines a morphism of group schemes $O(V, \psi) \to \mu_2$.