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Abstract
We prove: For all n and all n-cylic isometriesφ : ΛQ → ΛQ of the rational K3 lattice

there exists an algebraic realization of φ, i.e. marked algebraic K3 surfaces (S,ηS)
and (M,ηM), whereM is a moduli space of sheaves on S, and a Hodge isometry
ψ : H2(S,Q)→ H2(M,Q) such that φ = ηM ◦ψ ◦ η−1

S .

1 Facts about cyclic isometries
We need the existence of a triple ((S,ηS), (M,ηM),ψ) to have a point in our moduli space
from which to start deforming. The moduli space will be seen to be covered by “twistor
lines” and deformations of our examples along these lines will be described in a later
talk.
We begin by recalling our essential definition.

Definition 1.1. Let L1 and L2 be lattices. An isometry ϕ : L1 ⊗Z Q → L2 ⊗Z Q is called
n-cyclic if

L1
ϕ−1(L2) ∩ L1

∼= Z/nZ

By O(L) we denote the (integral) isometry group of L and by O(LQ) the (rational)
isometry group of LQ. By Λwe denote the K3 lattice U⊕3 ⊕ (−E8)

⊕2.

Definition 1.2. For any φ ∈ O(ΛQ) of n-cyclic type its double orbit [φ] is given by
O(Λ)φO(Λ) ⊆ O(ΛQ).

The following result says that all n-cyclic isometries of the K3 lattice are conjugate to
each other using integral isometries. This will be helpful later, since we can just produce
a Hodge isometry associated to some n-cyclic isometry of the K3 lattice (not necessarily
the the one we started with), and then conjugate it from there.

Proposition 1.3 (Proposition 3.3 in [Bus15]). Let φ1 and φ2 be rational isometries of ΛQ of
n-cyclic type. Then [φ1] = [φ2].

The proof of Proposition 1.3 is lattice-theoretic and very technical. We will skip it.
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2 Mukai’s construction of Hodge isometries
Let S be a K3 surface. In addition to the usual weight 2 Hodge structure on H2(S,Z)
there is another weight 2 structure on H•(S,Z), originally defined by Mukai. Observe
that since we are on a K3 surface the cohomology ring is equal to the even cohomology
ring, i.e. we have H•(S,Z) = H0(S,Z)⊕H2(S,Z)⊕H4(S,Z).

Definition 2.1. Define a Hodge structure H̃(S,Z) on H•(S,Z) as follows:

H̃2,0(S,C) = H2,0(S,C)

H̃1,1(S,C) = H0(S,C)⊕H1,1(S,C)⊕H4(S,C)

H̃0,2(S,C) = H0,2(S,C)

We endow H̃(S,Z) with the pairing (·, ·) of Mukai vectors.

Remark 2.2. Observe that H̃1,1(S,C) =
⊕2
p=0H

p,p(S,C). This means that Hodge isome-
tries of the twiddled Hodge structure naturally arise by intersecting with Chern classes
(which are pure of type (p,p)). It alsomeans thatMukai vectors are elements of H̃1,1(S,Z).

The pairing can bewritten explicitly as follows. Letα = (a0,a2,a4) andβ = (b0,b2,b4) ∈
H•(S,Z). Then

(α,β) = −a0b4 + a2b2 − a4b0

Now fix a Mukai vector v such thatM =M(v) is itself a K3 and there exists a universal
locally free sheaf E on S×M. We write v = (r, c1, c21/2−c2+ r) and denote the projection
maps of S×M by

S×M M

S

πM

πS

The starting point of our construction is the following “Fourier–Mukai type” map.

Definition 2.3. We construct a map

fE∨ : H•(S,Q)→ H•(M,Q)

by setting
fE∨(−) = πM,∗(v

∨(E) · π∗S(−))

Remark 2.4. The same can be done for a quasi-universal sheaf E. Then the Mukai vector
v∨(E) has to be multiplied by 1/s where s is the similitude of E.

Let v⊥ be the orthogonal complement of the Mukai vector v in H̃(S,Z). Since (v, v) = 0
we have v ∈ v⊥. Then (v⊥/Zv) ⊗ Q is free of rank 22. The following theorem was
originally proven by Mukai.
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Theorem 2.5 ([HL10], Prop. 6.1.13 and Theorem 6.1.14). The map fE∨ is a Hodge isometry
H̃(S,Z) → H̃(M,Z). Furthermore, it induces a Hodge isometry f̃E∨ : v⊥/Zv → H2(M,Z),
independent of the choice of universal sheaf E.

Remark 2.6. It is not hard to see that there is actually a Hodge isometry H2(S,Q) →
(v⊥/Zv)⊗Q and hence fE∨ induces a rational Hodge isometry between H2(S,Q) and
H2(M,Q). First define

ϕ : H2(S,Q)→ H̃(S,Q), w 7→ (0,w, c1 ·w/r)

Since
(ϕ(w), v) = −w · c1 +

c1 ·w
r
· r = 0

we have im(ϕ) ⊆ v⊥ ⊗ Q. Clearly v 6∈ im(ϕ) since r > 0, hence the induced map
H2(S,Q)

ϕ−→ (V/Zv)⊗Q is an injective map between vector spaces of the same dimension,
hence an isomorphism. We see thatH2,0(S,C) ismapped to H̃2,0(S,C) and the intersection
pairing is preserved since ((0,w1, c1 ·w1/r), (0,w2, c1 ·w2/r)) = w1 ·w2.

3 The kappa class and the induced Hodge isometry
Wewill later deform S×M together with the universal sheaf to obtain the main theorem.
Since sheaves do in general not stay “untwisted” under these deformations, we need to
consider twisted sheaves. The definition and properties will be given in a later talk; for
now think of a twisted sheaf on a scheme X as a collection of sheaves on an open cover of
X, glued together by a Čech 2-cocyle. We reformulate Mukai’s result for twisted sheaves
so that we can use it later in greater generality.
Let E be a twisted locally free sheaf of rank r on a compact complex manifold X. One

can check that the sheaf E⊗r ⊗ det(E∨) is an untwisted locally free sheaf of rank rr (we
cannot check this here since we do not even have a definition). Hence the notion of Chern
class makes sense. Let

Sqrtr(x) = r+
1
rr
(x− rr) +

1− r
r2r+1 (x− r

r)2 + . . .

be the formal power series of the r-th root function centered at rr. Since our sheaf has
rank rr its Chern character has constant term rr, so we can apply Sqrtr to it. Then we set

κ(E) = Sqrtr
(
ch(E⊗r ⊗ det(E∨))

)
If we take E to actually be an untwisted locally free sheaf then we can expand

ch(E⊗r ⊗ det(E∨)) = ch(E)r ch
(
det(E)∨

)
= ch(E)r exp(−c1(E))

hence we can take the r-th root and arrive at

κ(E) = ch(E) exp(−c1(E)/r)

3



The class µ = κ(E∨)
√

Td(S×M) induces a map ϕE∨ : H•(S,Q) → H•(M,Q) by push-
pull and intersecting, i.e. ϕE∨(c) = πM,∗(µ · π∗S(c)). Let ψE be the composition

H2(S,Q)
ι−→ H•(S,Q)

ϕ
E∨−−−→ H•(M,Q)

pr2−−→ H2(M,Q)

This map ψE will later be shown to be of cyclic type.

Theorem 3.1. Let E be a universal sheaf on S ×M. Then the map ψE is a Hodge isometry
between H2(S,Q) and H2(M,Q).

In order to prove this, we first analyze the map ϕE∨ . Note that the universal sheaf
E is untwisted, hence we can expand the kappa class. Let α = c1(E|S×{m})/r and
β = c1(E|{s}×M)/r. Then c1(E)/r = α+ β and we have

κ(E∨)
√
TdS×M = v(E∨)eπ

∗
Sαeπ

∗
Mβ

Hence using the projection formula we can express ϕE∨ as

ϕE∨(c) = πM,∗(π
∗
S(c) · v(E∨) · eπ∗Sαeπ∗Mβ)

= eβ · πM,∗(π
∗
S(c · eα) · v(E∨))

i.e. ϕE∨ = eβ ◦ fE∨ ◦ eα where eα and eβ are the maps given by multiplication with the
respective class. Observation: Multiplication by eα = 1+α+α2 is a Hodge isometry of
H̃(S,Q). We can check

(w1 · eα,w2 · eα) = −

∫
w∨

1 · e−α ·w2 · eα = −

∫
w∨

1 ·w2 = (w1,w2)

Now consider the following diagram

H2(S,Q) H2(M,Q)

eαH2(S,Q) fE∨(eαH2(S,Q))

v⊥ ∩ (H2(S,Q)⊕H4(S,Q))

v⊥/Qv H2(M,Q)

ψE

eα pr2 ◦eβ

=

∼=
f̃E∨

We make two further observations:

• eαH2(S,Q) is contained in v⊥, since (eα ·c, v) = −rα ·c+c ·c1 = 0 for c ∈ H2(S,Q).

• eαH2(S,Q) ∩Qv = {0}. This is clear since r > 0 is the H0-piece of v.
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Since eαH2(S,Q) is a 22-dimensional subspace of the 23-dimensional vector space v⊥
and v 6∈ eαH2(S,Q) we have v⊥ = Qv⊕ eαH2(S,Q). This explains the isomorphisms on
the left side of the diagram. In order to prove that ψE is a Hodge isometry we just have
to prove that pr2 ◦eβ ◦ fE∨ is a Hodge isometry on eαH2(S,Q).
Lemma 3.2. The image of v⊥ under fE∨ has no H0(M,Q)-component.
Proof. Anything nontrivial in H0(M,Q) comes from pushing down classes in H0(M)⊗
H4(S), and since in the expression fE∨(c) = πM,∗(π

∗
S(c) · v(E)) the H0(M) ⊗ H•(S)-

component of v(E∨) is just v∨, the part in H0(M)⊗H4(S) is (v, c) = 0.

Now looking at pr2 ◦eβ : H2(M,Q) ⊕ H4(M,Q) → H2(M,Q) we see that it is in fact
the same as the projection map, and the Mukai form is preserved. Hence pr2 ◦eβ ◦ fE∨

being a Hodge isometry is equivalent to
• fE∨ being a Hodge isometry on eαH2(S,Q) and

• the image of eαH2(S,Q) under fE∨ has empty intersection with H4(M,Q).
Looking again at the diagram, we invoke the theorems of Mukai showing that fE∨ and
f̃E∨ are Hodge isometries. Then we see that, just by dimension reasons, the intersection
of the image of fE∨ with H4(M,Q) is empty. Hence ψE is a Hodge isometry as well.

4 The isometry ψE is of cyclic type
We fix a Mukai vector v = (r,α, s)with (v, v) = 0 and such that there exists a universal
sheaf on S×M. As we have just proved, the class Z̃E∨ = κ(E∨)

√
Td(S×M) determines

fE∨ and hence the rational Hodge isometry ψE : H
2(S,Q) → H2(M,Q). Let L be the

cohomology lattice L = H2(S,Z) and let IψE
= ψ−1

E (H2(M,Z)) ∩ L. We want to show
that L/IψE

is a cyclic group.
We begin by computing

√
Td(M× S). If [S] and [M] denote the Poincaré dual of a

point of S andM, respectively, then:√
Td(S×M) =

√
π∗S Td(S)

√
π∗M Td(M)

=
√

1+ 2π∗S[S]
√

1+ 2π∗M[M]

= (1+ π∗S[S])(1+ π∗M[M])

= 1+ π∗S[S] + π∗M[M] + π∗S[S] · π∗M[M]

The map ψE is determined completely by the H6-part of the image of ϕE∨ in H•(S×M),
i.e. the degree 6 part of

π∗S(c) · κ(E∨) ·
√
Td(S×M)

where c ∈ H2(S,Q). Since
√
Td(S×M) lives in degrees 0, 4 and 8 and π∗S(c) ∈ H2(S×M)

the degree 6 part of this expression consists of π∗S(c) · κ2(E∨) and

π∗S(c) · (π∗S[S] + π∗M[M]) = π∗S(c · [S]) + π∗S(c) · π∗M[M]

= π∗S(c) · π∗M[M]
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since c · [S] ∈ H6(S,Z) = 0. But if we push down the rest we get

πM,∗(π
∗
S(c) · π∗M[M]) = [M] · πM,∗π

∗
S(c) = 0

by the push-pull formula since πM,∗ sends H2(S×M,Z) to 0. Hence ψE is completely
determined by κ2(E∨), which can be calculated as

κ2(E
∨) =

[
ch(E∨) exp(c1(E)/r)

]
2

=

[
(r− c1(E) + ch2(E) + · · · )

(
1+ c1(E)

r
+
c21(E)

2r2
+ · · ·

)]
2

= ch2(E) −
c21(E)

2r

We want to find out when exactly πM,∗(κ2(E
∨) · π∗S(c)) is integral for integral classes

c ∈ H2(S,Z). We already know that ch2(E) is integral, since c2(E) is and c21(E) is even
because the intersection form is even. Therefore we only have to find out when c21(E)/2r
is integral. Let β = c1(E

∨|{s}×M) ∈ H2(M)⊗H0(S). We have

c21(E)

2r
=

(π∗S(α) + π
∗
M(β))2

2r

=
π∗S(α

2)

2r
+
π∗S(α) · π∗M(β)

r
+
π∗M(β2)

2r

The first term induces the zero map because π∗S(α2) · π∗S(c) is the pullback of a degree 6
class on S (and there are none). The third term also induces the zero map by

πM,∗(π
∗
M(β2) · π∗S(c)) = β2 · πM,∗π

∗
S(c) = 0

since πM,∗ sends H2(S×M,Z) to 0, as before.
So the only relevant term is the second one and it induces a map

πM,∗

(
π∗S(α) · π∗M(β)

r
· π∗S(c)

)
=

1
r
β · πM,∗π

∗
S(α · c)

= (α, c)β
r

We write α = k · x and β = j · y where x ∈ L and y ∈ H2(M,Z) are primitive classes.
Hence the induced map is given by

γ 7→ jk(x,γ)
r

y

Then ψE takes integral values precisely on the sublattice

IψE
=

{
γ ∈ L s.t. jk

r
(γ, x) is integral

}
=

{
γ ∈ L s.t. (γ, x) is divisible by r

gcd(jk, r)

}
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Now we consider L/IψE
. By the unimodularity of L we can choose w ∈ L such that

(w, x) = 1. Then for every γ ∈ L our previous map sends

γ− (x,γ)w 7→ jk(x,γ) − jk(x,γ)(x,w)
r

y = 0

so ψE is certainly integral for elements of this form. Hence L is generated by IψE
and

w. This implies L/IψE
is generated by [w], hence is a cyclic group. This group has order

r/ gcd(jk, r) which means ψE is cyclic of this order.
We are now in a position to prove the main theorem of this talk:

Theorem 4.1 (Conclusion 3.10 in [Bus15]). For any isometry φ : ΛQ → ΛQ of n-cyclic type
there exist marked projective K3 surfaces (S,ηS) and (M,ηM), where M is a moduli space of
rank n sheaves on S, slope-stable with respect to an ample divisor H ∈ Pic(S), a universal locally
free family E over S×M and a rational Hodge isometry ψ : H2(S,Q)→ H2(M,Q) induced by
κ(E)

√
Td(S×M) such that φ = ηM ◦ψ ◦ η−1

S .

We are going to use the following result (which is more or less a collection of results
from the previous talk):

Lemma 4.2 (Corollary 4.6.7 in [HL10]). Let S be a K3 surface andH an ample line bundle
on S. If gcd(r, c1 ·H, c21/2 − c2) = 1 then there exists a universal family on the moduli
spaceM of sheaves with this Mukai vector, andMs = M. HenceM is a smooth and
irreducible K3 surface, parametrizes stable locally free sheaves and the universal sheaf E
is itself locally free.

Select any integer n > 0. We will construct the objects in our theorem, starting with S,
M and a Hodge isometry. Choose an s > 0 with gcd(n, s) = 1. and choose a general K3
surface S in the moduli space Fsn+1 of K3 surfaces of genus sn+ 1. Then Pic(S) = ZH
for some ample class H. We have H2 = 2 · (sn+ 1) − 2 = 2sn. Consider the Mukai vector
v = (n,H, s). Then

(v, v) = −2ns+H2 = 0

and

gcd(n,H2,H2/2− s) = gcd(n, 2sn, sn− s)

= gcd(n, sn− s)

= gcd(n, s)
= 1

so the hypotheses of Lemma 4.2 are satisfied. This gives us ourM. SinceM is Hodge
isometric to Swe have PicM = ZĤ for a primitive ample class Ĥ. By Proposition 1.1 and
Theorem 1.2 of [Muk99] we have Ĥ2 = H2.

Remark 4.3. Mukai proves this using specialization to a particular K3 surface of Picard
rank 2.
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By the same results we can twist the universal sheaf E by a line bundle coming from
M in such a way that

c1(E) = π
∗
S(H) + jπ

∗
M(Ĥ)

for an integer j with js ≡ 1 mod n. This implies gcd(j,n) = 1. Setting r = n, our
discussion of ψE yields a Hodge isometry between S andM which is of n-cyclic type.
Set ψ = ψE.
Now we apply the double orbit theorem. Take any markings η1 and η2 of S andM,

respectively. This means we have three Hodge isometries

η1 : H
2(S,Z)→ Λ, η2 : H

2(M,Z)→ Λ, ψ : H2(S,Q)→ H2(M,Q)

Then φ1 = η2 ◦ψ ◦η−1
1 : ΛQ → ΛQ is a rational n-cyclic isometry. By the result on double

orbits, Proposition 1.3, we have [φ1] = [φ], i.e. there exist a,b ∈ O(Λ) with φ = aφ1b.
Then ηS = b−1η1 and ηM = aη2 are the markings we were looking for.
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