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Abstract. The Woods Hole trace formula is a kind of Lefschetz
fixed point theorem for coherent cohomology on algebraic vari-
eties. We explain how it leads to a characteristic-p-valued version
of the sheaves-functions dictionary of Deligne, relating Fq-valued
functions on the rational points of varieties over Fq to coherent
modules equipped with a Frobenius structure. We will discuss
various applications, including some recent and new results on
characteristic p zeta values.
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Introduction

Artin-Scheier theory. Let K be a field of characteristic p. Then
for every a ∈ K the polynomialXp−X−a is separable, and the additive
group Fp acts transitively on the set of zeroes in a field extension. By
Artin-Scheier theory, every Galois extension L/K with Gal(L/K) = Fp
arises as the splitting field of such a polynomial. In other words, there
is an exact sequence

0 −→ Fp −→ K
1−σ−→ K −→ Hom(Gal(Ksep/K),Fp) −→ 0,

where σ is the p-th power Frobenius map. In the language of étale
cohomology, this can be rewritten without the choice of a separable
closure as an exact sequence

(1) 0 −→ Fp −→ K
1−σ−→ K −→ H1((SpecK)et,Fp) −→ 0.

More generally, if S is a scheme over Fp, then we have an exact sequence

0 −→ (Fp)S −→ Ga,S
1−σ−→ Ga,S −→ 0

of sheaves on Set. Here (Fp)S denotes the constant sheaf with stalk
Fp. Since the étale and Zariski cohomology of Ga,S = OS coincide, we
obtain a long exact sequence

(2) · · · −→ Hi(Set,Fp) −→ Hi(S,OS)
1−σ−→ Hi(S,OS) −→ · · ·

relating the mod p étale cohomology of S with the coherent cohomology
of S, generalizing (1).

Katz and locally constant coefficients. Let S be a noetherian
scheme over Fp. In his paper on p-adic properties of modular forms Nick
Katz [35] showed that there is an equivalence of categories between

(i) pairs (F , τ) consisting of a locally free OS-module F and an
isomorphism τ : σ?F → F of OS-modules;

(ii) Fp-modules V on Set that are locally constant of finite rank.
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2 INTRODUCTION

By adjunction the map τ defines an OS-linear map τa : F → σ?F .
Since σ is the identity on the underlying topological space of S, we have
a natural identification σ?F = F . Under this identification τa becomes
an additive map τs : F → F satisfying τs(fs) = fpτs(s) for all local
sections f of OS and s of F . (The subscripts a and s to τ stand for
adjoint and semi-linear, respectively.) Any of the three maps τ , τa, τs
determines the other two.

The étale Fp-module V corresponding to (F , τ) is defined by a short
exact sequence

(3) 0 −→ V −→ F 1−τs−→ F −→ 0

of sheaves on Set, and again there is a long exact sequence

· · · −→ Hi(Set, V ) −→ Hi(S,F)
1−τs−→ Hi(S,F) −→ · · ·

relating the étale cohomology of S with coefficients in V to the Zariski
cohomology of the quasi-coherent OS-module F . This generalizes the
long exact sequence (2) to ‘twisted’ coefficients.

Böckle-Pink and constructible coefficients. A natural prob-
lem is now to extend Katz’s theorem from locally constant to con-
structible Fp-modules on Set. A strikingly elegant answer was provided
by Gebhard Böckle and Richard Pink, in their monograph [11]. Let
S be a noetherian scheme over Fp. Consider the category Cohτ S
of pairs (F , τ) consisting of a coherent OS-module F (not necessarily
locally free) and an OS-linear map τ : σ?F → F (not necessarily an
isomorphism). Such a pair (F , τ) defines a constructible Fp-module V
on Set by the short exact sequence

0 −→ V −→ F 1−τs−→ F −→ 0.

The resulting functor from Cohτ S to the category of constructible Fp-
modules is not an equivalence. Indeed, if τs is nilpotent, then 1 − τs
will be an isomorphism and hence (F , τ) will be mapped to the zero
sheaf. Böckle and Pink prove that the full subcategory consisting of
pairs (F , τ) with τs nilpotent is a thick (or ‘Serre’) subcategory. They
define the category CrysX of Crystals on X as the quotient category,
and show that CrysX is equivalent with the category of constructible
Fp-modules on Set. They moreover construct functors f?, f! and ⊗ be-
tween categories of crystals, compatible with the corresponding functors
between categories of constructible Fp-modules.
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A different ‘quasi-coherent’ description of the category of constructible
Fp-modules is due to Emerton and Kisin [19, 20].

Sheaves and functions. Let X be a scheme of finite type over
Fq, and F a constructible `-adic sheaf on X. For every x ∈ X(Fq) the
sheaf x?F on (SpecFq)et is aQ`-vector space equipped with a Frobenius
endomorphism Frob. Taking traces, we obtain a function

trF : X(Fq)→ Q`, x 7→ trQ`
(Frob | x?F) ,

called the trace function of F . The “dictionnaire faisceaux-fonctions”
of Grothendieck and Deligne expresses the effect of various functors
applied to constructible `-adic sheaves on their trace functions, see [39,
§1]. We just give two important examples. If F and G are constructible
`-adic sheaves on X then

trF⊗G x = (trF x) · (trG x)

for all x ∈ X(Fq). If f : X → Y is a proper map between schemes of
finite type over Fq then we have∑

n

(−1)n trRnf?F y =
∑

x∈X(Fq)
f(x)=y

trF x

by the Lefschetz trace formula, and more generally, for a separated
f : X → Y , provided one replaces Rnf? by Rnf!. The dictionary con-
stitutes a powerful tool for proving combinatorial identities between
characteristic-zero valued functions on Fq-points of varieties over Fq
using `-adic cohomology.

Deligne has similarly shown that the Lefschetz trace formula also
holds for étale cohomology with mod p coefficients [16, pp. 125–128].
The proof is based on the exact sequence (3), and on the Woods Hole
trace formula in coherent cohomology [27, III.6.12]. In fact, the theory
of of Böckle and Pink now gives a full “sheaves-functions dictonary”,
translating between cohomological constructions with coherent sheaves
equipped with a Frobenius endomorphism and combinatorics of Fq-
valued functions on Fq-points of varieties over Fq. This formalism no
longer refers to the étale site, and all statements and proofs can be
given in terms of coherent sheaves.
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The present lecture notes. The present notes constitute a slightly
expanded and more polished version of a series of eight lectures given
at the Morningside Center for Mathematics in Beijing in October 2013.

Starting from scratch, we explain the theory of crystals of Böckle
and Pink, and how it leads to a sheaves-functions dictionary, translat-
ing back and forward between the combinatorics of Fq-valued functions
on rational points on varieties over Fq and the cohomology of coherent
sheaves equipped with a Frobenius endomorphism. We illustrate the
power of this formalism with a series of applications, ranging from clas-
sical results on oscillating sums, and zeta functions modulo p to recent
results on special values of characteristic p-valued L-functions.

In Chapters 1 and 2 we expose part of the theory of crystals of
Böckle and Pink. By restricting to Fq-coefficients, by various finiteness
assumptions, and by using the theorem of formal functions to give a
short new proof of proper base change, we are able to keep the necessary
prerequisites to a minimum, and to condense the fundamentals into a
relatively concise account.

Chapter 3 contains the central result of these notes: the trace for-
mula for crystals, and the resulting sheaves-functions dictionary. The
statement reduces quickly to the special case of projective variety over
a finite field. Rather than deducing it from the Woods Hole trace for-
mula of SGA 5, we follow Fulton’s very elegant and elementary proof
[22] to settle this case (filling in a gap in the original argument along
the way). By passing to Grothendieck groups of crystals, we both avoid
the use of derived categories, and streamline the exposition. Chapter 4
gives some elementary applications of the trace formula, and Chapter 5
generalizes the trace formula to crystals with coefficients in various Fq-
algebras. Rather than developing the theory with coefficients right from
the start we have opted to postpone the introduction of coefficients un-
til Chapter 5, and deducing the general results from their special cases
treated in the first three chapters.

We hope our gradual approach in chapters 1–5 will be valued by
those who wish to learn to use the sheaves-functions dictionary, but
may be intimidated by the large edifice of the full theory of Böckle and
Pink.

Chapter 6 computes the cohomology of the “external” symmetric
powers of a coherent sheaf on a curve. These are coherent sheaves on
the symmetric powers of the curve. In principle this is a special case
of a much more general result of Deligne, which expresses the coherent
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cohomology of symmetric powers on higher-dimensional varieties using
simplicial techniques going back to Dold and Puppe. By restricting to
dimension 1, we manage to avoid simplicial machinery and obtain a
completely explicit statement with a relatively elementary proof. Our
proof uses Čech cohomology and Koszul resolutions. The main result
in this chapter does not involve Frobenius and holds in arbitrary char-
acteristic. Since it may be of independent interest, care has taken that
it can be read independently of the preceding chapters.

In Chapter 7 we apply the results of Chapter 6 to prove an L-
function version of the trace formula of Chapter 5. Since we work with
p-torsion coefficients, the charactersitic polynomial of an endomorphism
is not determined by the traces of its powers, and we cannot rely on
the usual tricks to simply reduce the L-function version to the trace
formula for powers of the Frobenius. Rather, we closely mimic Deligne’s
approach in SGA 4 and SGA 4.5 and use symmetric powers to reduce to
the trace formula. A completely different proof is given in Böckle-Pink,
based on Serre duality and Anderson’s “elementary approach”.

We end in Chapter 8 with an application of the obtained results.
We use the main theorem of Chapter 7 to compute special values of
L-functions, in particular values of Goss zeta functions at negative in-
tegers. The principal result is a generalization of a recent theorem of
V. Lafforgue. Under a certain semi-simplicity hypothesis, it expresses
special values in terms of extension groups of crystals. It is a character-
istic p valued analogue of conjectures and results by K. Kato and Milne
and Ramachandran. We end with a simple example showing that the
semi-simplicity hypothesis is not always verified. This is contrary to
the classical setting of `-adic representations coming from smooth pro-
jective varieties over finite fields, where semi-simplicity is conjectured
to hold in general.

The appendix gives a self-contained proof of the Woods Hole trace
formula for a transversal endomorphism of a proper smooth scheme over
a field, using Grothendieck-Serre duality. This is logically independent
of the rest of these notes, as these give an independent proof, due
to Fulton, for the Frobenius endomorphism. However, since the only
published proof of this more general trace formula [27, III.6] is rather
convoluted, we have decided to include a simpler proof in these notes.

Prerequisites and organization. Although many of the results
are closely related to the formalism of étale constructible sheaves, there
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is no logical dependency, and we do not assume that the reader is fa-
miliar with the étale theory. The only prerequisite is familiarity with
coherent cohomology at the level of Chapter 3 of Hartshorne [31], ex-
cept for the Leray spectral sequence. We do not make use of derived
categories (except for in the appendix, where we need them to state
Grothendieck-Serre duality), although throughout the text we retain
some of their power and flexibility by an extensive use of Grothendieck
groups “K0(−)”.

The Stacks Project of Johan de Jong and his collaborators [45] is
rapidly becoming one the most clear, complete and precise references
for the foundations of modern algebraic geometry, and we refer to it
extensively.

At the end of each chapter are short sections called ‘Notes’ and
‘Exercises’. The former contains historic remarks, comments on some
more advanced topics, and references to the literature. In particular,
rather than attributing every single lemma and proposition locally, we
indicate the origin of the results here. The exercises are of widely
varying level of difficulty. Those that require more background are
marked with a (?).

Acknowledgements. I am grateful to Xu Fei for the invitation to
lecture in Beijing, and to the Morningside Center for their hospitality.
Many thanks to all attendants of these lectures, and in particular to Xu
Fei, Zheng Weizhe and Fang Jiangxue, whose comments and feedback
have been very valuable. I also want to thank Bruno Anglès, Bhargav
Bhatt, Gebhard Böckle, David Goss, and Maxim Mornev, with whom I
discussed parts of the manuscript at various stages, and the anonymous
referees whose numerous suggestions and corrections have helped to
improve the manuscript.

A significant part of these notes was written while the author was
supported by grants of the Netherlands Organisation for Scientific Re-
search (NWO).



CHAPTER 1

τ -sheaves, crystals, and their trace functions

We fix a finite field Fq with q elements. Let X be a scheme over
Fq. Denote by σ : X → X the Frobenius endomorphism which is the
identity on the underlying topological space and is given on functions
by

OX(U)→ OX(U), r 7→ rq.

It is a morphism of Fq-schemes.

1. Coherent τ-sheaves

Let X be a scheme over Fq.

Definition 1.1. A τ -sheaf on X is a pair (F , τ) consisting of a
quasi-coherent OX -module F and a morphism of OX -modules

τ : σ?F → F .
Amorphism of τ -sheaves ϕ : (F1, τ1)→ (F2, τ2) is a morphism ϕ : F1 →
F2 of OX -modules such that the square

σ?F1
τ1−−−−→ F1yσ?ϕ yϕ

σ?F2
τ2−−−−→ F2

commutes. The category of τ -sheaves on X is denoted QCohτ X.

We will often write F for the τ -sheaf (F , τ), and τF for the map τ .
Let F and G be quasi-coherent OX -modules. Let α : F → G be a

morphism of sheaves of abelian groups. We say that α is q-linear if
α(rs) = rqα(s) for all local sections r of OX and s of F .

Proposition 1.2. Let F and G be quasi-coherent OX-modules.
Then the following sets are in natural bijection:

(1) {τ : σ?F → G | τ is OX-linear},
7



8 1. τ -SHEAVES, CRYSTALS, AND THEIR TRACE FUNCTIONS

(2) {τa : F → σ?G | τa is OX-linear},
(3) {τs : F → G | τs is q-linear}.
The subscript a stands for adjoint , the s for semi-linear .

Proof. By adjunction we have HomOX (σ?F ,G) = HomOX (F , σ?G).
Since σ is the identity on the topological space X we have a canon-

ical isomorphism
α : σ?G → G

as sheaves of abelian groups. As a map of OX -modules it is q-linear.
The map

τs 7→ τa := ατs
gives the bijection between the second and third sets of maps in the
proposition. �

Definition 1.3. Assume X is noetherian.∗ A τ -sheaf (F , τ) on X
is called coherent if the underlying OX -module F is coherent. A mor-
phism of coherent τ -sheaves is a morphism of τ -sheaves. The category
of coherent τ -sheaves on X is denoted Cohτ X. If R is an Fq-algebra
then we will often write Cohτ R in stead of Cohτ SpecR.

Example 1.4. Let X = SpecR for some Fq-algebra R. Let F be
the quasi-coherent OX -module corresponding to an R-moduleM . Then
σ?F corresponds to the R-module

R⊗σ,RM,

with R-module structure coming from the left factor, and where σ de-
notes the map R → R, r 7→ rq. To give F the structure of a τ -sheaf is
therefore the same as giving an R-linear map

τ : R⊗σ,RM →M.

The induced q-linear map τs becomes on global sections the map

τs : M →M, m 7→ τ(1⊗m)

satisfying τs(rm) = rqτs(m). Conversely, any such map determines
a map F → σ?F of quasi-coherent OX -modules, and therefore the
structure of a τ -sheaf on F .

If R is noetherian then the τ -sheaf F is coherent if and only if M
is a finitely generated R-module.

∗For simplicity, we will restrict ourselves to noetherian schemes whenever deal-
ing with coherent OX -modules. With the necessary care many of the results in this
text could be extended to cover τ -sheaves over more general schemes.
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Let f : X → Y be a morphism of schemes over Fq. Then σY ◦ f =
f ◦ σX . In particular, for a quasi-coherent OY -module F we have a
canonical isomorphism

σ?Xf
?F −→ f?σ?Y F .

Definition 1.5. Let F = (F , τ) be a τ -sheaf on Y . The pullback
or base change f?F of F along f is the τ -sheaf (f?F , τf?F ), where τf?F
is the composition

σ?Xf
?F f?σ?Y F

f?F .

∼

τf?F

Pullback defines a functor f? : QCohτ Y → QCohτ X.

Example 1.6. Assume Y = SpecR and X = SpecS and f : X →
Y induced by an Fq-algebra homomorphism R → S. Assume that F
corresponds to an S-module M equipped with a q-linear τs : M → M .
The map

τ ′s : S ⊗RM → S ⊗RM, s⊗m 7→ sq ⊗ τs(m)

is well-defined and q-linear. The pair (S ⊗RM, τs) corresponds to the
pull-back f?F .

Proposition 1.7. Let f : X → Y be a morphism of noetherian
schemes over Fq. Let F be a coherent τ -sheaf on Y . Then f?F is a
coherent τ -sheaf.

Proof. Since X is noetherian, OX is a coherent OX -module [28,
I.1.6.1] [45, Tag 01XY], and therefore the pull-back of any coherent OY -
module is a coherent OX -module [28, 0.5.3.11] [45, Tag 01BM]. �

Proposition 1.8. Let X be a scheme over Fq. The category QCohτ X
is abelian. If X is noetherian then also Cohτ X is abelian.

Proof. Clearly the categories are additive. We need to show that
they satisfy
(AB1) Every morphism ϕ : F → G has a kernel and cokernel,
(AB2) For every morphism ϕ : F → G the natural map

coker(kerϕ→ F)→ ker(G → cokerϕ)

is an isomorphism.



10 1. τ -SHEAVES, CRYSTALS, AND THEIR TRACE FUNCTIONS

Since σ is the identity on the underlying topological space of X the
functor σ? on quasi-coherent OX -modules is exact. In particular, a
morphism ϕ : F → G of quasi-coherent τ -sheaves induces a commuta-
tive diagram of OX -modules with exact rows

0 kerϕ F G cokerϕ 0

0 σ? kerϕ σ?F σ?G σ? cokerϕ 0

τa

ϕ

τa τa τa

σ?ϕ

One directly verifies that (kerϕ, τa) and (cokerϕ, τa) determine a kernel
respectively cokernel of the morphism ϕ in QCohτ X. Property AB2
is inherited by the same property for the category of quasi-coherent
OX -modules, hence QCohτ X is is abelian.

The coherent OX -modules form an abelian subcategory of the cat-
egory of quasi-coherent OX -modules and the same arguments as above
show that Cohτ X satisfies AB1 and AB2. �

In the proof we have used the adjoint maps τa to produce kernels and
cokernels. The main advantage is that σ? is an exact functor. In general
the functor σ? is not exact† and it takes a bit more work to construct
kernels and cokernels directly in terms of the maps σ?F → F . Let us, as
an example, describe in detail the kernel of a map ϕ : (F , τF )→ (G, τG)
of τ -sheaves on X. Let H be the OX -module which is the kernel of
ϕ : F → G. Consider the commutative diagram of OX -modules

σ?H σ?F σ?G

0 H F G,

τH

σ?ϕ

τF τG

ϕ

where the bottom row is exact. The map σ?H → σ?G is the pullback
along σ of the map H → G, and hence it is the zero map. It follows
that the map σ?H → F factors over a unique map τH : σ?H → H. The
pair (H, τH) is the kernel of ϕ in QCohτ X. If F and G are coherent
then so is H and then (H, τH) is also the kernel of ϕ in Cohτ X.

†For example, if X = SpecR for a noetherian local ring R then the functor σ?

on quasi-coherent OX -modules is exact if and only if R is regular, see [37]. See also
Proposition 8.9.
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2. The trace function of a coherent τ-sheaf

Let X be a scheme of finite type‡ over Fq and (F , τ) a coherent
τ -sheaf on X. For a point x ∈ X(Fq) the fiber x?F of F is a finite-
dimensional Fq-vector space and τs induces a linear endomorphism of
x?F .

Definition 1.9. The trace function of a coherent τ -sheaf F is the
function

trF : X(Fq)→ Fq, x 7→ trF x := trFq( τs | x?F ).

Example 1.10. Let X be a scheme of finite type over Fq. The
q-linear map τa : OX → OX that maps a local section r to rq defines a
coherent τ -sheaf 1X = (OX , τ). We have tr1 x = 1 for all x ∈ X(Fq).

Example 1.11. Let X be a scheme of finite type over Fq. Let
f ∈ OX(X). There is a natural isomorphism

σ?OX
∼→ OX

given on an affine SpecR ⊂ X by

R⊗σ,R R→ R, r ⊗ s 7→ rsq.

Consider the coherent τ -sheaf F = (F , τ) with τ being the composition

σ?OX
∼→ OX

f→ OX .

Alternatively, F is given by the q-linear map τs : F → F given on
sections by s 7→ fsq.We have for all x ∈ X(Fq) that

trF x = f(x)

holds in Fq.

Example 1.12. Consider the Serre twisting sheaves O(n) on pro-
jective space Pd = ProjFq[x0, . . . , xd] over Fq. We have a natural
isomorphism of OPd-modules

σ?O(n)
∼→ O(qn).

Its q-linear counterpart is the map O(n) → O(qn) which on local sec-
tions is given by r 7→ rq. Now let n ≥ 0 and let f ∈ Fq[x0, . . . , xd]

‡When considering the trace functions of coherent τ -sheaves we will always
restrict to schemes of finite type over Fq.
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be homogeneous of degree (q − 1)n. Then f is a global section of
O((q − 1)n), so it defines a map

O(−qn)→ O(−n)

and hence a map
τ : σ?O(−n)→ O(−n).

The trace function of the τ -sheaf F = (O(−n), τ) is given by

trF : Pd(Fq)→ Fq, (x0 : · · · : xd) 7→ f(x0, . . . , xd).

Note that this is well-defined: since the degree of f is divisible by q−1,
the value f(x0, . . . , xd) is invariant under scaling (x0, . . . , xd) by an
element of F×q .

Example 1.13. LetX be a scheme of finite type and let x ∈ X(Fq).
Let κ(x) be the sky-scraper sheaf at x, with stalk OX,x/mx

∼= Fq. Then
there is a canonical isomorphism τ : σ?κ(x) → κ(x). The resulting
coherent τ -sheaf κ(x) = (κ(x), τ) has trace function

trκ(x) y =

{
1 if y = x,
0 if y 6= x.

3. Nilpotent coherent τ-sheaves

Let X be a noetherian scheme over Fq.

Definition 1.14. A coherent τ -sheaf (F , τ) onX is called nilpotent
if there is an n > 0 so that the composition

(σn)?F −→ · · · −→ (σ2)?F σ?τ−→ σ?F τ−→ F

is the zero map.

Equivalently (F , τ) is nilpotent if there is an n such that τns = 0.

Proposition 1.15. Let f : X → Y be a morphism of noetherian
schemes over Fq. Let N be a nilpotent coherent τ -sheaf on Y . Then
f?N is nilpotent. �

Corollary 1.16. If N is a nilpotent coherent τ -sheaf on X then
trN = 0. �
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Proposition 1.17. Let X be a noetherian scheme over Fq and let

0→ F1 → F2 → F3 → 0

be a short exact sequence of coherent τ -sheaves on X. Then F2 is
nilpotent if and only if F1 and F3 are nilpotent.

Proof. Clearly if F2 is nilpotent then so are F3 and F1. So assume
F1 and F3 are nilpotent. By assumption, there are n1 and n3 so that
τn1

1,s = τn3
3,s = 0. We claim that τn1+n3

2,s = 0. Indeed, let U be an open
subset of X. We have an exact sequence

0→ F1(U)→ F2(U)→ F3(U)

of abelian groups. Let s ∈ F2(U). Then τn3
2,ss vanishes in F3(U), so

that τn3
2,ss ∈ F1(U) and hence τn1+n3

2,s s = 0. �

We call a morphism ϕ : F → G of coherent τ -sheaves a nil-isomorphism
if both kernel and cokernel of ϕ are nilpotent.

Proposition 1.18. Let X be a noetherian scheme over Fq, and let
ϕ : F → G and ψ : G → H be nil-isomorphisms in Cohτ X. Then also
the composition ψϕ is a nil-isomorphism.

Proof. From the exact sequence

0→ kerϕ→ kerψϕ→ kerψ

we see that kerψϕ is an extension of a subobject of a nilpotent τ -sheaf
by a nilpotent τ -sheaf, and hence a nilpotent τ -sheaf. Similarly, we
learn from the exact sequence

cokerϕ→ cokerψϕ→ cokerψ → 0

that cokerψϕ is nilpotent and we conclude that ψϕ is a nil-isomorphism.
�

4. Crystals

Let X be a noetherian scheme over Fq. Proposition 1.17 says the
full subcategory NilX of nilpotent τ -sheaves in Cohτ X is a Serre
subcategory§. This means that one can form the quotient category

CrysX :=
Cohτ X

NilX
.

§A Serre subcategory is also called a thick or épaisse subcategory.
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We call it the category of crystals on X. This is a purely formal oper-
ation on abelian categories, and we refer to [23, Chap. III], [51, §10.3]
and [45, Tag 02MN] for details and proofs of the statements below.

The objects of CrysX are the same as the objects of Cohτ X. The
category CrysX is abelian, and comes equipped with an exact functor
Cohτ X → CrysX, which on the level of objects is just the identity
map. The maps

HomCohτX(F ,G)→ HomCrysX(F ,G),

however, are typically not bijective.

Proposition 1.19. Let f : F → G be a morphism in Cohτ X.
Then f is a nil-isomorphism if and only if its image in CrysX is an
isomorphism. �

Applying this to the unique map 0 → F we find the following
corollary.

Corollary 1.20. Let F be a coherent τ -sheaf. Then F is nilpotent
if and only if its image in CrysX is isomorphic to 0. �

The functor Cohτ X → CrysX can be characterized by two uni-
versal properties, which we give in the two theorems below.

Theorem 1.21. Let X be a noetherian scheme over Fq. Let C be
a category. Let F : Cohτ X → C be a functor that maps every nil-
isomorphism to an isomorphism. Then there exists a unique functor
CrysX → C so that the diagram

Cohτ X C

CrysX

F

commutes. �

Theorem 1.22. Let X be a noetherian scheme over Fq. Let A be
an abelian category and let F : Cohτ X → A be an exact functor that
maps nilpotent τ -sheaves to zero. Then there exists a unique additive
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functor CrysX → A such that the diagram

Cohτ X A

CrysX

F

commutes. �

Not every map in CrysX comes from a map in Cohτ X. The
following proposition gives a way to represent arbitrary maps of crystals.

Proposition 1.23. Let F and G be coherent τ -sheaves. Let ϕ : F →
G be a morphism of crystals. Then there exist sub-τ -sheaves H ⊂ F and
N ⊂ G, and a diagram of τ -sheaves

(4) F i←↩ H ϕ̃−→ G/N
p
� G

with F/H and N nilpotent, so that ϕ is the composite morphism

F i−1

−→ H ϕ̃−→ G/N p−1

−→ G.
in CrysX. �

Proposition 1.24. Let 0 → F → G → 0 be a short exact se-
quence in CrysX. Then there exists a short exact sequence 0→ F ′ →
G′ → H′ → 0 in Cohτ X that becomes isomorphic to the given one in
CrysX.

Proof. By the preceding proposition there are coherent τ -sheaves
G′ andH′ nil-isomorphic to G andH respectively, and a map G′ → H′ of
coherent τ -sheaves representing the given G → H inCrysX. Replacing
H′ by the image of G′ → H′ we may even assume this map to be
surjective. If we put F ′ := ker(G′ → H′) we find a short exact sequence

0→ F ′ → G′ → H′ → 0

in Cohτ X representing the given short exact sequence in CrysX. �

Lemma 1.25. Assume that X is of finite type over Fq. Let F and
G be coherent τ -sheaves on X that are isomorphic in CrysX. Then
trF = trG. �

In particular, the trace function trF of a crystal F is well-defined.
The implication in the lemma can not be reversed: There are certainly
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many non-isomorphic crystals giving rise to the same trace function
(e.g. X(Fq) could be empty). See Exercise 7.3 for a positive statement.

5. Pointwise criteria

In this section we show that various properties of crystals and maps
between crystals can be checked point by point.

Lemma 1.26. Let X be a noetherian scheme over Fq, let K be a
field containing Fq and let i : SpecK → X be a map over SpecFq.
Then the functor

Cohτ X → CrysK, F 7→ i?F
is exact.

Proof. Let x ∈ X be the image of i. The functor factors as

Cohτ X → Cohτ OX,x → Cohτ K → CrysK.

The first and the last of these are exact, and the middle functor is right
exact. So it suffices to show that monomorphisms in Cohτ OX,x are
mapped to monomorphisms in CrysK.

Let F ⊂ G be an inclusion of coherent τ -sheaves on SpecOX,x,
corresponding to an inclusion N ⊂ M of OX,x-modules equipped with
a q-linear endomorphism τs. Let m ⊂ OX,x be the maximal ideal. Since
M is a finitely generated OX,x-module we have⋂

n≥0

mqnM = 0.

Since N/mN is finite-dimensional over the residue field k(x) there is an
n > 0 such that

N ∩mqnM ⊂ mN.

and hence
τns (mM ∩N) ⊂ mN.

It follows that τns = 0 on the kernel of N/mN → M/mM . After flat
base change from k(x) to K, we see that τns = 0 on the kernel of
i?F → i?G, so that the latter map is a monomorphism in CrysK, as
we had to show. �

Since the pull-back functor from Cohτ X to CrysK is exact and
maps nilpotent objects to the zero crystal we obtain by the universal
property of Theorem 1.22 the following corollary.
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Corollary 1.27. The functor Cohτ X → CrysK, F 7→ i?F fac-
tors over a unique functor

i? : CrysX → CrysK,

and this functor is exact. �

In the next chapter we will generalize this to pullback along an
arbitrary map of noetherian schemes over Fq.

We denote the set of closed points of a scheme X by |X|.

Proposition 1.28. Let X be a noetherian scheme over Fq and let
F be a coherent τ -sheaf on X. Then the following are equivalent.

(1) F is nilpotent;
(2) ι?xF is nilpotent for all x ∈ X.

If moreover X is of finite type over a field K with algebraic closure K
then these are also equivalent with

(3) x̄?F is nilpotent for all x̄ ∈ X(K);
(4) ι?xF is nilpotent for all x ∈ |X|.

Proof. By Proposition 1.15 the first statement implies the others.
Let F be a coherent τ -sheaf. Let n be a positive integer and consider

the subset

Zn = {x ∈ X | ι?xF is nilpotent of order ≤ n}
of X. We have Z1 ⊂ Z2 ⊂ · · · . Since τn : (σn)?F → F is a map of
coherentOX -modules we see that Zn is closed, and sinceX is noetherian
the sequence stabilizes: there is an n such that Zn = Zn+1 = · · · .

If (2) holds then Zn = X for some n. Similarly, if X if of finite type
over a field K then the closed points (resp. the images of the geometric
points) are dense in X so either (3) or (4) imply that there is an n such
that Zn = X.

So it suffices to show that Zn = X for some n implies that F is
nilpotent. Since X is noetherian it has a finite affine open cover, and
we may reduce to the case X = SpecR. Then the coherent τ -sheaf F
corresponds to a pair (M, τs). By the assumption that Zn = X, for
every prime ideal p ⊂ R we have that τns (M) ⊂ pM . In particular,
τns (M) ⊂ JM where J is the nilradical of R. By the q-linearity of τs
we have τds (JM) ⊂ Jq

d
τs(M) for all d ≥ 0. Since R is noetherian the

nilradical J is nilpotent, and we conclude that for all d sufficiently large
we have τn+d

s (M) = {0} so that F is nilpotent. �
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Theorem 1.29. Let X be a noetherian scheme over Fq. Let F1 →
F2 → F3 be a complex in CrysX. Then the following are equivalent:

(1) F1 → F2 → F3 is exact in CrysX;
(2) ι?xF1 → ι?xF2 → ι?xF3 is exact in Crys k(x) for all x ∈ X.

If moreover X is of finite type over a field K with algebraic closure K
then these are also equivalent with

(3) x̄?F1 → x̄?F2 → x̄?F3 is exact in CrysK for all x̄ ∈ X(K);
(4) ι?xF1 → ι?xF2 → ι?xF3 is exact in Crys k(x) for all x ∈ |X|.

Proof. Consider the crystal

H :=
kerF2 → F3

imF1 → F2

on X. In other words, H is the cohomology at F2 of the complex
F1 → F2 → F3. By Corollary 1.27 we have for every field L and
every i : SpecL → X that i?H is the cohomology of the complex
i?F1 → i?F2 → i?F3 in CrysL. Since a complex is exact if and
only if its cohomology vanishes, the theorem follows immediately from
Proposition 1.28. �

Notes

Let X be a noetherian scheme over Fq. Katz [35, §4.1] has shown
that the category of locally constant Fq-modules with finite stalks on
Xet (“local systems”) is equivalent with the category of coherent τ -
sheaves (F , τ) for which F is locally free and τ is an isomorphism.

The notion of crystal and most of the results in this chapter are due
to Böckle and Pink [11]. They generalize Katz’ theorem, and show that
the category CrysX is equivalent with the category of constructible
Fq-modules on Xet. The functor can be described quite easily. To a
crystal F one associates the sheaf of Fq-modules Fet on Xet given by
mapping an étale u : U → X to

Fet(U) := Hom(1, u?F),

where the Hom is in CrysU . Then F 7→ Fet defines an equivalence
from CrysX to the category of constructible Fq-modules on Xet, see
[11, Ch. 10].

The reader familiar with the formalism of constructible étale sheaves
will recognize the flavor of many of the constructions and results in the
following chapters.
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Exercises

Exercise 1.1. Let m and n be integers and consider the Serre
twisting sheaves O(m) and O(n) on P1 = P1

Fq
. Write n = aq + b with

0 ≤ b < q. Show that

σ?O(n) ∼= O(a)b+1 ⊕O(a− 1)q−b−1

as OP1-modules. Verify, without invoking the adjunction between σ?

and σ?, that

HomOP1

(
O(qm), O(n)

) ∼= HomOP1

(
O(m), O(a)b+1 ⊕O(a− 1)q−b−1

)
as Fq-vector spaces.

Exercise 1.2. Let 0→ F → G → H → 0 be a short exact sequence
of crystals on a scheme X of finite type over Fq. Show that

trG = trF + trH

as Fq-valued functions on X(Fq).

Exercise 1.3. Let X be a noetherian scheme over Fq. Let i : Z �
X be a closed subscheme, and let I ⊂ OX be the corresponding ideal
sheaf. Let j : U ↪→ X be the open complement of Z. Let F be a
coherent τ -sheaf on X. Show that the submodule IF of F is a sub-τ -
sheaf. Show that j?IF ∼= j?F , and that i?IF is nilpotent.

Exercise 1.4. Let X be a noetherian scheme over Fq and let Z be
a closed subscheme defined by a nilpotent ideal sheaf I ⊂ OX . (One
says that X is a nilpotent thickening of Z). Show that the categories
CrysX and CrysZ are equivalent.

Give an example where Cohτ X and Cohτ Z are not equivalent.

Exercise 1.5. Let X be a noetherian scheme over Fq. Let F =
(F , τ) be a coherent τ -sheaf on X. Show that F and its pullback along
Frobenius σ?F are nil-isomorphic.

Exercise 1.6. Let K be a field containing Fq and let X = SpecK.
Show that every coherent τ -sheaf F on SpecK has a unique decompo-
sition F = F0 ⊕ Fn with τ0 an isomorphism and τn nilpotent. Show
that the category CrysX is equivalent with the full sub-category of
Cohτ X consisting of those (F , τ) with τ an isomorphism.

Exercise 1.7. Give an example of a noetherian scheme X over
Fq, coherent τ -sheaves F and G on X, and a morphism ϕ : F → G in
CrysX which does not come from a morphism in Cohτ X.
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Exercise 1.8. Let X be a noetherian scheme over Fq. Let N be
a nilpotent τ -sheaf on X. Show that Hom(1,N ) = 0 in the category
Cohτ X; Show that every short exact sequence

0→ N → F → 1→ 0

in Cohτ X has a unique splitting 1→ F . Show that for every coherent
τ -sheaf F the natural map

HomCohτX(1,F)→ HomCrysX(1,F)

is an isomorphism.



CHAPTER 2

Functors between categories of crystals

1. Pullback

Let f : X → Y be a morphism of noetherian schemes over Fq.

Proposition 2.1. The functor

Cohτ Y → CrysX, F 7→ f?F
is exact and maps nilpotent τ -sheaves to the zero crystal.

Proof. By Proposition 1.15 this functor maps nilpotent τ -sheaves
to the zero crystal, so we only need to prove exactness.

Let x be a point of X and let y = f(x) be its image in Y . Since
k(x) is flat over k(y), the pull-back functor Cohτ k(y) → Cohτ k(x)
is exact. It maps nilpotent τ -sheaves to nilpotent τ -sheaves, so by
the universal property of Theorem 1.22 it induces an exact functor
f? : Crys k(y) → Crys k(x). We obtain a commutative diagram of
functors

Cohτ X Crys k(x)

Cohτ Y Crys k(y)

ι?x

ι?y

f? f?

Let
0→ F1 → F2 → F3 → 0

be a short exact sequence in Cohτ Y . By Lemma 1.26 it induces a
short exact sequence in Crys k(y), which under f? induces a short
exact sequence in Crys k(x). Hence

0→ ι?xf
?F1 → ι?xf

?F2 → ι?xf
?F3 → 0

is exact in Crys k(x) for every x ∈ X. By the pointwise criterion for
exactness (Theorem 1.29) it follows that

0→ f?F1 → f?F2 → f?F3 → 0

21
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is exact inCrysX and we conclude that the functorCohτ Y → CrysX
is exact. �

By Theorem 1.22 we obtain a pullback functor on crystals:

Corollary 2.2. The functor f? : Cohτ Y → Cohτ X induces a
functor

f? : CrysY → CrysX

which is exact. �

Proposition 2.3. Let f : X → Y be a morphism of Fq-schemes of
finite type and F a crystal on Y . Then

trf?F = trF ◦f

as Fq-valued functions on X(Fq).

Proof. If x ∈ X(Fq) and y = f(x) ∈ Y (Fq) then x?f?F = y?F .
�

2. Tensor product

Let X be a scheme over Fq. Let F and G be quasi-coherent OX -
modules. Then we have a canonical isomorphism

σ?(F ⊗OX G)
∼−→ σ?F ⊗OX σ

?G

of quasi-coherent OX -modules.

Definition 2.4 (Tensor product of τ -sheaves). Let X be a scheme
over Fq. The tensor product of τ -sheaves F and G on X is the τ -sheaf
F ⊗G with underlying OX -module F ⊗OX G and with τF⊗G defined as
the composition

σ?(F ⊗OX G)
∼−→ σ?F ⊗OX σ

?G τF⊗τG−→ F ⊗OX G.

Example 2.5. Assume X = SpecR. Let F and G be τ -sheaves
on X corresponding to R-modules M and N equipped with q-linear
endomorphisms τM,s and τN,s respectively. Then the τ -sheaf F ⊗ G
corresponds to the R-module M ⊗R N equipped with the q-linear map
τM⊗N,s defined by

τM⊗N,s(m⊗ n) = τM,s(m)⊗ τN,s(m)

for all m ∈M and n ∈ N .
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Proposition 2.6. Let X be a noetherian scheme over Fq and let
F and G be coherent τ -sheaves on X. Then F ⊗ G is also a coherent
τ -sheaf. �

Proposition 2.7. Let X be a scheme of finite type over Fq. Let G
be coherent τ -sheaf on X. Then the functor

Cohτ X → CrysX, F 7→ F ⊗ G

is exact and maps nilpotent τ -sheaves to the zero crystal.

If G is not a flat OX -module then one cannot hope to replace
CrysX by Cohτ X in the exactness statement.

Proof of Proposition 2.7. Assume F is a nilpotent coherent
τ -sheaf on X. Then there is an n such that the map

τnF : (σn)?F → F

is the zero map. But then also τnF⊗G = 0, so F ⊗ G = 0 in CrysX.
This proves the second statement.

For the first statement, assume 0→ F1 → F2 → F3 → 0 is an exact
sequence in Cohτ X. Let x ∈ X be a point. Note that the functor

−⊗ ι?xG : Cohτ k(x)→ Cohτ k(x)

is exact (since ι?xG is flat over k(x)) and maps nilpotent objects to
nilpotent objects, so that it induces an exact functor Crys k(x) →
Crys k(x). By Theorem 1.29 the sequence

0→ ι?xF1 → ι?xF2 → ι?xF3 → 0

is exact in Crys k(x). Under the above exact functor it induces an
exact sequence

0→ ι?xF1 ⊗ ι?xG → ι?xF2 ⊗ ι?xG → ι?xF3 ⊗ ι?xG → 0

in Crys k(x). But this sequence is canonically isomorphic with the
sequence

0→ ι?x(F1 ⊗ G)→ ι?x(F2 ⊗ G)→ ι?x(F3 ⊗ G)→ 0.

Since x was arbitrary, we deduce using the point-wise criterion (Theo-
rem 1.29) that the sequence

0→ F1 ⊗ G → F2 ⊗ G → F3 ⊗ G → 0

is exact in CrysX, which finishes the proof of the proposition. �
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Corollary 2.8. The functor ⊗ : Cohτ X × Cohτ X → Cohτ X
induces a functor ⊗ : CrysX ×CrysX → CrysX which is exact in
both arguments. �

Proposition 2.9. Let X be a scheme of finite type over Fq and let
F and G be coherent τ -sheaves on X. Then

trF⊗G = trF · trG
as Fq-valued functions on X(Fq).

Proof. Note that

x?F ⊗Fq x
?G = x?(F ⊗OX G)

for all x ∈ X(Fq). The proposition now is a consequence of the fact
that

tr (α | V ) · tr (β |W ) = tr (α⊗ β | V ⊗W )

for endomorphisms α, β of finite-dimensional vector spaces V respec-
tively W . �

3. Direct images

Let f : X → Y be a morphism of schemes over Fq and let F be
a quasi-coherent OX -module. Let i be a non-negative integer. Then
Rif?F is a quasi-coherent OY -module. Since fσX = σY f , and since σ?
is exact we have

Rif?(σX,?F) = σY,?R
if?F .

In particular, if (F , τ) is a τ -sheaf onX, then the ‘adjoint’ map τa : F →
σX,?F (see Proposition 1.2) induces a map τa : Rif?F → σY,?R

if?F .
Hence Rif? defines a functor QCohτ X → QCohτ Y .

If U = SpecR ⊂ Y is an affine open then the restriction (Rif?F)U
is given by the R-module Hi(XU ,F|XU ) equipped with the induced q-
linear τs.

Example 2.10. Let f : X → Y be a morphism of affine schemes
over Fq corresponding to a map of Fq-algebras R → S. Let F be a τ -
sheaf on X corresponding to an S-module M equipped with a q-linear
endomorphism τs. Then the τ -sheaf Rif?F on Y is zero if i > 0 while
R0f?F = f?F corresponds to the R-module M obtained by restricting
scalars from S to R, equipped with the original τs : M →M .
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Note that if 0 → F → G → H → 0 is a short exact sequence of
τ -sheaves on X then the long exact sequence of cohomology

0→ f?F → f?G → f?H → R1f?F → · · ·
is naturally an exact sequence of τ -sheaves on Y .

Proposition 2.11. Let f : X → Y be a proper morphism of noe-
therian schemes over Fq, let F be a coherent τ -sheaf on X, and let i be
an integer. Then Rif?F is a coherent τ -sheaf on Y .

Proof. This follows from the fundamental fact that the derived
direct images of a coherent OX -module along a proper map X → Y
of noetherian schemes are coherent OY -modules, see [29, 3.2.1] or [45,
Tag 02O5]. �

Proposition 2.12. Let f : X → Y be a proper morphism of noe-
therian Fq-schemes and ϕ : F → G a map in Cohτ X. Let i be an
integer. If ϕ is a nil-isomorphism, then so is Rif?ϕ : Rif?F → Rif?G.

Proof. If τn = 0 then also Rif?τ
n = 0, so Rif? maps nilpotent

τ -sheaves to nilpotent τ -sheaves.
Now, let ϕ : F → G be a nil-isomorphism in Cohτ X. Let H ⊂ G

be the image and let N be the kernel of ϕ. Consider the short exact
sequence

0→ N → F ϕ→ H→ 0.

The induced long exact sequence of cohomology gives a surjective map

Rif?N � ker (Rif?F → Rif?H)

and an injective map

coker (Rif?F → Rif?H) ↪→ Ri+1f?N .
Since quotients and sub-objects of nilpotent τ -sheaves are nilpotent, we
conclude that Rif?F → Rif?H is a nil-isomorphism.

Let Q be the cokernel of ϕ. Then a similar argument for the short
exact sequence 0 → H → G → Q → 0 shows that Rif?H → Rif?G is a
nil-isomorphism.

Now Rif?ϕ is the composition

Rif?F → Rif?H → Rif?G,
and since the composition of two nil-isomorphisms is a nil-isomorphism
(Proposition 1.18) we conclude that Rif?ϕ is a nil-isomorphism, as we
had to show. �
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Corollary 2.13. Let f : X → Y be a proper morphism of noether-
ian schemes over Fq. Let i be an integer. Then the functor Rif? : Cohτ X →
Cohτ Y induces a functor Rif? : CrysX → CrysY . �

Proposition 2.14. Let f : X → Y be a proper map of noetherian
schemes over Fq. For every short exact sequence

0→ F → G → H → 0

there is a long exact sequence

0→ f?F → f?G → f?H → R1f?F → · · ·
of crystals on Y , depending functorially on the short exact sequence.

Proof. By Proposition 1.24 we may assume that 0 → F → G →
H → 0 is actually a short exact sequence in Cohτ X, and the proposi-
tion then comes down to the usual long exact sequence of cohomology
for higher direct images. �

Theorem 2.15 (Leray spectral sequence). Let f : X → Y and
g : Y → Z be proper morphisms of noetherian schemes. Let F be a
crystal on X. There is a spectral sequence

Ei,j2 = Rig?R
jf?F =⇒ Ri+j(gf)?F

in CrysZ.

Proof. This follows immediately from the usual Leray spectral
sequence [45, Tag 01F6]. �

Proposition 2.16. Let f : X → Y be a finite morphism of Fq-
schemes of finite type and F a crystal on X. Then for all y ∈ Y (Fq)
we have

(5) trf?F y =
∑

f(x)=y

trF x

where the sum ranges over the x ∈ X(Fq) with f(x) = y.

Proof. We may pull back along y : SpecFq → Y and reduce to
Y = SpecFq and X = SpecR for a finite Fq-algebra R. Assume F
is given by an R-module M equipped with a q-linear τs : M → M .
Write R = R1 × · · · × Rn for some finite local Fq-algebras Ri, and
correspondingly M = M1 × · · · ×Mn. Then we have

trf?F y = trFq( τs |M ) =

n∑
i=1

trFq( τs |Mi )
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and we may further reduce to the case where R is a finite local Fq-
algebra. Let m be the maximal ideal of R. Note that for all n ≥ 0 we
have

τs(m
nM) ⊂ mqnτs(M) ⊂ mn+1M

so that τs restricts to a nilpotent Fq-linear map mM → mM . We find

trFq( τs |M ) = trFq( τs |M/mM )

and therefore we may reduce to the case where R is reduced. Hence
R = Fqd for some d. If d = 1 then the proposition holds trivially. So
we assume d > 1. The right-hand side of (5) is zero since SpecR has
no Fq-points. Let α be an element of Fqd not in Fq and let β ∈ Fqd be
such that β(α− αq) = 1. Then

τs = αβτs − βτsα
as endomorphisms of the Fq-vector space M . In particular

trFq( τs |M ) = trFq(α(βτs) |M )− trFq( (βτs)α |M ) = 0,

and hence also the left-hand-side of (5) vanishes. �

For a proper but not finite morphism X → Y the left-hand side of
(5) must be modified to take in account higher direct images Rif?F .
This is the content of the Woods Hole trace formula, which will be
stated and proven in the next chapter.

We now show that the higher direct images of crystals along a proper
map commute with base change. Given a cartesian square

X ′ X

Y ′ Y

g′

f ′ f

g

of schemes and a quasi-coherent OX -module F there is a natural ‘base
change’ map

ψ : g?Rif?F → Rif ′?g
′?F

of OY ′-modules, see [45, Tag 02N6]. If F is a τ -sheaf on X then ψ is
a map of τ -sheaves on Y ′. We will show that if f is proper and F is a
coherent τ -sheaf then ψ is a nil-isomorphism.

We first show that the fibers of the higher direct images along a
proper map are the higher direct images of the fibers. We will make
essential use of the theorem of formal functions.



28 2. FUNCTORS BETWEEN CATEGORIES OF CRYSTALS

Lemma 2.17. Let R be a noetherian local ring with maximal ideal
m and residue field k = R/m. Let

M1 ←M2 ← · · ·

be a projective system of finitely generated R-modules. Assume that
mnMn = 0 for all n. Then the natural map

k ⊗R
(

lim←−Mi

)
−→ lim←−

(
k ⊗RMi

)
is an isomorphism.

Proof. Since R is noetherian the ideal m is finitely generated, say
by r1, . . . , rt. These generators define for every R-module M an exact
sequence

(6) M t →M → k ⊗RM → 0

of R-modules. In particular, we have exact sequences

0→ Ni →M t
i →Mi → k ⊗RMi → 0.

Since the R-modules Mi and Ni have finite length, the systems (Ni),
(M t

i ) and (Mi) satisfy the Mittag-Leffler condition. It follows that the
sequence

0→ lim←−Ni → lim←−M
t
i → lim←−Mi → lim←−

(
k ⊗RMi

)
→ 0

is exact [45, Tag 0594]. Since lim←−M
t
i = (lim←−Mi)

t we find an exact
sequence (

lim←−Mi)
t → lim←−Mi → lim←−

(
k ⊗RMi

)
→ 0.

At the same time, the exact sequence (6) for M = lim←−Mi gives(
lim←−Mi)

t → lim←−Mi → k ⊗R
(

lim←−Mi

)
→ 0.

Comparing the last two exact sequences gives the desired result. �

Proposition 2.18. Let f : X → Y be a proper morphism of noe-
therian schemes over Fq. Let F be a coherent τ -sheaf on X. Let y ∈ Y
be a point with residue field k = k(y). Consider the cartesian square

Xy X

Spec k Y.

ι′

f ′ f

ι
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Then for all i the natural map

ι?Rif?F → Rif ′?ι
′?F

is a nil-isomorphism of coherent τ -sheaves on Spec k.

Proof. By flat base change [29, 1.4.15] [45, Tag 02KH] we may
reduce to Y = SpecR and y = Spec k for a complete noetherian ring R
with residue field k. Let m be the maximal ideal of R. For every n ≥ 0
let Fn be the coherent τ -sheaf ι′?(F ⊗R R/mn+1) on Xy. The theorem
of formal functions [29, 4.1.5] [45, Tag 02OC] gives an isomorphism

Hi(X,F)
∼−→ lim←−

n

Hi(Xy,Fn)

of coherent τ -sheaves on SpecR. Hence we need to show that the
natural map (

lim←−
n

Hi(Xy,Fn)
)
⊗R k −→ Hi(X,F0)

is an isomorphism. By Lemma 2.17 it suffices to show that

(7) lim←−
n

(
Hi(Xy,Fn)⊗R k

)
−→ Hi(X,F0)

of coherent τ -sheaves on Spec k is a nil-isomorphism.
The reduction map Fn+1 � Fn is a nil-isomorphism in Cohτ Xy,

since the kernelmnFn+1 satisfies τs(mnFn+1) ⊂ mqnFn+1 = {0}. There-
fore each of the maps

Hi(Xy,Fn)⊗R k → Hi(X,F0)

is a nil-isomorphism. It follows that the map (7) is a nil-isomorphism,
as we had to show. �

Theorem 2.19 (Base change). Consider a cartesian square

X ′ X

Y ′ Y

g′

f ′ f

g

of noetherian schemes over Fq. Assume that f (and hence also f ′)
is proper. Then for every integer i and for every crystal F on X the
natural map

ψ : g?Rif?F → Rif ′?g
′?F

is an isomorphism of crystals on Y ′.
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Proof. By the point-wise criterion of exactness (Theorem 1.29) it
suffices to check that the pullback of the map to an arbitrary y′ ∈ Y ′
is an isomorphism. Let y ∈ Y be the image of y′. Consider the cube

X ′ X

X ′y′ Xy

Y ′ Y

Spec k(y′) Spec k(y)

ι′
y′ ι′y

ιy′ ιy

whose six faces are cartesian squares. Base change commutes with
higher direct images in the left and right squares by Proposition 2.18,
and in the front square by flat base change (k(y′) is flat over k(y)). To
see that ι?y′ψ is an isomorphism, we note that it factors as

ι?y′g
?Rif?F = g?yι

?
yR

if?F
∼=1 g?yR

ify,?ι
′?
y F

∼=2 Rif ′y′,?g
′?
y ι
′?
y F = Rif ′y′,?ι

′?
y′g
′?F

∼=3 ι?y′R
if ′?g

′?F .

Here ∼=1 and ∼=3 are the isomorphisms in Crys k(y′) induced by the
nil-isomorphisms of Proposition 2.18 for the left respectively right face
of the cube, and ∼=2 is flat base change in the front face. �

4. Extension by zero

In this section we fix a diagram

U X Z.
j i

where X is a noetherian scheme over Fq, where i is a closed immersion
where j is the open immersion of the complement. We denote the ideal
sheaf of Z by I ⊂ OX .

We will define a functor

j! : CrysU → CrysX,
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called extension by zero. For every crystal F on U it satisfies j?j!F ∼= F
(so that j!F extends F) and i?j?F ∼= 0 (so that it extends F by zero).

We first collect some facts about extending coherent OU -modules
to coherent OX -modules. See [45, Tag 01PD] for a more thorough
treatment.

If F is a coherent OU -module then j?F is a quasi-coherent OX -
module and (j?F)|U = F . We call a coherent extension of F to X a
coherent OX -submodule G ⊂ j?F so that G|U = F .

Lemma 2.20. Let F be a coherent OU -module. Then there exists a
coherent extension G of F to X.

Proof. First assume that X = SpecR. Choose f1, . . . , fs ∈ R so
that U = ∪iD(fi). Then there is an N > 0 so that for every i the
R[1/fi]-module F|D(fi) is generated by finitely elements sij/fNi with
sij ∈ F(U). Let M ⊂ F(U) = j?F(X) be the R-module generated by
the sij . Then G := M̃ satisfies the requirements.

Now let X be an arbitrary noetherian scheme. Let V1, . . . , Vn be
affine opens in X so that X = U ∪ V1 ∪ · · · ∪ Vn. Extending step by
step, from U to U ∪ V1 to U ∪ V1 ∪ V2, etcetera we reduce to the case
n = 1. So we assume X = U ∩V with V affine open. By the affine case
of the lemma we can extend F|U∩V to some FV on V . Glueing this FV
with the given F on U yields a coherent extension G to all of X. �

Lemma 2.21. Let F be a coherent OU -module. If G is a coherent
extension of F to X then so is IG.

Proof. We have IG ⊂ G ⊂ j?F and (IG)|U = GIU . �

Lemma 2.22. If ϕ : F1 → F2 is a map of coherent OU -modules,
and if G1 and G2 are coherent extensions of F1 and F2 respectively,
then there exists an n > 0 so that (j?ϕ)(InG1) ⊂ G2 in j?F2.

Proof. Since X is noetherian it has a finite affine open cover and
it suffices to show the existence of n forX = SpecR. Let I = I(X) ⊂ R
be the ideal defining Z and let f1, . . . , fs ∈ R be generators of I. Then
U = ∪iD(fi). Without loss of generality we may assume that U is
dense in X and that the fi are not zero-divisors.

Let M1 = G1(X) and M2 = G2(X). The R-module M1 is finitely
generated, say by m1, . . . ,mt. As in the proof of Lemma 2.20 choose
f1, . . . , fs ∈ R so that U = ∪iD(fi). There is an n0 > 0 so that

fn0
j ϕ(mij) ∈M2 ⊂M2[1/fj ]
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for every i and j. Take n = sn0. The R-module ϕ(M1) is generated by
the elements

fe11 · · · f
es
s mij

with e1 + · · · + es = n. In particular, one of the exponents must be
≥ n0 so that each of the elements fe11 · · · fess mij ∈ M2 lies in M2. We
conclude that j?ϕ maps InG1 into G2. �

We now start using these lemmata to construct the functor j!.

Lemma 2.23. Let F be a coherent τ -sheaf on U . Let G ⊂ j?F be
a coherent OX-module extending F . Then for all n sufficiently large
InG ⊂ j?F is a coherent sub-τ -sheaf, j?InG = F and i?InG is nilpo-
tent.

Proof. σ?G is a coherent extension of σ?F . By Lemma 2.22 there
is an n and a map of OX -modules

τ̃a : InG → σ?G

extending τa. By adjunction we find a map

τ̃ : σ?(InG)→ G

extending τ . Take G̃ = I2n+1G. Then τ̃ induces a map

τ̃ : σ?G̃ = Iqn+qσ?(InG)→ Iqn+qG ⊂ G̃,

where the inclusion comes from the inequality qn + q ≥ 2n + 1. By
construction (G̃, τ̃) is a coherent τ -sheaf extending F . Moreover, since
we have the strict inequality qn+ q > 2n + 1, we have τ̃ ≡ 0 mod IG̃,
so that i?G̃ is nilpotent. �

Lemma 2.24. Let G be a coherent τ -sheaf on X so that i?G is nilpo-
tent. Then the inclusion IG → G is a nil-isomorphism. �

Theorem 2.25. Let F be a coherent τ -sheaf on U . Then there
exists a pair (F̃ , ϕ) consisting of

(1) a crystal F̃ on X such that i?F̃ is the zero crystal on Z,
(2) an isomorphism ϕ : F ∼→ j?F̃ in CrysU .

The pair (F̃ , ϕ) is unique up to unique isomorphism and depends func-
torially on F .
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Proof. By Lemma 2.20 and Lemma 2.23 there is a coherent τ -
sheaf G on X extending F with the desired properties.

Let ϕ : F1 → F2 be a morphism of coherent τ -sheaves on U , and let
F̃1 and F̃2 be as above. We show that there is a unique ϕ̃ : F̃1 → F̃2 in
CrysX extending ϕ.

By Lemma 2.22 there is an n so that j?ϕ maps InF̃1 in F̃2. By
Lemma 2.24 the inclusion InF̃1 → F̃1 is a nil-isomorphism, so that the
diagram

F̃1 ←− InF̃1
j?ϕ−→ F̃2

defines a morphism ϕ̃ : F̃1 → F̃2 in CrysX, extending ϕ.
Now let ϕ̃1 and ϕ̃2 be two extensions in CrysX. Consider their

difference δ. For all x ∈ U we have ι?xδ = 0 since ι?xϕ̃1 = ι?xϕ = ι?xϕ2.
For all x ∈ Z we have ι?xδ = 0 since it is a morphism between zero
crystals. By the point-wise-criterion of Theorem 1.29 we conclude that
δ = 0 so that ϕ̃1 = ϕ̃2 in CrysX.

A similar pointwise verification shows that ϕ 7→ ϕ̃ is compatible
with composition. This shows functoriality, and that (F̃ , ϕ) is unique
up to unique isomorphism. �

Proposition 2.26. The functor

Cohτ U → CrysX, F 7→ F̃

maps nilpotent τ -sheaves to the zero crystal, and is exact.

Proof. Let 0 → F1 → F2 → F3 → 0 be an exact sequence of
coherent τ -sheaves on U . We need to show that the induced sequence

(8) 0→ F̃1 → F̃2 → F̃3 → 0

of crystals on X is exact. By the pointwise criterion (Theorem 1.29) it
suffices to show that the sequence

0→ ι?xF̃1 → ι?xF̃2 → ι?xF̃3 → 0

of crystals on Spec k(x) is exact for all x ∈ X. If x ∈ U then this
sequence coincides with the pullback of 0→ F1 → F2 → F3 → 0 along
ιx, and hence is exact. If x ∈ X \ U then by definition of F̃i we have
ι?xF̃i = 0 as crystals on Spec k(x), so also in that case the sequence is
exact.

Similarly, if F is a nilpotent coherent τ -sheaf on U then for x ∈ U
the pull-back ι?xF̃ is isomorphic to ι?xF and hence nilpotent, and for
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x ∈ X \U the pull-back ι?xF̃ is nilpotent by construction. We conclude
using the pointwise criterion of Proposition 1.28 that F̃ is nilpotent. �

Corollary 2.27. The functor F 7→ F̃ factors over a unique func-
tor

j! : CrysU → CrysX

which is exact. �

We call the functor j! extension by zero from U to X.

Example 2.28. Let U = A1 = SpecFq[x] and j : A1 ↪→ P1 the
standard embedding with complement i : {∞} ↪→ P1. Let F be given
by M = Fq[x] and

τs : M →M, s 7→ fsq

for some f ∈ Fq[x]. Letm be an integer which satisfies (q−1)m ≥ deg f .
Then f defines a global section of OP1((q − 1)m∞). Consider the the
τ -sheaf F̃ = (OP1(−m∞), τ) with τ the composition

σ?OP1(−m∞)
∼→ OP1(−qm∞)

f→ OP1(−m∞).

By construction we have j?F̃ ∼= F . If moreover the strict inequality
(q− 1)m > deg f holds, then τ vanishes at the point ∞ and hence i?F̃
is nilpotent and we have F̃ = j!F in CrysP1.

Given a crystal F on some Y one often chooses a compactification
j : Y ↪→ X and then considers j!F . In such situations it is useful to be
able to compare different compactifications. The main tool for doing
so is the following lemma.

Lemma 2.29. Consider a commutative diagram

X ′

Y

X

p

h

j

of noetherian schemes over Fq, with j and h open immersions and p a
proper map. Let F be a crystal on Y . Then Rnp?h!F = 0 for n > 0
and there is a natural isomorphism p?h!F = j!F in CrysX.
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Proof. Let Y ′ be the fibered product of Y and X ′ over X. Let
i : Z → X be a closed complement and let i′ : Z ′ → X ′ be its base
change to X ′. We thus have a diagram

Y ′

X ′ Z ′

Y

X Z.

p′

j′

p

i′

h

j

i

in which the left parallelogram and the right square are cartesian.
Let us first consider the square on the right. The image of i′ is

disjoint with the image of h, so i′?h!F = 0. By the base change theorem
(Theorem 2.19) we have

(9) i?Rnp?(h!F) = 0

for all integers n.
Now consider the left part of the diagram. Being the base change

of the open immersion j the map j′ is an open immersion. Since also h
is an open immersion, we see that p′ is an open immersion. But being
the base change of a proper map, p′ is also proper. It follows that p′ is
both a closed and open immersion. In particular, if G is a crystal on
X ′ then we have

Rnp′?j
′?G =

{
h?G if n = 0,
0 if n > 0.

Taking G = h!F and applying the base change theorem to the left
parallelogram we deduce

(10) j?Rnp?(h!F) =

{
F if n = 0,
0 if n > 0.

Combining (9) and (10) we see that Rnp?(h!F) = 0 for n > 0 and
R0p?(h!F) = j!F , which finishes the proof. �

The trace function of j!F is of course the trace function of F ex-
tended by zero:
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Proposition 2.30. Let X be a scheme of finite type over Fq. Let
j : U → X be an open subscheme. Let F be a crystal on U . Then we
have

trj!F x =

{
trF x if x ∈ U(Fq),
0 otherwise

for all x ∈ X(Fq). �

5. Pushforward with proper support

Theorem 2.31 (Nagata [43, 41]). Let f : X → Y be a morphism
of noetherian schemes. Then there is a commutative diagram

(11)
X X

Y

j

f
f̄

with j an open immersion and f̄ a proper morphism if and only if f is
separated and of finite type. �

We call a factorization of f into an open immersion X ↪→ X and a
proper morphism X → Y a compactification of the map f .

Proposition 2.32. Let f : X → Y be a morphism of noetherian
schemes over Fq and let

X X1 X X2

Y Y

j1

f
f̄1

j2

f
f̄2

be compactifications of f . Then the functors Rnf̄1,?j1,! and Rnf̄2,?j2,!
from CrysX to CrysY are isomorphic.

Proof. Write X for the fiber product X1 ×Y X2. Then we have
an open immersion j = (j1, j2) : X → X and a proper map f̄ : X → Y
giving a compactification

X X

Y

j

f
f̄
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of f : X → Y . For each i ∈ {1, 2} we have a commutative diagram

X

X Xi

Y

pri

f̄

j

ji

f
f̄i

and it suffices to show that

Rnf̄i,? ◦ ji,! ∼= Rnf̄ ◦ j!
as functors from CrysX to CrysY . Let F be a crystal on X. Then by
Lemma 2.29 and by the Leray spectral sequence (Theorem 2.15) applied
to the map f̄ = f̄i ◦ pri and the crystal j!F we obtain an isomorphism

Rnf̄i,? ◦ ji,! ∼= Rnf̄ ◦ j!
of crystals on Y, functorial in F . �

For every separated finite type morphism f : X → Y of schemes
over Fq, and for every integer n, we obtain a functor

Rnf! := Rnf̄? ◦ j! : CrysX → CrysY,

well-defined up to isomorphism. This functor is called the n-th direct
image with proper support .

Theorem 2.33. Let f : X → Y be a separated morphism of finite
type between noetherian schemes over Fq. For every short exact se-
quence

(12) 0→ F1 → F2 → F3 → 0

in CrysX there is a long exact sequence

0→ R0f!F1 → R0f!F2 → R0f!F3 → R1f!F1 → · · ·
in CrysY , depending functorially on (12).

Proof. Choose a compactification X
j
↪→ X

f̄→ Y of f . The desired
exact sequence is the long exact sequence for the Rif̄? (Proposition 2.14)
applied to the short exact sequence

0→ j!F1 → j!F2 → j!F3 → 0.



38 2. FUNCTORS BETWEEN CATEGORIES OF CRYSTALS

in CrysX. �

Theorem 2.34 (Leray spectral sequence). Let X, Y and Z be noe-
therian schemes over Fq. Let f : X → Y and g : Y → Z be separated
morphisms of finite type. Then for every crystal F on X there is a
spectral sequence in CrysZ with

Ep,q2 = Rpg!R
qf!F ,

and converging to Rp+q(gf)!F , depending functorially on F .

Proof. Choose compactifications X ↪→ X → Y and Y ↪→ Y → Z
of f and g respectively. Let

X ↪→ X ′ → Y

be a compactification of the composite map X → Y . We obtain a
commutative diagram

X X X ′

Y Y

Z

jX

f
f̄

jX

f̄ ′
jY

g
ḡ

in which the three j’s are open immersions, and f̄ , f̄ ′ and ḡ are proper
maps. We will now modify this construction slightly, to obtain the
additional property that the parallelogram is cartesian. Consider the
fibre product Y ×Y X ′. In the sequence of maps

X → Y ×Y X
′ ↪→ X ′

the second map is an open immersion (as it is the base change of the
open immersion Y ↪→ Y ), and the composite is an open immersion, so
also the first map is an open immersion. At the same time, the map
Y ×Y X ′ → Y is proper, as it is the base change of the proper map
X ′ → Y . We conclude that replacing X by the fibre product Y ×Y X ′
we may assume that in the commutative diagram the parallelogram is
cartesian, with jX , jX , jY still being open immersions, and f̄ , f̄ ′ and ḡ
still being proper maps.
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We claim that for every crystal G on X and for every n we there is
a natural isomorphism

(13) ψ : jY,!
(
Rnf̄?G

)
→ Rnf̄ ′?

(
jX̄,!G

)
of crystals on Y . Indeed, Rnf̄? may be computed locally on the target,
which shows that both sides are isomorphic on Y ⊂ Y . By the defining
property of jY,! this isomorphism extends to a natural map (13). Let
i : Z → Y be a closed immersion whose image is the complement of Y .
It suffices to show that i?ψ is an isomorphism, or, which is the same,
that i?Rnf̄ ′?

(
jX̄,!G

)
is an isomorphism. But the latter follows from the

base change theorem (Theorem 2.19).
Now taking G = jX,!F in the isomorphism (13) we find

Rpg!R
qf!F = Rpḡ?jY,!R

qf!F = Rpḡ?R
qf̄ ′?j!F

where j is the inclusion of X in X ′. The theorem now follows from
the Leray spectral sequence for ḡ ◦ f̄ ′ applied to the the crystal j!F on
X̄ ′. �

Theorem 2.35 (Proper base change). Consider a cartesian square

X ′ X

Y ′ Y

g′

f ′ f

g

of noetherian schemes over Fq. Assume that f is separated and of finite
type. Then f ′ is separated and of finite type, and for every integer i and
crystal F on X there is a natural isomorphism

g?Rif!F
∼→ Rif ′! g

′?F

of crystals on Y ′.

Proof. Let

X X

Y

j

f
f̄
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be a compactification of f : X → Y . Then its base change

X ′ X ′

Y ′

j′

f ′

f̄ ′

along Y ′ → Y is a compactification of f ′ : X ′ → Y ′.
Now let F be a crystal on X. Denote the base change map X ′ → X

by ḡ′. By construction we have an isomorphism ḡ′?j!F ∼= j′!g
′?F in

CrysX ′. Applying Rif̄ ′ yields an isomorphism

Rif̄ ′ḡ′?j!F ∼= Rif̄ ′j′!g
′?F

in CrysY ′. Applying corollary 2.19 to the crystal j!F we find an iso-
morphism

ḡ?Rif?j!F ∼= Rif̄ ′?ḡ
′?j!F

of crystals on Y ′. Combining the above two isomorphisms yields

ḡ?Rif!F = ḡ?Rif?j!F ∼= Rif̄ ′j′!g
′?F = Rif ′! g

′?F ,
the desired isomorphism. �

Notes

Most of the material in the chapter is due to Böckle and Pink [11],
in particular the crucial observation that inverting nil-isomorphisms
leads to a well-defined extension-by-zero functor. Because we work with
Fq-coefficients, a number of things become significantly easier. In par-
ticular, tensor product is exact. Also, the restriction to Fq-coefficients
allows us to give an easier proof of the base-change theorems, based on
the theorem of formal functions.

One can similarly define functors ⊗, f? and Rf! on the derived
categories Db(CrysX). The functor Rf! is defined as Rf̄? ◦ j! for any
compactification f = f̄ ◦ j.

The extension-by-zero functor of Böckle and Pink that we described
in this chapter is closely related to Deligne’s approach to defining j!
on quasi-coherent sheaves [15]. He defines extension by zero j!F of a
quasi-coherent OU -module F as the projective system consisting of all
possible extensions F̃ to X. If F is a coherent τ -sheaf, then τ will
extend to any ‘small enough’ extension, and the projective system will
stabilize in the sense that eventually all maps become nil-isomorphisms.
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Exercises

Exercise 2.1. Let X be a noetherian scheme over Fq. Let j : U ↪→
X be an open immersion. Show that for all crystals F on U and G on
X we have a natural isomorphism

Hom(F , j?G) = Hom(j!F ,G).

In other words, show that the functor j! is a left adjoint of j?.

Exercise 2.2. Let X be a noetherian scheme over Fq. Let i : Z �
X be a closed immersion and let j : U ↪→ X be the open complement.
Let F be a crystal on X. Show that there is an exact sequence

0→ j!j
?F → F → i?i

?F → 0

of crystals on X.

Exercise 2.3 (Projection formula). Let f : X → Y be a compact-
ifiable morphism of noetherian schemes over Fq. Let F be a crystal
on X and G a crystal on Y . Let i be an integer. Show that there is a
natural isomorphism

G ⊗ Rif!F
∼→ Rif!(f

?G ⊗ F)

of crystals on X.

Exercise 2.4 (Künneth formula (?)). Let f1 : X1 → Y and f2 : X2 →
Y be morphisms of schemes of finite type over Fq. Let f : X1×YX2 → Y
be their fiber product, and let pi : X1 ×Y X2 → Xi denote the projec-
tions. Let F1 and F2 be crystals on X1 and X2 respectively. Show that
there is a natural isomorphism⊕

i+j=n

Rif1,!F1 ⊗ Rjf2,!F2
∼→ Rnf!(p

?
1F1 ⊗ p?2F2)

of crystals on Y .





CHAPTER 3

The Woods Hole trace formula

1. The Grothendieck group of crystals

Let X be a noetherian scheme over Fq. Denote by K0(X) the
Grothendieck group of the abelian categoryCrysX. This is the abelian
group generated by isomorphism classes [F ] of crystals, modulo rela-
tions [F2] = [F1] + [F3] for every short exact sequence 0→ F1 → F2 →
F3 → 0 in CrysX.

Lemma 3.1. Let F = F0 ⊃ F1 ⊃ · · · ⊃ Fn = 0 be crystals on X.
Then we have [F ] =

∑
i[F i/F i+1] in K0(X).

Proof. For every i the exact sequence 0→ F i+1 → F i → F i/F i+1 →
0 gives [F i] − [F i+1] = [F i/F i+1] in K0(X) which summing over all
i ∈ {0, . . . , n− 1} gives the claimed identity. �

Lemma 3.2. Let F• be a bounded complex of crystals on X. Then∑
i

(−1)i[F i] =
∑
i

(−1)i[Hi(F•)]

in K0(X).

It follows that if 0→ F1 → · · · → Fn → 0 is exact in CrysX then
we have

∑
i(−1)i[Fi] = 0 in K0(X).

Proof of Lemma 3.2. On the one hand, the complex F• splits
into short exact sequences

0→ ker(F i → F i+1)→ F i → im(F i → F i+1)→ 0

while on the other hand the cohomology crystals sit in short exact
sequences

0→ im(F i−1 → F i)→ ker(F i → F i+1)→ Hi(F•)→ 0.

43
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Taking the alternating sum over i of the resulting identities in K0(X)
and comparing the terms yields the desired identity

∑
i(−1)i[F i] =∑

i(−1)i[Hi(F•)]. �

Since the functor − ⊗ − on crystals is exact in both arguments
(Corollary 2.8), it induces a bi-additive map

K0(X)×K0(X)→ K0(X),
(
[F ], [G]

)
7→ [F ⊗ G]

which gives K0(X) the structure of a commutative ring.
Similarly, for a map f : X → Y of noetherian schemes over Fq the

functor f? : CrysY → CrysX is exact (Corollary 2.2), so it induces
a map

f? : K0(Y )→ K0(X), [F ] 7→ [f?F ].

This map is a ring homomorphism.
Finally, if f : X → Y is a separated map of finite type between

noetherian schemes over Fq then the long exact sequence of Theorem
2.33 combined with Lemma 3.2 shows that the map

Rf! : K0(X)→ K0(Y ), [F ] 7→
∑
i≥0

(−1)i[Rif!F ]

is well-defined. It is additive, but in general not a ring homomorphism.
It has the following important transitivity property.

Proposition 3.3. Let f : X → Y and g : Y → Z be separated
morphisms of finite type between noetherian schemes over Fq. Then
R(gf)! = Rg! ◦ Rf! as maps from K0(X) to K0(Z).

Proof. Let F be a crystal on X. Consider the associated Leray
spectral sequence (Theorem 2.34)

Es,t2 = Rsg!R
tf!F =⇒ Rs+t(gf)!F .

We have in K0(Z) the identity

Rg!Rf![F ] =
∑
s

∑
t

(−1)s+t[Rsg!R
tf!F ] =

∑
s,t

(−1)s+t[Es,t2 ].

Consider one of the slanted complexes

· · · → Es−i,t+i−1
i → Es,tn → Es+i,t−i+1

n → · · ·

on page i. By the definition of a spectral sequence we have that the
cohomology at Es,ti of this complex is isomorphic to Es,ti+1. With Lemma
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3.2 we find ∑
s,t

(−1)s+t[Es,ti ] =
∑
s,t

(−1)s+t[Es,ti+1]

in K0(Z). Applying this successively with i = 2, 3, . . . we find

Rg!Rf![F ] =
∑
s,t

(−1)s+t[Es,t∞ ].

On the other hand, applying Lemma 3.1 to the spectral sequence
filtration on Rn(gf)!F we obtain

(−1)n[Rn(gf)!F ] =
∑
s+t=n

(−1)s+t[Es,t∞ ]

and summing over all n gives

R(gf)![F ] =
∑
s,t

(−1)s+t[Es,t∞ ],

which completes the proof. �

2. The sheaves-functions dictionary

LetX be a scheme of finite type over Fq. Denote by Map(X(Fq),Fq)
the algebra of Fq-valued functions onX(Fq). We have a homomorphism

tr : K0(X)→ Map(X(Fq),Fq), [F ] 7→ trF

which is well-defined by Exercise 1.2. It is a ring homomorphism by
Proposition 2.9. If f : X → Y is a morphism of schemes of finite type
over Fq then the diagram

K0(Y ) Map(Y (Fq),Fq)

K0(X) Map(X(Fq),Fq)

f? −◦f

commutes by Proposition 2.3.

Theorem 3.4 (Woods Hole trace formula). Let f : X → Y be a sep-
arated morphism of schemes of finite type over Fq and let K ∈ K0(X).
Then have

(14) trRf!K y =
∑

x∈f−1(y)(Fq)

trK x

for every y ∈ Y (Fq).
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Equivalently, the diagram

K0(X) Map(X(Fq),Fq)

K0(Y ) Map(Y (Fq),Fq)

Rf! f!

commutes. Here the right-hand map is “integration along the fibers”:

f! : Map(X(Fq),Fq)→ Map(Y (Fq),Fq), g 7→
(
y 7→

∑
x∈X(Fq)
f(x)=y

g(x)
)
.

In the coming two sections we will prove Theorem 3.4, following the
elegant approach of Fulton [22].

3. A quotient of the Grothendieck group of crystals

Let X be a noetherian scheme over Fq. We denote by G(X) the
quotient of K0(X) by the relations

(15) [(F , τ1)] + [(F , τ2)] = [(F , τ1 + τ2)]

for all coherent OX -modules F and maps τi : σ?F → F . We will denote
the class of a coherent τ -sheaf F in K0(X) and in G(X) both by [F ].
When necessary we will specify in which group we are working.

For all λ ∈ Fq the construction (F , τ) 7→ (F , λτ) defines an endo-
morphism of the groups K0(X) and G(X). Thanks to the relations (15)
the map Fq → EndG(X) is a ring homomorphism. This makes G(X)
into an Fq-vector space.

The tensor product of coherent τ -sheaves is compatible with the
relations (15) and makes G(X) into an Fq-algebra. The quotient map
K0(X)→ G(X) is a ring homomorphism.

For every morphism f : X → Y of noetherian schemes over Fq
the ring homomorphism f? : K0(Y ) → K0(X) induces an Fq-algebra
homomorphism f? : G(Y )→ G(X).

Proposition 3.5. Let f : X → Y be a separated morphism of finite
type between noetherian schemes over Fq. Then Rf! : K0(X)→ K0(Y )
induces an Fq-linear map Rf! : G(X)→ G(Y ).

Proof. Choose a compactification

X
j−→ X

f̄−→ Y
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of f : X → Y . Consider coherent τ -sheaves (F , τ1) and (F , τ2) on U
with the same underlying coherent OU -module F . Let G ⊂ j?F be an
arbitrary coherent OX -module extending F . By Lemma 2.23 we have,
for n large enough, that (InG, τ1), (InG, τ2) and (InG, τ1 + τ2) define
extensions by zero of (F , τ1), (F , τ2) and (F , τ1 + τ2) respectively. We
find isomorphisms of crystals

Rsf! (F , τ) ∼= (Rsf̄?InG, τ)

for τ ∈ {τ1, τ2, τ1 + τ2} and for all s, and conclude that the map
Rf! : K0(X) → K0(Y ) � G(Y ) factors over G(X), as we had to show.

�

Now assume that X is a scheme of finite type over Fq. The trace
of an endomorphism τ of a finite-dimensional Fq-vector space is linear
in τ , hence the map tr : K0(X) → Map(X(Fq),Fq) factors over an
Fq-algebra homomorphism G(X)→ Map(X(Fq),Fq).

Theorem 3.6 (Localization Theorem). Let X be a scheme of finite
type over Fq. Then the Fq-linear maps

tr : G(X)→ Map(X(Fq),Fq), K 7→ trK

and

` : Map(X(Fq),Fq)→ G(X), f 7→
∑

x∈X(Fq)

f(x)
[
ix,?1SpecFq

]
are mutually inverse isomorphisms.

Of course we have tr ◦ ` = id. In the next section we will show
` ◦ tr = id. Theorem 3.6 almost immediately implies the Woods Hole
trace formula, as we now show.

Proof of Theorem 3.4, assuming Theorem 3.6. Let f : X →
Y be a separated morphism of schemes of finite type over Fq. We need
to show

(16) trRf!K y =
∑

x∈X(Fq)
f(x)=y

trK x

for all K ∈ K0(X). Both sides depend only on the class of K in G(X),
and depend linearly on this class. By Theorem 3.6 we may restrict to
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K = [ix0,?1] for x0 ∈ X(Fq). Let y0 ∈ Y (Fq) be the image of x0. Then
we have

Rnf!ix0,?1 =

{
iy0,?1 if n = 0

0 if n > 0

so that Rf!K = [iy0,?1]. Both the left-hand-side and right-hand-side of
(16) are 1 for y = y0 and 0 for y 6= y0, and the theorem follows. �

4. Proof of the Localization Theorem

The proof of the Localization Theorem (Theorem 3.6) goes by re-
duction to the case X = Pn, which we treat first.

Let R = Fq[x0, . . . , xn] and Pn = Pn
Fq

= ProjR. Let M be a
graded R-module. We call a map τs : M →M graded q-linear if

(1) τs(rm) = rqτs(m) for all r ∈ R and m ∈M , and,
(2) τs(Mi) ⊂Mqi for all i.

Let M̃ be the quasi-coherentOPn-module associated with the graded R-
module M . A graded q-linear map τs : M →M induces a q-linear map
τs : M̃ → M̃ , making M̃ into a quasi-coherent τ -sheaf. It is coherent if
M is finitely generated.

Proposition 3.7. The functor M → M̃ from the category of pairs
(M, τs) with M a finitely generated R-module and τs : M → M graded
q-linear to the category Cohτ P

n is exact and essentially surjective.

See exercise 3.3 for a refinement of this Proposition.

Proof of Proposition 3.7. The exactness follows immediately
from the corresponding statements on finitely generated graded R-
modules and and coherent OPn-modules. For the essential surjectivity,
let (F , τ) be a coherent τ -sheaf and set

M :=
⊕
d≥0

Md, Md := Γ(Pn,F(d)),

so that M̃ = F as coherent OPn-modules. The map τ : σ?F → F
induces maps σ?(F(d))→ F(qd), which induce q-linear maps τs : Md →
Mqd, and the functor in the proposition maps the pair (M, τs) to (F , τ).

�

Lemma 3.8. The group K0(CrysPn) is generated by the classes of
coherent τ -sheaves (F , τ) with F ∼= ⊕iO(di) for some di ≤ 0.
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Proof. Let F be a coherent τ -sheaf on Pn. Let (M, τs) be a pair
representing F as in Proposition 3.7. The graded R-module M has a
finite free graded resolution

0→Mn → · · · →M0 →M → 0.

Since M0 is free, and since a q-linear map is determined by the images
of a set of generators, there exists a q-linear τs,0 : M0 → M0 such that
the square

M0 M

M0 M

τs,0 τs

commutes, and such that τs maps (M0)i to (M0)qi for all i. Repeating
this argument with the kernel of M0 �M we find a diagram

0 Mn · · · M0 M 0

0 Mn · · · M0 M 0

τs,n τs,0 τs

and hence a resolution

0→ Fn → · · · → F0 → F → 0

of F by coherent τ -sheaves of the form (⊕iO(di), τ). In particular we
have

[F ] = [F0]− [F1] + [F2]− · · ·
in K0(CrysPn), and conclude that K0(CrysPn) is generated by the
classes of coherent τ -sheaves (F , τ) with F ∼= ⊕iO(di) with di ∈ Z.

Now let F be a coherent τ -sheaf of the form (⊕iO(di), τ). Let d be
the maximum of the di and assume that d > 0. Consider the sub-OPn-
module

G =
⊕
{i|di=d}

O(di) ⊂ F .

We have σ?O(d) = O(qd). Since qd > di for all i, the map τ van-
ishes on σ?G. In particular, G is a nilpotent sub-τ -sheaf of F and
[F ] = [F/G] in K0(CrysPn). The coherent τ -sheaf F/G is again of
the form (⊕iO(di), τ), but with a strictly smaller d = maxi di. We may
repeat this argument until d is less than or equal to 0 and we conclude
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that K0(CrysPn) is indeed generated by the classes of the coherent
τ -sheaves (⊕iO(di), τ) with di ≤ 0 for all i. �

Lemma 3.9. The group G(Pn) is generated by the [(O(d), τ)], with
d ≤ 0 and τ arbitrary.

Proof. If F = (⊕iO(di), τ) then τ is given by a matrix (τij) with

τij : σ?O(di)→ σ?O(dj).

Let us denote by τ̂ij the matrix of which all entries are zero, except for
the (i, j)-th which equals τij . We have (τij) =

∑
i,j τ̂ij so that in G(Pn)

we have
[F ] =

∑
i,j

[(⊕kO(dk), τ̂ij)].

If i 6= j then τ̂ij is nilpotent, hence in G(Pn) we find the identity

[F ] =
∑
i

[(⊕kO(dk), τ̂ii)].

Decomposing into rank one τ -sheaves we find

[F ] =
∑
k

[(O(dk), τkk)]

and we see that G is indeed generated by the classes of τ -sheaves of the
desired form. �

Lemma 3.10. The Fq-vector space G(Pn) is generated by the classes
[(O(d), τ)], where τ ∈ Γ(Pn,O((1− q)d)) is given by a monomial

xe00 · · ·x
en
n

with
∑
ei = (1− q)d and ei ≤ q − 1 for all i.

In particular, the Lemma shows that the dimension of G(Pn) is
finite.

Proof of Lemma 3.10. By the previous lemma, G(Pn) is gener-
ated by the classes of the pairs (O(d), τ) with d ≤ 0 and τ given by an
f ∈ Fq[x0, . . . , xn] which is homogenous of degree (1− q)d. Clearly we
can restrict the f to monomials in the xi.

Now let f = xe00 · · ·xenn be a monomial of degree (1−q)d with ei ≥ q
for some i, so that f = xq−1

i f ′ with f ′ a monomial that is divisible by
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xi. Let ι : H � Pn be the hyperplane given by xi = 0. Then we have
a commutative diagram

O(qd) O(q(d+ 1)) ι?OH

O(d) O(d+ 1) ι?OH

f

xqi

f ′ 0

xi

This gives a short exact sequence

0→ (O(d), τ)→ (O(d+ 1), τ ′)→ (ι?OH , 0)→ 0

of coherent τ -sheaves on Pn (with τ ′ given by f ′), and since (ι?OH , 0)
is nilpotent we have

[(O(d), τ)] = [(O(d+ 1), τ ′)]

in G(Pn). We can repeat this argument until f is replaced by a mono-
mial with all exponents ≤ q − 1. �

In fact we can exclude [(O, 1)] from the set of generators of the
previous Lemma.

Lemma 3.11. As an Fq-vector space G(Pn) is generated by the
classes [(O(d), τ)], where τ ∈ Γ(Pn,O((1−q)d)) is given by a monomial

xe00 · · ·x
en
n

with
∑
ei = (1− q)d and ei ≤ q − 1 for all i and ei > 0 for some i.

Proof. Given i0 < i1 < · · · < im in {0, ..., n} we consider the
τ -sheaf

Fi0···im =
(
O(−m− 1), xq−1

i0
· · ·xq−1

im

)
on Pn. Note that it is one of the generators of Lemma 3.10. As usual,
we denote by i0 · · · îk · · · im the index where ik has been removed. For
every k there is a map Fi0···im → Fi0···îk···im given by multiplication
with xik . This is a map of τ -sheaves since the square

O(−q(m+ 1)) O(−qm)

O(−(m+ 1)) O(−m)

xq−1
i0
···xq−1

im

xqik

xq−1
i0
···xq−1

im
/xq−1
ik

xik
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commutes. Now consider the sequence

(17) 0→ F01···n → · · · →
∏
i0<i1

Fi0i1 →
∏
i0

Fi0 → 1Pn → 0

of coherent τ -sheaves on Pn, where a section α of Fi0···im gets mapped
to ∑

k

(−1)k (xikα)i0···îk···im .

This is the Koszul complex of the surjective map

(x0, . . . , xn) : O(−1)n+1 → O.

In particular the sequence (17) is exact. The exact sequence gives an ex-
pression of the class of 1Pn as linear combination of the other [Fi0···im ],
and we conclude using Lemma 3.10. �

The identity in K0(CrysPn) established in the proof of the lemma,
induces an identity of trace functions. For example, if n = 1 this is the
identity

xq−1yq−1 − xq−1 − yq−1 + 1 = 0

for all (x : y) ∈ P1(Fq).

Corollary 3.12 (Localization Theorem for Pn). The maps

tr : G(Pn)→ Map(Pn(Fq),Fq)

and
` : Map(Pn(Fq),Fq)→ G(Pn)

are mutually inverse isomorphisms of Fq-vector spaces.

Proof. We already know that tr ◦` = id, so it suffices to establish
the inequality

dimG(Pn) ≤ dim Map(Pn(Fq),Fq) = qn + · · ·+ q + 1.

By the preceding lemma we have that dimG(Pn) is at most the number
of nonzero tuples (e0, . . . , en) with 0 ≤ ei ≤ q − 1 and

∑
ei divisible

by q − 1. Let S be the set of such tuples. For an integer m denote by
Sm the set of tuples (e0, . . . , en) ∈ S for which em 6= 0 and ei = 0 for
all i > m. For every choice of e0, . . . , em−1 in {0, . . . , q − 1} there is a
unique em such that (e0, . . . , em, 0, . . . , 0) ∈ Sn. Therefore #Sm = qm.
Since S is the disjoint union of the Sm we find #S = 1 + q + · · ·+ qn,
which yields the desired upper bound for dimG(Pn). �
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To deduce the full Localization Theorem, we use the following
proposition.

Proposition 3.13. Let X be a scheme of finite type over Fq. Let
i : Z � X be a closed subscheme and j : U ↪→ X its open complement.
Then the Localization Theorem holds for X if and only if it holds for Z
and for U .

Proof. We claim that the maps

(18) G(X)→ G(U)⊕G(Z), [F ] 7→ ([j?F ], [i?F ])

and

(19) G(Z)⊕G(U)→ G(Z), ([F1], [F2]) 7→ [j!F1 ⊕ i?F2]

are mutually inverse isomorphisms. Indeed, for crystals F1 and F2 on U
and Z respectively we have j?(j!F1⊕ i?F2) = F1 and i?(j!F1⊕ i?F2) =
F2. Conversely, if F is a crystal on X then the short exact sequence

0→ j!j
?F → F → i?i

?F → 0

shows that (19) maps ([j?F ], [i?F ]) to [F ].
Now for any scheme S of finite type over Fq consider the endomor-

phism ` ◦ tr of G(S). Note that S satisfies the Localization Theorem if
and only if `◦tr = id onG(S). The decompositionG(X) = G(U)⊕G(Z)
respects the action of ` ◦ tr on G(X), G(U) and G(Z) so that G(X)
satisfies the Localization Theorem if and only if G(U) and G(Z) do. �

We can now finish the proof of the Localization Theorem.

Proof of Theorem 3.6. We first show that the theorem holds
for affine schemes X of finite type over Fq. Indeed, choose a closed
immersion X � An and an open immersion An ↪→ Pn. By Corollary
3.12 the theorem holds for Pn, hence by the preceding proposition also
for An and X.

Now let X be an arbitrary scheme of finite type over Fq. Choose
an affine open subset U0 ⊂ X0 := X with closed complement X1. Then
choose an affine open subset U1 ⊂ X1 with closed complement X2, and
so on, leading to a finite decomposition

X = U0 q U1 q · · · q Ud.
Each of the Ui satisfies the localization theorem, and repeatedly apply-
ing the preceding proposition shows that Xd, Xd−1, and finally X0 = X
satisfy the localization theorem. �
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Notes

There are several closely related theorems that go by the name
Woods Hole trace formula or Woods Hole fixed point theorem.

Let X be a compact complex manifold, σ : X → X an endomor-
phism with simple fixed points, V a vector bundle on X and ϕ : σ?V →
V a map of vector bundles. Then one has

(20)
∑
i

(−1)i trC
(
ϕ | Hi(X,V)

)
=

∑
x∈X
f(x)=x

trC (ϕx | Vx )

detC (1− dσx | TX,x)

This was conjectured by Shimura and proven in 1964 at a seminar at
a conference in Woods Hole [49, Introduction]. For a published proof
of this formula, and of a much more general theorem in differential
geometry, see Atiyah and Bott [6, Theorem 2] and [7].

A purely algebraic statement and proof can be found in SGA 5 [27,
Exp. III, 6.12], or in Appendix A of these notes. It applies to a proper
smooth schemeX over a fieldK, and an endomorphism σ : X → X with
isolated transversal fixed points. Taking K = Fq and σ the Frobenius
endomorhpism one recovers Theorem 3.4 for Y = SpecFq and X → Y
proper smooth. Note that in this case dσ = 0, so that the determinants
in the denominators in (20) disappear. The more general Theorem 3.4
could easily be deduced from this special case.

The proof we have given, including the Localization Theorem, is due
to Fulton [22] (except for the addition of Lemma 3.11, which corrects
a mistake in the “simple count” after Lemma 3 in loc. cit.).

In their book Böckle and Pink [11] take an approach following An-
derson [3]. They reduce to the case where X(Fq) is empty, so that
the right-hand side of the trace formula (14) vanishes, and then use
Serre duality and a trick similar to the proof of Proposition 2.16 to
deduce that also the left-hand side vanishes. In [46] the trace formula
is proven for curves using a variation of this trick that avoids the use
of Serre duality. Using the Leray spectral sequence, the full Theorem
3.4 could also be deduced from this by factoring the map X → Y as a
composition of relative curves.

Exercises

Exercise 3.1. Let X be a scheme and let Z be a closed subscheme
with complement U . Show that the quasi-coherent OX -modules which
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are supported on Z form a Serre subcategory of the category of all quasi-
coherent OX -modules. Show that the quotient category is equivalent
with the category of quasi-coherent OU -modules.

Exercise 3.2. Under the sheaves-functions dictionary, to which
identities between Fq-valued functions on Fq-points do the projection
formula (Exercise 2.3) and the proper base change theorem (Theorem
2.35) correspond?

Exercise 3.3. This exercise refines Proposition 3.7. Let C be the
category of pairs (M, τs) with M a finitely generated Fq[x0, . . . , xn]-
module and τs : M → M a graded q-linear map. Let C0 be the full
subcategory consisting of those pairs for which there is a d0 withMd = 0
for all d ≥ d0. Show that C0 is a Serre subcategory of C and that the
quotient C/C0 is equivalent with the category Cohτ P

n.





CHAPTER 4

Elementary applications

In this chapter we illustrate the use of the sheaves-functions dictio-
nary by means of a few well-known, classical applications. Several of
these can also be shown by elementary combinatorial arguments.

1. Congruences between number of points

Proposition 4.1. Let f : X → Y be a morphism of proper schemes
over Fq. Assume that for every i the induced map

f? : Hi(Y,OY )→ Hi(X,OX)

is an isomorphism. Then #X(Fq) ≡ #Y (Fq) (mod p).

Proof. Denote the structure maps by gX : X → SpecFq and gY : Y →
SpecFq. We have f?1Y = 1X , inducing morphisms

(21) RigY,?1Y → RigX,?1X

of crystals on SpecFq, which by the hypothesis are isomorphisms. By
the trace formula applied to the crystal 1X and the proper map gX we
have

#X(Fq) mod p =
∑
i≥0

(−1)i trRigX,?1X ?

and similarly for #Y (Fq) mod p. By the isomorphisms (21) we find
that #X(Fq) ≡ #Y (Fq) (mod p). �

Example 4.2 (Birational maps). Let f : X → Y be a birational
map between proper smooth schemes over SpecFq. Then by [12, The-
orem 1] the induced maps

f? : Hi(Y,OY )→ Hi(X,OX)

are isomorphisms, and hence #X(Fq) ≡ #Y (Fq) (mod p).

57
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If f is the blow-up of a smooth closed subscheme Z, then this is
obvious, since the fiber f−1(z) at any point z ∈ Z(Fq) will be a pro-
jective space of some dimension d and #Pd(Fq) ≡ 1 (mod p). By the
weak factorization theorem [1, 52] every birational map between proper
smooth schemes over a field of characteristic zero can be factored as a
sequence of blow-ups and inverses of blow-ups along smooth centers.
However, it is not known if this is the case in characteristic p.

2. Chevalley-Warning

The standard example of an application of coherent cohomology to
the existence of rational points over finite fields is the following.

Proposition 4.3 (Chevalley-Warning). Let f1, . . . , fr ∈ Fq[x0, . . . , xn]
be homogeneous polynomials of degree d1, . . . , dr respectively. Let X �
Pn

Fq
be the closed subscheme given by the homogeneous ideal (f1, . . . , fr).

Assume that d1 + · · ·+ dr ≤ n. Then #X(Fq) ≡ 1 modulo p.

In particular, X(Fq) is non-empty.

Proof of Proposition 4.3. We first show that the cohomology
of OX is as follows

(22) Hi(X,OX) =

{
Fq i = 0

0 i > 0

For a closed subscheme i : Z → Pn we write OZ for the OPn-module
i?OZ . Note that Hi(Z,OZ) = Hi(Pn,OZ). For a non-empty subset
S ⊂ {1, . . . , r} we denote by ZS the closed subscheme Z({fs : s ∈ S})
of Pn, so that that Z{1,...,r} = X. We denote by Z the closed subscheme
Z(f1 · · · fs) of X.

We prove (22) by induction on the number of homogeneous poly-
nomials r. For r = 1 we have a short exact sequence

0→ OPn(−d1)
f1→ OPn → OZ1 → 0.

Since 1 ≤ d1 ≤ n we have Hi(Pn,O(−d1)) = 0 for all i, so that the
long exact sequence gives the claimed cohomology groups for OZ1 .

For arbitrary r, we use the Koszul resolution

0→ OZ∅ →
∏

#S=1

OZS → · · · →
∏

#S=r−1

OZS → OX → 0.
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This is an exact sequence, and the induction hypothesis shows that all
except for possibly the last term has trivial higher cohomology, so that
this is an acyclic resolution of OX . The cohomology of OX therefore
agrees with the cohomology of the complex of global sections, which by
the induction hypothesis equals

0→ Fq →
∏

#S=1

Fq → · · · →
∏

#S=r−1

Fq.

This is exact except for in degree 0, where the cohomology is Fq, as we
had to show.

Now consider the number of Fq-points on X. Modulo p this number
equals ∑

x∈X(Fq)

1 =
∑

x∈X(Fq)

tr1 x ∈ Fq.

By the Woods Hole trace formula applied to X → SpecFq this equals∑
i

(−1)i trFq
(
τ | Hi(X,OX)

)
.

Since Frobenius acts as the identity on H0(X,OX) we find that #X(Fq) ≡
1, as we had to show. Alternatively, for the last part of the proof one
may observe that i : X → Pn induces an isomorphism on coherent co-
homology and apply Proposition 4.1. �

3. Polynomial sums

Proposition 4.4. Let n be a positive integer. Let f ∈ Fq[x1, · · · , xn]
be a polynomial of degree less than (q − 1)n. Then∑

x∈Fnq

f(x) = 0.

Proof. Consider on An over Fq the τ -sheaf F = (F , τ) with F =
OAn and τ the composition

σ?OAn
∼→ OAn

f→ OAn .

We have ∑
x∈Fnq

f(x) =
∑

x∈An(Fq)

trF x.
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(See also example 1.11). Let π : An → SpecFq be the structure map.
Then by the trace formula we have∑

x∈An(Fq)

trF x =
∑
i≥0

(−1)i trRiπ!F ?.

To compute the Riπ!F we work with the standard embedding j : An ↪→
Pn. Let H be the (reduced) hyperplane at infinity.

An Pn H

SpecFq

j

π π̄

Let m be a positive integer with (q− 1)m ≥ deg f . Consider on Pn the
τ -sheaf F̃ with F̃ = OPn(−mH) and τ the composition

σ?OPn(−mH)
∼→ OPn(−qmH)

f→ OPn(−mH)

(see also Example 1.12). Clearly j?F̃ ∼= F . Now assume that the strict
inequality (q − 1)m > deg f holds. Then τ vanishes along H so that
F̃ ∼= j!F as crystals on Pn. Finally, we have Riπ!F = Riπ̄?F̃ . But
note that for 0 < m ≤ n the cohomology of OPn(−mH) vanishes. So
we conclude that if deg f < (q − 1)n then Riπ!F = 0 for all i, and the
proposition follows. �

4. Hasse invariant

Proposition 4.5. Let q be a power of an odd prime p and let
f ∈ Fq[x] be a polynomial of degree 3. Then the number of (x, y) ∈ F2

q

such that y2 = f(x) is congruent modulo p to the coefficient of xq−1 in
−f (q−1)/2.

In particular, the coefficient of xq−1 lies in the subfield Fp of Fq.

Proof. Let X = SpecFq[x, y]/(y2 − f(x)) and let π : X → A1 be
the map given by x. The algebra π?OX is free of rank 2 and can be
written as

π?OX = OA1 · 1⊕OA1 · ε
with multiplication given by ε2 = f · 1. It follows that the q-th power
map on π?OX maps ε to f (q−1)/2ε. Let 1X be the unit crystal on X.
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Then the above shows that π?1X ∼= 1A1⊕F where F = (OA1 , f (q−1)/2).
We have

#X(Fq) mod p =
∑

x∈A1(Fq)

tr1 x +
∑

x∈A1(Fq)

trF x =
∑

x∈A1(Fq)

trF x.

We will compute the right-hand side using the trace formula. Let
j : A1 ↪→ P1 be the usual inclusion. Consider the τ -sheaf F̃ = ((O(−2∞), f (q−1)/2)

on P1. Since deg f (q−1)/2 < 2(q− 1) we have j!F ∼= F̃ in CrysP1. We
have H0(P1,O(−2∞)) = 0. A Čech computation shows that

H1(P1,O(−2∞)) =
Fq[x, x

−1]

Fq[x]⊕ x−2Fq[x−1]
.

It is one-dimensional with basis x−1, and the map induced by τ sends
x−1 to the coefficient of x−1 in x−qf (q−1)/2 ∈ Fq[x, x

−1]. Now the trace
formula tells us that

#X(Fq) mod p =
∑

x∈A1(Fq)

trF = − trFq
(
τ | H1(P1, j!F)

)
.

By the preceding calculation the trace in the right-hand side equals the
coefficient of xq−1 in f (q−1)/2, which proves the proposition. �

Notes

The theorem of Chevalley-Warning was shown by Chevalley [13]
(existence of a solution) and Warning [50] (congruence on the number
of solutions) in 1936. It has since been strengthened and generalized
in several ways. Ax [8] and Katz [34] showed that one can replace the
congruence modulo p by a congruence modulo q, and even modulo a
certain power of q depending on the di. Of course one cannot obtain
such congruences from the Woods Hole trace formula. Berthelot, Bloch
and Esnault [10] have shown that the congruence modulo q can be
obtained using Witt vector cohomology.

Deuring [17] has shown that an elliptic curve E given by a Weier-
strass equation y2 = f(x) over a field of odd characteristic p is supersin-
gular if and only if the coefficient of xp−1 in f (p−1)/2 vanishes. A com-
putation similar to the one in the proof of Proposition 4.5 shows that
this is equivalent with the vanishing of the action of τ on H1(E,OE).
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Exercises

Exercise 4.1. Assume p is odd. Express the number of points
modulo p on a hyperelliptic curve of the form y2 = f(x) over Fq in
terms of the coefficients of f (q−1)/2.

Exercise 4.2. Let f ∈ Fq[x0, . . . , xn] be nonzero and homogenous
of degree n + 1. Let X = Z(f). Let a ∈ Fq be the coefficient of
(x0 · · ·xn)q−1 in f q−1. Show that a ∈ Fp and that #X(Fq) ≡ 1 +
(−1)na modulo p.



CHAPTER 5

Crystals with coefficients

1. τ-sheaves and crystals with coefficients

In this chapter C will always denote the spectrum of a commutative
Fq-algebra A (on which we will impose various conditions). The C
stands for coefficients. We will be considering objects on which the
algebra A acts linearly.

Let X be a scheme over Fq. A τ -sheaf on X with coefficients in
A is a pair F = (F , τ) consisting of a quasi-coherent OC×X -module F
and an OC×X -linear map

τ : (idC × σX)?F → F .

Morphisms are defined in the obvious way. We denote the category of
such objects by QCohτ (X,A). By adjunction, specifying τ is equiva-
lent to either giving an OC×X -linear map

τa : F → (idC × σX)?F

or an additive map
τs : F → F

satisfying τs((a⊗r)s) = (a⊗rq)τs(s) for all a ∈ A and all local sections
r and s of OX and F respectively.

Now assume that C×X is noetherian. This is the case, for example,
if X is noetherian and A of finite type over Fq. We say that a τ -sheaf
on X with coefficients in A is coherent if the underlying OC×X -module
is coherent. The category of such objects is denoted Cohτ (X,A).

An object F = (F , τ) in Cohτ (X,A) is said to be nilpotent if

τ ◦ · · · ◦ (id× σn−1)?τ : (id× σn)?F → F

is the zero map for some n > 0, or equivalently, if τns = 0 for some
n > 0.

63
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Proposition 5.1. Assume that C ×X is noetherian. Let

0→ F1 → F2 → F3 → 0

be a short exact sequence in Cohτ (X,A). Then F2 is nilpotent if and
only if both F1 and F3 are nilpotent.

Proof. The proof is identical to that of Proposition 1.17. �

In other words, the full subcategory of nilpotent objects ofCohτ (X,A)
is a thick subcategory. We define the category of A-crystals on X as the
quotient category of Cohτ (X,A) by the thick subcategory of nilpotent
objects. It is denoted Crys(X,A).

The categories QCohτ (X,A), Cohτ (X,A) and Crys(X,A) are A-
linear categories. This means that the Hom-sets in these categories are
naturally A-modules, and that composition is bilinear.

IfA = Fq then these categories coincide with the categoriesQCohτ X,
Cohτ X and CrysX of Chapter 1.

2. Crystals with finite coefficients

We now assume that X is noetherian and that A is a finite Fq-
algebra (that is, of finite cardinality). We will show that the category
Crys(X,A) of A-crystals can be described as a category of ‘A-modules’
in the category CrysX. This will allow us to inherit constructions
and results obtained for A = Fq to the more general setting of finite
coefficients A.

An A-module in Cohτ X is a pair (F , α) consisting of a coherent
τ -sheaf F and an Fq-algebra homomorphism α : A → EndF . A mor-
phism of A-modules in Cohτ X is a morphism ϕ : F → F ′ of coherent
τ -sheaves such that ϕ ◦ α(a) = α′(a) ◦ ϕ for all a ∈ A. We denote the
category of A-modules in Cohτ X by (Cohτ X)A. We similarly define
the category (CrysX)A of A-modules in CrysX. The functor

Cohτ (X,A)→ (Cohτ X)A, F 7→ prX,?F

is an equivalence of categories. It is exact, and maps nilpotent τ -sheaves
to nilpotent τ -sheaves, so it induces a functor

(23) F : Crys(X,A)→ (CrysX)A.

We will show that also this induced functor is an equivalence.
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Proposition 5.2. Let X be a noetherian scheme over Fq and let
A be a finite Fq-algebra. Then the functor F is an equivalence of cate-
gories.

Proof. We first show that F is essentially surjective. Consider
an object (F , α) of (CrysX)A. By the equivalence Cohτ (X,A) =

(Cohτ X)A, it suffices to construct a coherent τ -sheaf F̃ and an action
α̃ : A→ End F̃ in the category Cohτ X, so that (F̃ , α̃) in Cohτ (X,A)
maps to (F , α) in (CrysX)A.

For every a ∈ A we are given a morphism of crystals αa : F → F .
By Proposition 1.23 we can represent every αa by a diagram

F ←↩ Ha
α̃a−→ F/Na � F

with F/Ha and Na nilpotent. Since A is finite, we may replacing the
Ha by their intersection H and the Na by their sum N , so that every
αa is represented by a diagram

F ←↩ H α̃a−→ F/N � F
with F/H and N nilpotent. Replacing F by the nil-isomorphic F ′ =
H and N by N ′ = N ∩ H we may represent the collection (αa)a by
diagrams

F ′ α̃a−→ F ′/N ′ � F ′.
Now let N ′′ ⊂ F ′ be the τ -sheaf generated by N ′ and the inverse
images of the αna(N ) for all n ≥ 0 and a ∈ A. Then N ′′ is nilpotent
and replacing F ′ by the nil-isomorphic F ′′ = F ′/N ′′ we find a collection
of maps

α̃a : F ′′ → F ′′

in Cohτ X, representing the αa. Finally, let N ′′′ be the sub-τ -sheaf
of F ′′ generated by the kernels of α̃ab − α̃aα̃b for all a, b in A. Since
αab = αaαb in CrysX, the τ -sheaf N ′′′ is nilpotent. Let N ′′′′ be
generated by the α̃na(N ) for all n ≥ 0 and a ∈ A. Replacing F ′′ by the
nil-isomorphic F̃ := F ′′/N ′′′′ we obtain a genuine action

α̃ : A→ End F̃
in Cohτ X, lifting the given action α in CrysX. This shows that the
functor F of (23) is essentially surjective.

A similar argument shows that every morphism in (CrysX)A is
represented by a morphism in Cohτ (X,A). In particular, F is full. To
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see that it is faithful, let ϕ : F → G be a morphism inCrys(X,A) which
becomes zero in (CrysX)A. By what we have just seen, we may assume
ϕ to be a morphism F → G in Cohτ (X,A) = (Cohτ X)A. Since ϕ
becomes zero in (CrysX)A, the coherent τ -sheaves F/ kerϕ and imϕ
are nilpotent, and hence ϕ already becomes zero in Crys(X,A). �

If f : X → Y be a morphism of noetherian schemes over Fq then the
functor f? : CrysY → CrysX induces an exact functor (CrysY )A →
(CrysX)A, and hence by Proposition 5.2 an exact functor f? : Crys(Y,A)→
Crys(X,A). If moreover f is compactifiable then we also have induced
functors Rif! : Crys(X,A)→ Crys(Y,A).

If F1 and F2 are crystals in CrysX equipped with an A-action,
then F1 ⊗ F2 is naturally equipped with an A ⊗FqA-action. Let I be
the kernel of the map

A⊗FqA→ A, a⊗ b 7→ ab.

We denote by F1 ⊗A F2 the quotient of F1 ⊗ F2 by I · (F1 ⊗ F2). In
other words, F1 ⊗A F2 is the largest quotient of F1 ⊗F2 on which the
actions of a⊗ 1 and 1⊗ a agree for all a ∈ A. This construction defines
a functor

−⊗A − : Crys(X,A)×Crys(X,A)→ Crys(X,A).

This functor will not be exact, unless A is reduced or X is empty.

Proposition 5.3. Let X be a noetherian scheme over Fq and let
A be a finite and reduced Fq-algebra. Then the functor − ⊗A − on
Crys(X,A) is exact in both arguments.

Proof. Under the identification Crys(X,A) = (CrysX)A, the
functor is the composite of

(CrysX)A × (CrysX)A → (CrysX)A⊗A, (F1,F2) 7→ F1 ⊗F2

and
(CrysX)A⊗A → (CrysX)A, G 7→ G/IG.

The former is exact in both arguments by Corollary 2.8. Since A⊗Fq A
is a product of finite fields, the ideal I is generated by an idempotent
e. Every G ∈ (CrysX)A⊗A decomposes canonically as

G = eG ⊕ (1− e)G

with (1− e)G = G/IG, so that also the functor G 7→ G/IG is exact. �
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3. Traces of crystals with finite field coefficients

Assume that A is a finite field extension of Fq. LetX be a scheme of
finite type over Fq. Let F be an A-crystal on X. For every x ∈ X(Fq)
the pull-back x?F is a finite-dimensional A-vector space equipped with
an A-linear endomorphism τ . We define

trA,F x := trA (τ | x?F) ∈ A.

This is independent of the choice of coherent τ -sheaf (F , τ) representing
the crystal F . We obtain an additive map

K0(X,A)→ Map(X(Fq), A), F 7→ trA,F .

The following is the main result of this section, it generalizes the trace
formula from the special case A = Fq of Chapter 3.

Theorem 5.4. Let A be a finite field extension of Fq. Let f : X →
Y be a separated morphism of schemes of finite type over Fq. Let F be
a crystal on X with coefficients in A. Then for every y ∈ Y (Fq) we
have ∑

n≥0

(−1)n trA,Rnf!F y =
∑

x∈X(Fq)
f(x)=y

trA,F x

in A.

We will show this by reducing it to the special case A = Fq. The
following lemma is crucial to the reduction.

Lemma 5.5. Let A be a finite field extension of Fq. Then the Fq-
linear map

A→ HomFq(A,Fq)

given by
a 7→

(
λ 7→ trA/Fq λa

)
is injective.

Proof. This is a restatement of the separability of A/Fq. �

Proof of Theorem 5.4. Given λ ∈ A, a scheme S of finite type
over Fq and an A-crystal G on S we denote by G(λ) the A-crystal

G(λ) =
(
G, (λ⊗ 1) · τG

)
.

We have trA,G(λ) = λ · trA,G as A-valued functions on S(Fq).
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We now apply this to our F on X. Note that

Rnf!(F(λ)) = (Rnf!F)(λ).

Let y ∈ Y (Fq). Forgetting the A-action we can interpret F(λ) as a
crystal with Fq-coefficients, and the trace formula with Fq-coefficients
(Theorem 3.4) guarantees∑

n≥0

(−1)n trFq ,Rnf!F(λ) y =
∑

x∈X(Fq)
f(x)=y

trFq ,F(λ) x

in Fq, for every λ ∈ A. By the transitivity of the trace, this can be
rewritten as

trA/Fq

(∑
n≥0

(−1)n trA,Rnf!F(λ) y
)

= trA/Fq

( ∑
x∈X(Fq)
f(x)=y

trA,F(λ) x
)

or equivalently, as

trA/Fq

(
λ
∑
n≥0

(−1)n trA,Rnf!F y
)

= trA/Fq

(
λ
∑

x∈X(Fq)
f(x)=y

trA,F x
)

for all λ ∈ A. By Lemma 5.5 we conclude that∑
n≥0

(−1)n trA,Rnf!F y =
∑

x∈X(Fq)
f(x)=y

trA,F x

holds in A, as we had to prove. �

Notes

In their monograph Böckle and Pink [11] define functors f?, f! and
⊗A between categories Crys(X,A) in much larger generality: assuming
only that X is noetherian and that C = SpecA is the localization of
a scheme of finite type over Fq. They also show that the pointwise
criteria of section 5 extend to this more general setting.

There are two obstacles against extending the trace formula to this
more general setting. First, the trace of an endomorphism of a finitely
generated A-module need not be well-defined. Second, if A is not re-
duced then the trace of a nilpotent endomorphism need not vanish, so
that one cannot readily pass to crystals. The first obstacle can be over-
come by working with perfect complexes. The second is more serious.
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In fact, an example due to Deligne [16, p. 127] shows that at least in
the context of étale cohomology the trace formula with non-reduced
coefficients A fails to hold.

For finite A one can use Proposition 5.2 to deduce from the equiva-
lence between CrysX and the category of constructible Fq-modules on
Xet (see the notes to Chapter 1) an equivalence between Crys(X,A)
and the category of constructible A-modules on Xet. Crystals with in-
finite coefficient rings A (such as A = Fq[t]) play an important role in
the theory of Drinfeld modules, see for example [2] or [11, 3.5]. See
also Chapter 8, where they will be used to study special values of L-
functions.





CHAPTER 6

Cohomology of symmetric powers of curves

In the first three sections of this chapter K denotes an arbitrary
field, possibly of characteristic zero. These sections do not depend on
the previous chapters. In the fourth and last section, we apply the
results to crystals.

In this chapter, all unspecified tensor products and products are
over K and SpecK respectively.

1. Symmetric tensors and exterior tensor powers

This section contains a number of results from multi-linear algebra.
Let K be a field and let V be a K-vector space. Let n be a non-

negative integer. The space of symmetric tensors of degree n of V is
the vector space

ΓnV := (V ⊗ · · · ⊗ V )Sn

of elements of V ⊗n that are invariant under the action of the symmetric
group Sn. This is also sometimes denoted Symn V . It should not
be confused with Symn V , which is a quotient of V ⊗n, in stead of a
subspace (see also exercise 6.1).

Lemma 6.1. Let (vi)i∈I be a basis of V . Let B be the set of Sn-
orbits in In. Then the vectors∑

(i1,...,in)∈b

vi1 ⊗ · · · ⊗ vin

with b ∈ B form a basis of ΓnV indexed by B. �

The n-th exterior tensor power of V is the quotient space

∧nV =
V ⊗ · · · ⊗ V

〈v1 ⊗ · · · ⊗ vn | vi = vj for some i 6= j〉

The image of v1 ⊗ · · · ⊗ vn in ∧nV is denoted v1 ∧ · · · ∧ vn.
71
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Lemma 6.2. Let (vi)i∈I be a basis of V and < a total ordering on
I. Then the vectors vi1 ∧ · · · ∧ vin with i1 < · · · < in form a basis for
∧nV . �

Note that ∧0V and Γ0V are canonically isomorphic with K.
Let V0 be a subspace of V . For 0 ≤ i ≤ n we define F iΓnV ⊂ ΓnV

as
F iΓnV = ΓnV

⋂ ∑
σ∈Sn

σ(V ⊗i0 ⊗ V ⊗n−i),

where the intersection is taken in V ⊗n. We put F iΓnV = 0 for i > n.
These subspaces define a descending filtration

ΓnV = F 0ΓnV ⊃ F 1ΓnV ⊃ · · · ⊃ Fn+1ΓnV = 0

which we will use extensively. We first describe its intermediate quo-
tients.

Lemma 6.3. If 0→ V0 → V → V1 → 0 is a short exact sequence of
K-vector spaces then we have isomorphisms

gri ΓnV := F iΓnV/F i+1ΓnV = ΓiV0 ⊗ Γn−iV1,

functorial in the short exact sequence. If V = V0 ⊕ V1 then

ΓnV =
⊕
i+j=n

ΓiV0 ⊗ ΓjV1,

functorially in V0 and V1.

Proof. Consider the map

ΓiV0 ⊗ Γn−iV → F iΓnV, x 7→
∑
σ

σ(x),

where x is seen as an element of V ⊗n and σ runs over any set of rep-
resentatives for Sn/(Si × Sn−i). The composition with the quotient
map F iΓnV → gri ΓnV factors over a map

ΓiV0 ⊗ Γn−iV1 → gri ΓnV.

Choosing a basis for V0 and extending it to a basis for V one verifies
using Lemma 6.1 that this map is an isomorphism. The second claim
can be shown along the same lines. �

Similarly, if V0 is a subspace of V we define

F i∧nV := im
(
V ⊗i0 ⊗ V ⊗n−i → ∧nV )
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fir 0 ≤ i ≤ n and F i∧nV = 0 for i > n. Again, this defines a descending
filtration

∧nV = F 0∧nV ⊃ F 1∧nV ⊃ · · · ⊃ Fn+1∧nV = 0

whose intermediate quotients are described in the following lemma.

Lemma 6.4. If 0→ V0 → V → V1 → 0 is a short exact sequence of
K-vector spaces then we have isomorphisms

gri∧nV := F i∧nV/F i+1∧nV = ∧iV0 ⊗∧n−iV1,

functorial in the short exact sequence. If V = V0 ⊕ V1 then

∧nV =
⊕
i+j=n

∧iV0 ⊗∧jV1,

functorially in V0 and V1.

Proof. We omit the proof, which is completely analogous to the
proof of Lemma 6.3. �

Let δ : V → W be a map of K-vector spaces. Then for all i and j
we have an induced map

Γi+1V ⊗∧jW → ΓiV ⊗∧j+1W

defined as the composition

Γi+1V⊗∧jW ↪→ (ΓiV⊗V )⊗∧jW → ΓiV⊗(W⊗∧jW ) � ΓiV⊗∧j+1W,

where the middle map is id⊗ δ ⊗ id. For each n we obtain a sequence

(24) 0→ ΓnV → · · · → Γn−iV ⊗∧iW→· · · → ∧nW → 0

of linear maps which is a complex, with Γn−iV ⊗ ∧iW in degree i.
We call it the degree n Koszul complex of δ : V → W and denote it
by Koszn δ. Note that Kosz0 δ is the complex consisting of the vector
space K placed in degree 0.

The cohomology of this complex is given by the following proposi-
tion. The remainder of this section will be devoted to its proof.

Proposition 6.5. The cohomology of Koszn δ is given by isomor-
phisms

(25) Hi(Koszn δ) = Γn−i(ker δ)⊗∧i(coker δ),

functorial in δ : V →W .
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First of all, observe that Koszn δ is functorial in δ, that is, a com-
mutative square

V W

V ′ W ′

δ

fV fW

δ′

(which we shall denote by f : δ → δ′), induces a morphism

Koszn f : Koszn δ → Koszn δ
′

in the obvious way. In particular, f : δ → δ′ induces maps H•(Koszn δ)→
H•(Koszn δ

′).

Proof of Proposition 6.5. Observe that V → W is the direct
limit of all the sub-objects V ′ →W ′ with V ′ andW ′ finite-dimensional.
Since direct limits are exact, and the formation of ∧n and Γn commutes
with direct limits, it suffices to prove the proposition for V and W of
finite dimension.

We proceed by induction on the rank of δ. If δ has rank 0, then
ker δ = V , coker δ = W , and all the maps in Koszn δ vanish, so that
the proposition is immidiate.

Assume we have obtained functorial isomorphisms (25) for all δ of
rank ≤ N . Let δ : V → W be a morphism of rank ≤ N + 1. Choose
decompositions

V = L⊕ V ′, W = L′ ⊕W ′

with L and L′ one-dimensional, and such that δ restricts to an isomor-
phism L→ L′, and to a map δ′ : V ′ →W ′. Note that δ′ has rank ≤ N .
One verifies that Koszn δ has a decomposition

Koszn δ = Koszn δ
′ ⊕ C•

for an exact complex C•. In particular, using the induction hypothesis
we find isomorphisms

Hi(Koszn δ) = Hi(Koszn δ
′) = Γn−i(ker δ′)⊗∧i(coker δ′).

Moreover, since δ′ has the same kernel and cokernel as δ, we have an
isomorphism

Γn−i(ker δ′)⊗∧i(coker δ′)
∼→ Γn−i(ker δ)⊗∧i(coker δ).

To see that the resulting isomorphism Hi(Koszn δ)
∼→ Γn−i(ker δ) ⊗

∧i(coker δ) is independent of the choice of decomposition observe that
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any two decompositions are related by an automorphism s of δ : V →
W . A similar argument, using that the automorphism s can be taken
to induce the identity on ker δ and coker δ, establishes the functoriality
in δ. �

2. Some sheaves on the symmetric powers of a scheme

Let K be a field. If R is a commutative K-algebra, then so is ΓnR.
IfM is an R-module, then ΓnM and ∧nM are naturally ΓnR-modules.
Note that the tensor products in the definition of ΓnM and ∧nM are
over K, not R.

If M0 is a submodule of M then the resulting filtrations on ΓnM
and ∧nM become filtrations by ΓnR-modules. The isomorphisms of
Lemmas 6.3 and 6.4 are then isomorphisms of ΓnR-modules. Similarly,
if δ : M → N is a map of R-modules, then Koszn δ is a complex of
ΓnR-modules, and Proposition 6.5 describes the cohomology groups of
this complex as ΓnR-modules.

The construction of ΓnM and ∧nM commutes with localization on
R, in the following sense.

Lemma 6.6. Let R be a commutative K-algebra. Let S be a multi-
plicative subset of R. Denote by S̃ the multiplicative subset {s⊗s⊗· · ·⊗
s | s ∈ S} of ΓnR. Then the localized rings S̃−1ΓnKR and Γn(S−1R)
are naturally isomorphic. Moreover, if M is an R-module then we have
natural isomorphisms

S̃−1(ΓnM) = ΓnS−1M

and
S̃−1∧nM = ∧nS−1M.

of Γn(S−1R)-modules.

Proof. If M is an R-module then clearly

S̃−1
(
M⊗n

)
=
(
S−1M

)⊗n
.

Also, if B is a K-algebra, S̃ ⊂ B is a multiplicative subset and N an
B-module equipped with an action of a group G then

S̃−1(NG) = (S̃−1N)G.

In particular, taking B = ΓnKR, N = M⊗n and S̃ as in the proposition
yields

S̃−1ΓnM = Γn(S−1M)
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with S̃−1ΓnR = Γn(S−1R) as the special case M = R.
For the last statement it suffices to observe that the submodules

S̃−1〈m1 ⊗ · · · ⊗mn ∈M⊗n | mi = mj for some i 6= j〉
and

〈m1 ⊗ · · · ⊗mn ∈ (S−1M)⊗n | mi = mj for some i 6= j〉
of (S−1M)⊗n coincide. �

Now let X be a quasi-projective scheme over K and let n be a
positive integer.

Lemma 6.7. For all x ∈ Xn there is an affine open U ⊂ X so that
x ∈ Un.

Proof. Embed X in some projective scheme X, and embed X
into some projective space Pd

K . Let L be the residue field of x and
(x1, . . . , xn) ∈ Xn(L) be the corresponding L-point corresponding to
x. In order to prove the lemma, it suffices to find an affine open U ⊂
X so that x1, . . . , xn ∈ U . Let f be any homogenous polynomial in
K[X0, . . . , Xd] so that f(xi) 6= 0 for all i and f(x) = 0 for all x in the
closed subset X \X of Pd. Then D+(f)∩X is an affine open contained
in X and containing all the xi. �

This lemma guarantees that the n-th symmetric power of X over
K, defined as

SymnX := (X × · · · ×X) /Sn

exists as a scheme. It has a cover by affine open subsets of the form
Symn U . In the affine case, we have,

Symn SpecR = Spec ΓnR.

If n = 0 then SymnX = SpecK.
Let F be a quasi-coherent OX -module. Because of Lemmas 6.6 and

6.7 there are uniquely defined quasi-coherentOSymnX -modules ΓnF and
∧nF so that for all affine open U ⊂ X we have

(ΓnF)(Symn U) = Γn(F(U))

and
(∧nF)(Symn U) = ∧n(F(U))

as Γn(OX(U))-modules. Again, note that the tensor products are over
K. In particular, ∧nF does not denote the exterior power of F over
OX . If F is coherent then so are ∧nF and ΓnF .
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3. Cohomology of exterior symmetric tensor powers

Let K be a field. The main result of this chapter is the following
theorem, which is a special case of a more general result of Deligne. We
will give an independent, elementary proof.

Theorem 6.8. Let X be a quasi-projective scheme over K. Assume
that X can be covered by two affine opens. Let F be a quasi-coherent
OX-module. Then for all i there are natural isomorphisms

Hi(SymnX, ΓnF) = Γn−iH0(X, F)⊗∧iH1(X, F).

of K-vector spaces.

Of course the typical example of a quasi-projective scheme covered
by two affine opens is a curve, and this is precisely the case that we will
use in the next chapter.

We give a proof using Čech cohomology. We will make use of two
distinct affine open covers of X.

First, we choose an affine open cover U = (Ui)i of X so that Xn =
∪iUni . For every partition n = n1 + · · ·+ nk we have that

(Symn1 Ui × · · · × Symnk Ui)i

is an affine open cover of Symn1X × · · · × SymnkX. In particular the
Symn Ui cover SymnX. As usual, we write Uij for the intersection of
Ui and Uj , and similarly for higher intersections.

Second, we choose a two-element affine open cover V = {V0, V1} of
X. Since X is quasi-projective the intersection V01 = V0 ∩ V1 is also
affine open.

Let F be a quasi-coherent OX -module. Denote by j0, j1 and j01

the inclusions of V0, V1 and V0 ∩ V1 into X. The Čech resolution of F
with respect to (V0, V1) is the short exact sequence of OX -modules

0→ F → j0,?j
?
0F ⊕ j1,?j?1F → j01,?j

?
01F → 0,

which we abbreviate as

0→ F → F0 ⊕F1 → F01 → 0.

We have H0(X,Fi) = F(Vi) and H1(X,Fi) = 0 for all i ∈ {0, 1, 01}
so that the long exact sequence of cohomology associated to the above
short exact sequence is

0→ H0(X,F)→ F(V0)⊕F(V1)→ F(V01)→ H1(X,F)→ 0,

the usual Čech sequence.
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For every s and t consider the K-vector space

Cs,t =
⊕

i0<···<is

Γn−t
(
F0(Ui0···is)⊕F1(Ui0···is)

)
⊗∧tF01(Ui0···is).

We make (Cs,t)s,t into a double complex, compute the cohomology of
its columns and rows, and compare these to prove Theorem 6.8.

First we make the columns into complexes. We introduce differen-
tials d : Cs,t → Cs,t+1 so that for every s the row Cs,• is the sum over
all i0 < · · · < is of the degree n Koszul complex (see Proposition 6.5)
of the map

δ : F0(Ui0···is)⊕F1(Ui0···is)→ F01(Ui0···is).

The cohomology of these column complexes is as follows.

Lemma 6.9 (Cohomology of the columns). For every s and for every
t we have

Ht(Cs,•) =

{⊕
i0<···<is ΓnF(Ui0···is) t = 0

0 t 6= 0.

Proof. Fix s and a sequence of indices i0 < · · · < is. Since Ui0···is
is affine, the sequence

(26) 0→ F(Ui0···is)→ F0(Ui0···is)⊕F1(Ui0···is)
δ→ F01(Ui0···is)→ 0

is exact. By Proposition 6.5 the cohomology of the degree n Koszul
complex of the map δ in (26) is concentrated in degree 0, with value
ΓnF(Ui0···is).

Summing over all indices now yields the result. �

Now we treat the rows. By Lemma 6.3 we have

Cs,t =
⊕

a+b+t=n

⊕
i0<···<is

ΓaF0(Ui0···is)⊗ ΓbF1(Ui0···is)⊗∧tF01(Ui0···is).

We introduce differentials d′ : Cs,t → Cs+1,t so that for every t the row
C•,t is the sum over all a, b with a+ b = n− t of the Čech complex of
the sheaf

ΓaF0 ⊗K ΓbF1 ⊗K ∧tF01

on Syma V0×Symb V1×Symt V01, with respect to the affine open cover

(27)
(

Syma(V0 ∩ Ui)× Symb(V1 ∩ Ui)× Symt(V01 ∩ Ui)
)
i
.
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Lemma 6.10 (Cohomology of the rows). For every t and for every
s we have

Hs(C•,t) =

{
Γn−t

(
F0(X)⊕F1(X)

)
⊗∧tF01(X) s = 0

0 s 6= 0.

Proof. First fix a, b, and t with a+ b+ t = n. The complex C•,ta,b
with

Cs,ta,b =
⊕

i0<···<is

ΓaF0(Ui0···is)⊗ ΓbF1(Ui0···is)⊗∧tF01(Ui0···is)

is by construction the Čech complex of ΓaKF0 ⊗K ΓbKF1 ⊗K ∧tKF01 on
Syma V0×Symb V1×Symt V01, with respect to the affine open cover (27),
so that the cohomology of C•,ta,b coincides with the sheaf cohomology of
ΓaKF0 ⊗K ΓbKF1 ⊗K ∧tKF01. Since Syma V0 × Symb V1 × Symt V01 is
affine the higher cohomology of C•,ta,b vanishes and we have

H0(C•,ta,b) = ΓaF(V0)⊗ ΓbF(V1)⊗∧tF(V01).

Summing over all a, b with a+ b+ t = n, and using Lemma 6.3 we find
that the higher cohomology of C•,t vanishes, and that

H0(C•,t) = Γn−t
(
F(V0)⊕F(V1)

)
⊗∧tF(V01),

as claimed. �

So far we have been vague about the signs in the differentials in
the various Čech and Koszul complexes. For a suitable choice of signs
C = (C•,•, d, d′) becomes a double complex. This means that for every
s, t the square

Cs,t+1 Cs+1,t+1

Cs,t Cs+1,t

d′

d′

d d

is anti-commutative, so that dd′ + d′d = 0. This in turn implies that
the total complex defined as

(TotC)n =
⊕
s+t=n

Cs,t,

with differential d+ d′, is indeed a complex.
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For a general double complex, there are spectral sequences relating
the cohomology of the rows or the columns to the cohomology of the
total complex. Since we are dealing with a rather degenerate case, we
will only need the following relatively elementary lemma.

Lemma 6.11. Let C be a double complex so that Cs,t = 0 if s < 0 or
t < 0, and so that the cohomology of the rows is concentrated in degree
0, i.e. Hs(C•,t) = 0 for all t and all s 6= 0. Then the cohomology of the
complex

(28) · · · → H0(C•,−1)→ H0(C•,0)→ H0(C•,1)→ · · ·
is naturally isomorphic with the cohomology of TotC.

Proof. (See also [45, Tag 0133].) Let H be the double complex
which has the complex (28) as the 0-th column, and which vanishes
along all other columns. By the assumption that Cs,t = 0 for all s < 0
we have a natural injective map H → C of double complexes. Let Q
be the quotient. This induces a short exact sequence

0→ TotH → TotC → TotQ→ 0

of complexes. By the assumption that the higher cohomology of the
rows of C vanishes, the rows of Q are exact. Since for every n there
are only finitely many s, t with s+ t = n and Qs,t 6= 0 this implies that
also TotQ is exact. It follows that TotC has the same cohomology as
TotH, which by construction coincides with (28). �

Proof of Theorem 6.8. By Lemma 6.9 the double complex C
satisfies the conditions of Lemma 6.11. The complex H0(Cs,•) (indexed
by s) is the Čech complex for the sheaf ΓnF with respect to the cover
(Symn Ui)i, and hence

Hi(TotC) = Hi(SymnX,ΓnF).

By Lemma 6.10 also the “transpose” of the double complex C satis-
fies the conditions of Lemma 6.11. The complex H0(C•,t) (indexed by
t) is the Koszul complex of the map

δ : F0(X)⊕F1(X)→ F01(X).

By the Čech computation of H•(X,F) we have ker δ = H0(X,F) and
coker δ = H1(X,F), so with Proposition 6.5 we find

Hi(TotC) = Γn−iH0(X,F)⊗∧iH1(X,F).

Comparing both expressions for Hi(TotC) yields the theorem. �
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4. Crystals on symmetric powers

Let K be a field containing Fq, and let A be a finite field extension
of Fq. For an A⊗FqK-module V we denote by ΓnAV the A⊗FqK-module

ΓnAV :=

V
⊗

A⊗FqK

· · ·
⊗

A⊗FqK

V

Sn

.

Since A ⊗FqK
∼= Ld for some d and some separable extension K ⊂

L, this space of invariant tensors can be computed coordinate-wise.
Therefore, the constructions and results of the previous sections extend
from a base field K to the base ring A⊗FqK.

Let X be a quasi-projective scheme over K. We denote its symmet-
ric powers (over K) by SymnX. Let (F , τ) be a coherent τ -sheaf on X
with coefficients in A. Then the coherent sheaf ΓnAF on C × SymnX
carries a natural structure of τ -sheaf with coefficients in A, so that we
obtain a functor ΓnA from Cohτ (X,A) to Cohτ (SymnX,A). Similarly
we have a functor ∧nA. These induce functors

ΓnA : Crys(X,A)→ Crys(SymnX,A).

and
∧nA : Crys(X,A)→ Crys(SymnX,A)

by the universal property of Theorem 1.21 and the following lemma.

Lemma 6.12. The functors ΓnA and ∧nA map nil-isomorphisms in
Cohτ (X,A) to nil-isomorphisms in Cohτ (SymnX,A).

Proof. First observe that if N is nilpotent, then so are ΓnAN and
∧nAN . We use this to show that ΓnA maps nil-isomorphisms to nil-
isomorphisms. The argument for ∧nA is entirely analogous.

Without loss of generality we may assume that X is affine. Assume
that ϕ : F → G is an surjective nil-isomorphism, so that we have a short
exact sequence

0→ N → F → G → 0

in Cohτ (X,A), with N nilpotent. Then ΓnAF has a filtration F •ΓnAF
as in Lemma 6.3, with intermediate quotients

gri ΓnAF = ΓiAN ⊗A Γn−iA G

These are all nilpotent, except possibly gr0 = ΓnAG, so that the natural
map ΓnAF → ΓnAG is a nil-isomorphism. Similarly, one shows that
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ΓnA maps injective nil-isomorphisms to nil-isomorphisms. Since every
nil-isomorphism is the composition of a surjective and an injective nil-
isomorphism, the lemma follows. �

Theorem 6.8 now has the following immediate consequence.

Theorem 6.13. Let A be a finite field extension of Fq. Let K be a
field containing Fq. Let X be a quasi-projective scheme over K that can
be covered by two affine opens. Let F be a crystal on X with coefficients
in A. Then we have natural isomorphisms

Hi(C × SymnX,ΓnAF) = Γn−iA H0(C ×X,F)⊗A ∧iAH1(C ×X,F)

in Crys(K,A). �

Finally, for later use we record an important property of symmetric
tensor powers of crystals.

Proposition 6.14. Let i : Z � X be a closed immersion of quasi-
projective schemes over K. Let F be a coherent τ -sheaf on X. Then
there is a natural isomorphism

Γni?F ∼→ (Symni)?ΓnF
of crystals on SymnZ.

In general the isomorphism is not an isomorphism of coherent τ -
sheaves. Also, the condition that i be a closed immersion cannot be
dropped, see exercise 6.3.

Proof of Proposition 6.14. Let I ⊂ OX be the ideal sheaf of
Z. Consider the short exact sequence

0→ IF → F → i?i
?F → 0

of coherent τ -sheaves onX. It induces a filtration on ΓnF , as in Lemma
6.3. We have a natural surjective map

ΓnF → gr0F = Γni?i
?F = i?Γ

ni?F .
So to prove the proposition, it suffices to show that F 1ΓnF , the kernel
of this map, vanishes along SymnZ. Consider the quotient maps

πi,j : SymiX × Symj X → Symi+j X.

The filtration F 1ΓnF on the kernel has intermediate quotients

πi,j,?
(
ΓiIF ⊗ Γji?i

?F
)
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with i+ j = n and i > 0. To show that F 1ΓnF vanishes along Symn Z
it therefore suffices to show that ΓiIF vanishes along Symi Z for all
i > 0.

Since i?IF = 0 in CrysZ, we are left with showing the following:
if G is a crystal on X so that i?G = 0 in CrysZ, then (Symni)?ΓnF ∼= 0
inCrysSymnZ for all n > 0. In fact, this holds without the assumption
that i is a closed immersion. Consider the commutative square

Zn Xn

SymnZ SymnX

in

π′ π

Symni

(This square is in general not cartesian). Assume that G is a crystal in
X that vanishes along Z. Consider the crystal

G�n := pr?1 G ⊗ · · · ⊗ pr?n G
on Xn. We have

(in)?π?π?G�n = (in)?
(
G�n ⊗ π?1SymnX

)
= 0,

by the assumption that i?G = 0. Because the above square commutes,
we also find

π′?(Symni)?π?G�n = 0.

As the map π′ is surjective, we conclude (for example using the point-
wise criterion) that (Symni)?π?G�n = 0 in CrysSymn Z. Now by
construction we have an injective map ΓnG → π?G�n in CrysSymnX.
Since pullback is exact, it induces an injective map

(Symni)?ΓnG ↪→ (Symni)?π?G�n = 0,

and we conclude that (Symni)?ΓnG = 0 in CrysSymnZ, as we had to
show. �

Notes

When n! is invertible inK the functor V → V Sn onK[Sn]-modules
is exact, from which one deduces

(29) Hi(SymnX, ΓnF) = Hi(Xn, pr?1F ⊗ · · · ⊗ pr?nF)Sn .

The Künneth formula computes Hi(Xn, pr?1F⊗· · ·⊗pr?nF), and taking
Sn-invariants yields the cohomology groups of Theorem 6.8 (in taking
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invariants, some care is needed with the signs in the Künneth formula).
In small characteristics the above argument breaks down since taking
Sn-invariants is no longer exact. In fact the isomorphism (29) does not
hold in small characteristics.

A more conceptual approach to computing the cohomology of ex-
ternal symmetric powers is due to Deligne [5, XVII, §5.5]. The (non-
additive!) functor Γn : VecK → VecK has a total derived functor
LΓn in the sense of Dold and Puppe [14]. These are defined using sim-
plicial methods. Given a map f : X → Y of quasi-projective schemes
over SpecK and a quasi-coherent OX -module F , Deligne shows that
R(Symnf)?ΓKF coincides with LΓnRf?F . In the special case where
Y = SpecK and H•(X,F) is concentrated in degrees 0 and 1 one
can explicitly compute LΓnRf?F and one recovers Theorem 6.8 from
Deligne’s result. In general, it is hard to explicitly compute the functor
LΓnK .

Deligne’s theorem induces a similar result for crystals, generalizing
Theorem 6.13. It has an interesting and entirely explicit corollary on
the level of Grothendieck groups. Let X be a quasi-projective scheme
over a field K containing Fq, let A be a finite reduced Fq-algebra. Let
n be a positive integer. The Koszul complex (Proposition 6.5) implies
that the function

LΓnA : K0(X,A)→ K0(SymnX,A)

given by

[F ]− [G] 7→
∑
i

(−1)i[Γn−iA F ⊗ ∧iAG]

is well-defined (see also exercise 6.4). Let f : X → Y be a morphism
between quasi-projective schemes over a field K containing Fq. Then
Deligne’s theorem implies that the square

K0(X,A) K0(SymnX,A)

K0(Y,A) K0(Symn Y,A)

LΓnA

Rf! R(Symnf)!

LΓnA

is commutative.
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Exercises

Exercise 6.1. Let K be a field of characteristic p > 0, and let n
be an integer ≥ p. Show that the functors V 7→ ΓnV and V 7→ Symn V
on K-vector spaces are not isomorphic.

Exercise 6.2. Show that SymnP1 ∼= Pn and that Γn(OP1(e)) ∼=
OPn(e).

Exercise 6.3. Show that the condition that i be a closed im-
mersion can not be dropped from Proposition 6.14. (Hint, consider
SpecK

∐
SpecK → SpecK.)

Exercise 6.4. Let A be a finite reduced Fq-algebra, and X a quasi-
projective scheme over a field K containing Fq. Verify in detail that
the function

LΓnA : K0(X,A)→ K0(SymnX,A)

given by
[F ]− [G] 7→

∑
i

(−1)i[Γn−iA F ⊗∧iAG]

is well-defined. (Note that LΓnA is not a group homomorphism if n 6= 1.)

Exercise 6.5 (*). Let K be a field and X a quasiprojective scheme
over SpecK. Assume that X admits a cover by two affine opens. Let
F be a quasi-coherent OX -module. Show that

Hi(SymnX,∧nF) ∼= ∧n−iH0(X,F)⊗ Symi H1(X,F),

where Symd V denotes the largest quotient of V ⊗d invariant under Sd.





CHAPTER 7

Trace formula for L-functions

1. L-functions of τ-sheaves and crystals

Let X be a scheme of finite type over Fq. Let A be an Fq-algebra
of finite type, and, as before, denote SpecA by C.

Let F be a coherent τ -sheaf on X with coefficients in A. We will
assume that one of the following two hypotheses hold:

(H1) A is a finite field;
(H2) there is an OX -module F0 so that F ∼= pr?X F0 as OC×X -

modules.
This assumption guarantees that for every closed point x ∈ X the A-
module i?xF is free of finite rank. We then define the L-function of F
by

L(X,F , T ) :=
∏
x∈|X|

detA (1− τsT | i?xF)−1 ∈ 1 + TA[[T ]].

This infinite product converges because by the following lemma the
factor at a point x of degree d is 1 modulo T d.

Lemma 7.1. Let k be an extension of Fq of degree d, and let F be
an object of Cohτ (k,A). Assume that (H1) or (H2) are satisfied. Then

detA( 1− τsT | F ) = detA⊗k( 1− τds T d | F )

in 1 + TA[[T ]].

Note that τds is indeed an A⊗ k-linear endomorphism of F .

Proof of Lemma 7.1. Consider the map

ψ : k ⊗FqF → Fd, λ⊗ s 7→ (λs, λqs, . . . , λq
d−1
s).

If we give Fd the structure of a k-module via

λ · (s1, · · · , sd) := (λs1, . . . , λ
qd−1

sd),

87
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then the map ψ is an isomorphism of A⊗k-modules. The endomorphism
id⊗ τs of k ⊗FqF corresponds under ψ to the endomorphism

µ : Fd → Fd, (s1, . . . , sd) 7→
(
τs(sd), τs(s1), . . . , τs(sd−1)

)
.

We deduce that

detA⊗k( 1− (id⊗ τs)T | k ⊗FqF ) = detA⊗k( 1− µT | Fd ).

By extension of scalars we have

detA⊗k( 1− (id⊗ τs)T | k ⊗FqF ) = detA( 1− τsT | F ),

whereas for µ one computes using Lemma 7.2 below

detA⊗k( 1− µT | Fd ) = detA⊗k( 1− τds T d | F ).

Comparing both expressions, we see that the lemma indeed holds. �

Lemma 7.2. Let K be a field. Let V1, . . . , Vd be finite-dimensional
K-vector spaces. Consider a sequence of linear maps

V1
α1−→ V2

α2−→ · · · αd−1−→ Vd
αd−→ V1

and let α : V1 → V1 be their composition. Let V = ⊕Vi and consider
the endomorphism

µ : V → V,
(
v1, . . . , vd

)
7→
(
αd(vd), α1(v1), . . . , αd−1(vd−1)

)
.

Then
detK( 1− Tµ | V ) = detK( 1− T dα | V1 )

in K[T ]. �

Now assume that A is a finite field, so that we are in case (H1). If
N in Cohτ (X,A) is nilpotent then L(X,N , T ) = 1. Also, if

0→ F1 → F2 → F3 → 0

is a short exact sequence in Cohτ (X,A) then we have

L(X,F2, T ) = L(X,F1, T ) · L(X,F3, T )

in 1 + TA[[T ]]. These two facts imply that L(X,F , T ) is well-defined
for an A-crystal F on X, and that we have a group homomorphism

K0(X,A)→ 1 + TA[[T ]], [F ] 7→ L(X,F , T ).

The main result of this chapter is the following theorem. It shows that
taking L-functions is compatible with pushforward with proper support.
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Theorem 7.3 (Trace formula for L-functions). Let A be a finite
field extension of Fq. Let f : X → Y be a separated morphism of
schemes of finite type over Fq. Let F be an A-crystal on X. Then

L(X,F , T ) =
∏
n≥0

L(Y,Rnf!F , T )(−1)n

in 1 + TA[[T ]].

Recall from Chapter 2 that we have defined f! only for separated
morphisms f .

Applying the theorem to the structure map X → SpecFq we see
that it implies the rationality of the L-function of a crystal:

Corollary 7.4. Let X be a scheme of finite type over Fq, let A
be a finite field extension of Fq, and let F be a crystal on X. Then
L(X,F , T ) lies in A(T ) ∩ (1 + TA[[T ]]). �

In case (H2) we have the following variant.

Theorem 7.5. Let A be a reduced Fq-algebra of finite type. Let X
be a proper scheme over SpecFq. Let F in Cohτ (X,A) be such that
there exists a coherent OX-module F0 such that F ∼= pr?2F as OC×X-
modules. Then

(30) L(X,F , T ) =
∏
n≥0

detA
(
1− τsT | Hn(C ×X,F)

)(−1)n+1

in 1 + TA[[T ]].

Note that, as an A-module, Hn(C×X,F) is isomorphic with A⊗Fq

Hn(X,F0). In particular it is a free A-module of finite rank, so that
the determinants in (30) are defined.

As before we deduce the rationality of L(X,F , T ):

Corollary 7.6. Let X, A and F be as in Theorem 7.5. Let Q be
the total quotient ring of A. Then L(X,F , T ) ∈ Q(T ) ∩ (1 + TA[[T ]]).

�

Proof of Theorem 7.5, assuming Theorem 7.3. Let m be a
maximal ideal of A. Since A is of finite type, A/m is a finite field.
Consider the object F/mF of Cohτ (X,A/m). Let f : X → SpecFq be
the structure morphism. From the definitions, we see

L(X,F/mF , T ) = L(X,F , T ) mod m
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and

L(SpecFq,R
nf?(F/mF), T ) = detA

(
1− τsT | Hn(C ×X,F)

)
mod m,

in 1 + T (A/m)[[T ]]. Comparing these with Theorem 7.3 shows that
(30) holds modulo every maximal ideal m. Since A is reduced, the map
A→

∏
mA/m is injective and Theorem 7.5 follows. �

In the following sections we will prove Theorem 7.3, deducing it
from the trace formula (Theorem 3.4) using the results on symmetric
powers of Chapter 6.

2. Computation of L-functions via symmetric powers

L-functions are related to traces on symmetric powers by the fol-
lowing theorem.

Theorem 7.7. Let X be a quasi-projective scheme over Fq. Let A
be a finite field extension of Fq. Let F be an A-crystal on X. Then

(31) L(X,F , T ) =
∞∑
n=0

∑
x

(trA,ΓnAF x)Tn

in 1 + TA[[T ]], where x in the inner sum ranges over the Fq-points of
SymnX.

In this section we will prove Theorem 7.7.

Lemma 7.8. Let K be a field and let V be a finite-dimensional vector
space over K. Let α be an endomorphism of V . Then we have

(32) detK( 1− αT | V ) =
∑
n≥0

(−1)n trK(α | ∧nV )Tn

and

(33) detK( 1− αT | V )−1 =
∑
n≥0

trK(α | ΓnV )Tn

in 1 + TK[[T ]].

Proof. Clearly the formulas hold if V has dimension ≤ 1. The left-
hand-sides of (32) and (33) are multiplicative in short exact sequences

0→ V1 → V2 → V3 → 0
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of finite-dimensional vector spaces equipped with endomorphisms αi.
By the filtrations of Lemmas 6.3 and 6.4 also the right-hand-sides are
multiplicative.

Now, without loss of generality we may assume that K is alge-
braically closed. Since every (V, α) of positive dimension has a nonzero
eigenvector, we can always find a one-dimensional subspace V1 pre-
served by α, and the formulas follow by induction on the dimension of
V . �

Lemma 7.9. Let X1 and X2 be quasi-projective schemes over K. Let
X = X1 q X2 be their disjoint sum. Let n be a non-negative integer.
Then we have a natural isomorphism

SymnX =
∐

i+j=n

(SymiX1)× (SymjX2).

Moreover, let F be an A-crystal on X and denote by F1 and F2 its
restrictions to X1 and X2. Then the restriction of ΓnAF to (SymiX1)×
(SymjX2) is the A-crystal pr?1 ΓiAF1 ⊗A pr?2 ΓjAF2. �

Proof of Theorem 7.7. It suffices to prove the identity modulo
TN for arbitrary N . Let i : X0 → X be the inclusion of the disjoint
union of all the closed points of degree < N in X. Then

L(X,F , T ) ≡ L(X0, i
?F , T ) (mod TN ).

On the other hand, i induces a bijection

Symn i : (SymnX0)(Fq)
∼→ (SymnX)(Fq)

for all n < N . By Proposition 6.14 we have for all x ∈ (SymnX0)(Fq)
an isomorphism

x?Γni?F ∼= x?(Symn i)?ΓnF
of A-crystals on SpecFq. We see that the theorem holds modulo TN

for X if and only if it holds modulo TN for X0. So we may assume
X =

∐
Spec ki for finitely many finite extensions ki/Fq.

By Lemma 7.9 the right-hand side of (31) is multiplicative in disjoint
decompositions X = X1

∐
X2. By definition of the L-function the

same holds for the left-hand side, so we may further reduce and assume
X = Spec k for a finite extension k/Fq.

For X = Spec k, we will show that for all n the coefficient of Tn in
both sides of (31) agree. Let d be the degree of k over Fq.
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If n is not divisible by d then the coefficient of Tn of the left-hand
side vanishes. Since in that case (SymnX)(Fq) is empty, the same holds
for the corresponding coefficient of the right-hand side.

Assume n is divisible by d. Then SymnX has a unique Fq-point,
say x. We have

x?ΓnF = (F ⊗A · · · ⊗A F)Sn .

With Lemma 7.8 (applied to V = F , K = A and α = τs) we see that
the trace of τs on x?ΓnF is the coefficient of Tn in

L(X,F , τ) = detA(1− τsT | F)−1

which finishes the proof. �

3. Proof of the trace formula for L-functions

Again, A is a finite field extension of Fq. We are now going to prove
Theorem 7.3. We repeat that we need to show the identity

L(X,F , T ) =
∏
n≥0

L(Y,Rnf!F , T )(−1)n

for a separated morphism f : X → Y of schemes of finite type over Fq,
and for an A-crystal F on X. Equivalently, we have to show that the
triangle

(34)

K0(X,A) K0(Y,A)

1 + TA[[T ]]

Rf!

L(X,−,T ) L(Y,−,T )

commutes.
We start with the crucial case of a projective curve.

Proposition 7.10. If X is a projective curve over Y = SpecFq
then (34) commutes.

Proof. By Theorem 7.7 we have

L(X,F , T ) =
∑
n≥0

∑
x∈(SymnX)(Fq)

(trA,ΓnAF x)Tn.

Applying the trace formula of Theorem 5.4 to the ΓnAF this becomes

L(X,F , T ) =
∑
n≥0

∑
i≥0

(−1)i trA
(
τs | Hi(SymnX,ΓnAF)

)
Tn.



3. PROOF OF THE TRACE FORMULA FOR L-FUNCTIONS 93

In Theorem 6.8 we have computed the cohomology of ΓnAF on SymnX,
and applying this we find that L(X,F , T ) equals∑

n≥0

∑
i≥0

(−1)i trA
(
τs | Γn−iH0(X,F)

)
· trA

(
τs | ∧iH1(X,F)

)
Tn.

Rearranging terms, we can rewrite this as(∑
n≥0

trA(τs | ΓnH0(X,F))Tn
)(∑

n≥0

(−1)n trA(τs | ∧nH1(X,F))Tn
)
,

and by Lemma 7.8 as

detA
(
1− τsT | H0(X,F)

)−1 · detA
(
1− τsT | H1(X,F)

)
,

which is precisely L(Y,Rf!F , T ). �

The proof of the general case proceeds by a series of lemmas that
ultimately reduce the theorem to Proposition 7.10.

We first show that Theorem 7.3 may be verified fiber by fiber.

Lemma 7.11. Let f : X → Y be a separated morphism of schemes
of finite type. If (34) commutes for the map i?yf : Xy → Spec k(y) for
every closed point y ∈ Y , then it commutes for the map f : X → Y .

Proof. Let F be an A-crystal on X. By the definition of L-
function as a product over the closed points we have

L(X,F , T ) =
∏
y∈|Y |

L(Xy, i
?
yF , T ).

and
L(Y,Rnf!F , T ) =

∏
y∈Y

detA
(
1− τsT | i?yRnf!F

)
.

Theorem 2.35 (proper base change) gives isomorphisms

i?yR
nf!F = Rn(i?yf)?i

?
yF

and multiplying the identity of the trace formula for i?yF on Xy →
Spec k(y) over all y gives the trace formula for F on f : X → Y . �

Lemma 7.12. Let f : X → Y and g : Y → Z be separated morphisms
between schemes of finite type over Fq. If (34) commutes for f and g,
then it also commutes for gf : X → Z. Conversely, if it commutes for
gf and for g then it also commutes for f .
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Proof. By the A-coefficients version of Proposition 3.3 we have
Rg!Rf! = R(gf)! as maps K0(X,A) → K0(Z,A). Now consider the
diagram

K0(X,A) K0(Y,A) K0(Z,A)

1 + TA[[T ]]

Rf! Rg!

If the two inner triangles commute, then also the outer diagram com-
mutes, and if the right and outer triangle commutes, then so does the
left one. �

Lemma 7.13. Let f : X → Y be a separated morphism between
schemes of finite type over Fq. Let i : Z � X be a closed immer-
sion, and let j : U ↪→ X be the open complement. If (34) commutes for
fi : Z → Y and fj : U → Y then it commutes for f : X → Y .

Proof. Let F be an A-crystal on X. We have

L(X,F , T ) = L(Z, i?F , T )L(U, j?F , T )

in 1 + TA[[T ]] and by the short exact sequence

0→ j!j
?F → F → i?i

?F → 0

we have
[j!j

?F ] + [i?i
?F ] = [F ]

in K0(X,A). Applying Rf! we find

Rf![F ] = R(fj)![j
?F ] + R(fi)![i

?F ]

in K0(Y,A) and we see that the statement for F along f : X → Y
follows from that for j?F and i?F along fj : U → Y and fi : Z → Y
respectively. �

Lemma 7.14. Assume the fibers of f : X → Y have dimension ≤ 1.
Then (34) commutes.

Proof. By Lemma 7.11 we may assume Y = Spec k for a finite ex-
tension k of Fq. Considering the composition X → Spec k → SpecFq
and the second statement of Lemma 7.12, we see that we may reduce
to the case Y = SpecFq. By Lemma 7.13 we may assume that X is
irreducible. If dimX = 0 then (34) commutes for trivial reasons. If
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dimX = 1 then choose an open immersion j : X ↪→ X into a projec-
tive curve. Applying Proposition 7.10 to j!F on X shows that (34)
commutes for f : X → SpecFq. �

We now combine these ingredients to finish the proof.

Proof of Theorem 7.3. Let d(f) be the maximum of the dimen-
sions of the irreducible components of the fibers f−1(y) with y ∈ Y . We
prove the statement by induction on d(f). For d(f) = 0 the theorem
follows immediately from Lemma 7.11.

Assume the theorem has been shown for all g with d(g) < d and let
f : X → Y be a map with d(f) = d. By Lemma 7.11 we may assume
Y = Spec k, and by 7.13 we can assume X irreducible. Choose an affine
open dense U ⊂ X. Since the dimensions of the irreducible components
of the complement Z are less than d, we only need to show the theorem
for the map U → Spec k. Choose a closed immersion U � An

k . Then
the map U → Spec k factors as

U � An
k � An−1

k � · · ·� Spec k,

and since each arrow has fibers of dimension ≤ 1 the theorem follows
by 7.14. �

Notes

Theorems 7.3 and 7.5 are shown in [11] (in slightly larger gener-
ality), using a different method. They reduce to the case of an affine
smooth X, and use Serre duality to deduce the result from Anderson’s
‘elementary approach’ [3]. The approach taken here, using symmetric
powers to reduce to the trace formula, is based on Deligne, see [5, Exp.
XVII] and [16, fonctions L].

For more background on L-functions associated to τ -sheaves, see
[25, 47, 11].

Exercises

Exercise 7.1. Let X be a proper scheme over SpecF2. Assume
that H0(X,OX) = F2 and Hi(X,OX) = 0 for i > 0. Show that #X(F4)
is congruent to 1 modulo 4.

Exercise 7.2 (?). Let G be a linear algebraic group G over Fq
and let V be a finite-dimensional representation of G(Fq). Show that
there is a crystal F on G so that for all g ∈ G(Fq) the pair g?(F , τ)



96 7. TRACE FORMULA FOR L-FUNCTIONS

is isomorphic with the pair (V, g) in the category of Fq-vector spaces
equipped with an endomorphism.

Exercise 7.3 (?). Show that the homomorphism

K0(X,A)→
∏
x∈|X|

1 + TA[[T ]]

defined by
F 7→

(
L(Spec k(x), i?xF , T )

)
x

is injective. (Hints: use Noetherian induction to reduce to locally free
F with τ an isomorphism, then use the Brauer-Nesbitt theorem and
the Chebotarev density theorem [44, Thm 7]).



CHAPTER 8

Special values of L-functions

We start this chapter with the motivating example of the Goss zeta
function.

1. Example: the Goss zeta function of a scheme over Fq[t]

In this section A denotes the polynomial ring Fq[t], and F its frac-
tion field Fq(t). As in the previous chapters we denote SpecA by C.

If M is a finite∗ A-module then there are monic fi ∈ A such that

M ∼=
⊕
i

A/(fi).

We define the characteristic element of the module M to be the monic
element

[M ] :=
∏
i

fi

of A. It is independent of the choice of decomposition of M into cyclic
A-modules. In fact:

Lemma 8.1. [M ] = detA
(
t⊗ 1− 1⊗ t | A⊗FqM

)
. �

In other words, if P (X) ∈ Fq[X] is the characteristic polynomial of
the endomorphism t of the Fq-vector space M , then [M ] = P (t) in A.

Now let X be a scheme of finite type over C. Then for every closed
point x ∈ X the residue field k(x) is both a finite field and an A-algebra,
so that it is in particular a finite A-module. The Goss zeta function of
X → C at an integer n is the power series

ζG(X/C, n, T ) :=
∏
x∈|X|

(
1− T dx [k(x)]−n

)−1
∈ 1 + TF [[T ]].

∗We use finite in the set-theoretic sense, so M is torsion and finitely generated.

97
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For example, if X = C, then

ζG(C/C, n, T ) =
∏
g

(
1− g−nT deg g

)−1

where g ranges over the monic irreducible polynomials in A. By unique
factorization we also have

ζG(C/C, n, T ) =
∑
f

f−nT deg f

where f ranges over the monic polynomials in Fq[t].

Remark 8.2. The Goss zeta function of a scheme over SpecA is
analogous to the Hasse-Weil zeta function of a scheme over SpecZ. In
both cases these are formed as a product over the closed points. In
the Hasse-Weil zeta function, the factor at a point x depends on the
cardinality of k(x), which is the positive generator of the fitting ideal
of the Z-module k(x). In the Goss zeta function, this is replaced by the
characteristic element of the A-module k(x).

We will now express these Goss zeta functions as L-functions of τ -
sheaves with coefficients in A. Consider the τ -sheaf C in Cohτ (C,A)
given by C = (OC×C , δ) with

δ = (t⊗ 1− 1⊗ t) : (id⊗ σ)?OC×C = OC×C → OC×C .
We denote by C⊗n the n-fold tensor product C ⊗A · · · ⊗A C. We have
C⊗n = (OC×C , δn).

Proposition 8.3. If π : X → C is a map of finite type and n a
positive integer then

L(X,π?C⊗n, T ) = ζG(X/C,−n, T )

in 1 + TA[[T ]].

Proof. By the definition of L and ζG as a product over closed
points of X, it suffices to show this for X = Spec k with k a finite
extension of Fq. The map π : X → C then corresponds to a map
A→ k. Let θ be the image of t in k. The characteristic polynomial of
t acting (as multiplication by θ) on the Fq-vector space k is

(X − θ)(X − θq) · · · (X − θqd−1
) ∈ Fq[X],

so we have

[k] = (t− θ)(t− θq) · · · (t− θqd−1
) ∈ A ⊂ A⊗ k.
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On the other hand, the action of τds on the rank one A ⊗ k-module
π?C⊗n is multiplication by

(t⊗ 1− 1⊗ θqd−1
)n · · · (t⊗ 1− 1⊗ θq)n(t⊗ 1− 1⊗ θ)n

so that
L(Spec k, π?Cn, T ) = (1− T d[k]n)−1,

as we had to show. �

Let C ∼= P1 be the natural compactification of C = SpecFq[t]. Let
∞ be the added point at infinity. Let n be a positive integer. Let d be
an integer with d > n/(q− 1). Consider the object Fn,d of Cohτ (C,A)
given by

Fn,d =
(
pr?
C
OC(−d∞), δn

)
.

Note that δn does indeed define a map (id × σ)?Fn,d → Fn,d because
d ≥ n/(q − 1), and that the strict inequality d > n/(q − 1) guarantees
that ∞?Fn,d is nilpotent. In fact, the A-crystal Fn,d does not depend
on the choice of d and could be regarded as the extension by zero of the
A-crystal C⊗n along C ↪→ C.

The previous proposition now implies immediately:

Corollary 8.4. Let π : X → C be a proper map. Let π̄ : X → C
be a proper map extending π. Let n be a positive integer and let d >
n/(q − 1). Then L(X,π?C⊗n, T ) = L(X, π̄?Fn,d, T ). �

Applying the trace formula of Theorem 7.5 we obtain a cohomolog-
ical expression for the Goss zeta function at negative integers.

Proposition 8.5. Let π : X → C be a proper map. Let π̄ : X → C
be a proper map extending π. Let n be a positive integer and let d >
n/(q − 1). Then

ζG(X/C,−n, T ) =
∏
i≥0

detA
(
1− τsT | Hi(C ×X, (id× π̄)?Fn,d)

)(−1)i+1

.

in 1 + TA[[T ]]. �

The cohomological expression also implies rationality.

Corollary 8.6. Let X → C be a proper map and let n be a positive
integer. Then ζG(X/C,−n, T ) ∈ F (T ). �

In the coming sections we will describe the order of vanishing as
well as the leading coefficient of ζG(X/C,−n, T ) at T = 1, under one
additional hypothesis.
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2. Extensions of τ-sheaves

Let X be a scheme over Fq and C the spectrum of an Fq-algebra
A. For a quasi-coherent OC×X -module F we define the quasi-coherent
τ -sheaf Θ(F) on C ×X as follows:

Θ(F) :=
⊕
n≥0

(id× σn)?F

and
τ(s0, s1, s2, . . .) := (0, s0, s1, . . .).

Lemma 8.7. The functor Θ is a left adjoint to the forgetful functor
QCohτ (X,A)→ QCoh(C ×X) that maps (G, τ) to G.

Proof. We claim that the map

HomQCohτ (X,A)

(
Θ(F), (G, τ)

)
→ HomQCoh(C×X)

(
F , G

)
given by

(35) ϕ 7→
[
s 7→ ϕ(s0)

]
is an isomorphism. We show this by constructing an inverse isomor-
phism. Given a morphism ψ : F → G of OC×X -modules we denote by
ψn the OC×X -linear maps

ψn := (id× σn)?ψ : (id× σn)?F → (σn)?G.
Note that ψ0 = ψ. Now the map

HomQCoh(C×X)(F ,G)→ HomQCohτ (X,A)(Θ(F), (G, τ))

given by
ψ 7→

[
(sn)n 7→

∑
n≥0

τnψn(sn)
]

is a two-sided inverse to (35), which proves the adjunction. �

Corollary 8.8. Let X be a scheme over Fq and let A be an Fq-
algebra. Then the category QCohτ (X,A) has enough injectives.

Proof. By Grothendieck’s theorem [26, 1.10.1] [45, Tag 05AB] it
suffices to verify that QCohτ (X,A) satisfies:

(1) filtered direct limits exist and are exact;
(2) there is a U in QCohτ (X,A) so that for every nonzero map

ϕ : F → G there is a map U → F so that the composition
U → G is nonzero.
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An abelian category satisfying (1) and (2) is called a Grothendieck cat-
egory, and a U as in (2) is called a generator. By the hypothesis C×X
is noetherian, and therefore QCoh(C ×X) is a Grothendieck category
[45, Tag 077P]. But then QCohτ (X,A) inherits property (1) directly
from QCoh(C ×X), while Θ(U) for a generator U of QCoh(C ×X)
will be a generator of QCohτ (X,A). �

Let X be a scheme over Fq, and let F be a quasi-coherent τ -sheaf
with A-coefficients on X. Let 1X,A be the unit τ -sheaf

1X,A = (OC×X , id) .

Since QCohτ (X,A) has enough injectives, we may consider the derived
functors

Exti(1,−) : QCohτ (X,A)→ModA

of the functor Hom(1,−). To say more about these extension groups,
we will need additional hypotheses on X and A.

Proposition 8.9. If X is smooth over Fq then the functor F 7→
σ?F on quasi-coherent OX-modules is exact.

Proof. Let R be a regular local ring containing Fq, of finite type
over Fq, with maximal ideal m and residue field k. Note that k is a
finite extension of Fq, and hence perfect. By the regularity we can find
a collection of generators a1, . . . , ad of m that are k-linearly independent
in m/m2. Let M be the R-module whose underlying additive group is
R, and on which R acts via the map R → R, s 7→ sq. Note that M is
generated by the qd elements(

ae11 · · · a
ed
d

)
0≤ei<q

as an R-module. We claim that M is in fact free of rank qd over R.
Indeed, it suffices to show that the elements ae11 · · · a

ed
d are k-linearly in-

dependent in M/mM = R/mqR. This follows at once by the regularity
of R, which implies that the natural k-linear maps

Symn
k (m/m2)→ mn/mn+1

are isomorphisms.
Now let X be a smooth scheme over Fq. Then by the above the

OX -module M := OX with action via the q-th power map is locally
free, and hence flat. Since the functor σ? coincides with the functor
F 7→ F ⊗OXM, we conclude that it is exact. �
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Remark 8.10. More generally, Kunz [37] has shown that for a
noetherian scheme over Fq the functor σ? is exact if and only if X is
regular.

Corollary 8.11. Let X be a smooth scheme over Fq, let A be an
Fq-algebra. Then the functor Θ: QCoh(C × X) → QCohτ (X,A) is
exact. �

Corollary 8.12. Let X be a smooth scheme over Fq, let A be an
Fq-algebra. If (F , τ) is injective in QCohτ (X,A) then F is injective
in the category of quasi-coherent OC×X-modules.

Proof. By the assumptions Θ is exact, so that the forgetful functor
has an exact left adjoint. This implies that the forgetful functor maps
injectives to injectives, see [45, Tag 015Y]. �

Theorem 8.13. Assume that X is a smooth scheme over Fq. Let
(F , τ) be an object of QCohτ (X,A). Then there is a long exact se-
quence of A-modules

0 −→ Ext0(1, (F , τ)) −→ H0(C ×X,F)
1−τs−→ H0(C ×X,F)

−→ Ext1(1, (F , τ)) −→ H1(C ×X,F)
1−τs−→ H1(C ×X,F)

−→ · · ·
functorial in (F , τ).

Proof. Consider the quasi-coherent τ -sheaf Θ(OX). By the ad-
junction of Lemma 8.7 we have

Hom(Θ(OX), (F , τ)) = Γ(C ×X, F)

and by Corollary 8.12 we even have

Exti(Θ(OX), (F , τ)) = Hi(C ×X, F),

where Exti denotes the extension group in the category QCohτ (X,A).
The map

δ : Θ(OX)→ Θ(OX), (f0, f1, . . .) 7→ (f0, f1 − f0, f2 − f1, . . .)

is a morphism of τ -sheaves on X and the sequence

(36) 0→ Θ(OX)
δ→ Θ(OX)→ 1→ 0,

with the map Θ(OX) → 1 given by (f0, f1, . . .) 7→ f0 + f1 + · · · , is an
exact sequence of quasi-coherent τ -sheaves.
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Applying Hom(−, (F , τ)) to the exact sequence (36) yields the long
exact sequence of the theorem. �

Corollary 8.14. Let X be proper smooth over Fq. Let A be of
finite type over Fq. If F is a coherent τ -sheaf with coefficients in A

then the A-modules Exti(1,F) are finitely generated. �

3. Determinants and Fitting ideals

Let A be a Dedekind domain. If M is a finitely generated torsion
A-module then there exists ideals Ii ⊂ A so that M ∼= ⊕iA/Ii. The
Fitting ideal of M is the ideal [M ] =

∏
i Ii ⊂ A. It is independent of

the choice of decomposition.
Alternatively, we may write [M ] =

∏
pe(p) where e(p) is the length

of the Ap-module Ap ⊗AM .
Note that there is a slight conflict of notation. What was denoted

by [M ] in section §1 (for A = Fq[t]) is the unique monic generator of
the ideal that we are now denoting by the same symbol [M ]. Of course,
for a general Dedekind domain, the ideal [M ] need not be principal.

Lemma 8.15. Let 0 → M1 → · · · → Md → 0 be an exact sequence
of finitely generated torsion A-modules. Then

[M1][M3][M5] · · · = [M2][M4][M6] · · ·

as ideals in A. �

Lemma 8.16. Let n be a non-negative integer. Let R be a discrete
valuation ring with fraction field L. Let H be a free R-module of rank
n. Let

0→ H
u→ H → T → 0

be a short exact sequence of R-modules with T a torsion module. Then
the length of T is the valuation of detF ( id⊗ U | F ⊗R H ). �

Lemma 8.17. Let H be a locally free finitely generated A-module.
Let u be an endomorphism of H such that id⊗u is an automorphism of
F ⊗A H. Then [cokeru] is a principal ideal, generated by detA(id⊗ u |
F ⊗A H).

Proof. It suffices to verify that for all primes p the localization
[cokeru](p) is generated by detA(id⊗u | F⊗AH), which is the statement
of the preceding lemma. �



104 8. SPECIAL VALUES OF L-FUNCTIONS

Lemma 8.18. Let H be a finitely generated A-module. Let u be
an endomorphism of H. Assume that the eigenvalue 1 of u acting on
F ⊗A H is semi-simple. Then we have

detF
(

1− uT | F ⊗A H
)

= λ(1− T )r + higher order terms

where
r = rkA ker(1− u) = rkA coker(1− u)

and
λA = [coker(1− u)tors]/[ker(1− u)tors]

as A-submodules of F .

The semi-simplicity assumption means that we have a decomposi-
tion

F ⊗A H = V ⊕W
of F [u]-modules such that u = 1 on V and 1 − u is an automorphism
of W .

Proof of Lemma 8.18. Let V ⊂ H be the submodule of u-invariants.
Then we have an induced exact sequence

0→ K/V → H/V
1−u−→ H/V → Q/V → 0.

with K/V and Q/V torsion, and

detA( 1− uT | H ) = (1− uT )r detA( 1− uT | H/V ).

We can therefore replaceH byH/V and reduce to the case where r = 0.
We then have that 1 − u is an automorphism of F ⊗A V and that K
and Q are torsion modules. We need to show that

detF
(

1− u | F ⊗A H
)

= λ

with λA = [Q]/[K].
Let Htors be the torsion submodule of H. Let K ′ and Q′ be the

kernel and cokernel of 1−u on Htors, so that we have an exact sequence

0→ K ′ → Htors
1−u−→ Htors → Q′ → 0

of torsion A-modules. We have K ′ = K, and by Lemma 8.15 we also
have [K ′] = [Q′], so that [Q′] = [K]. The cokernel Q′ sits inside Q and
we have an exact sequence

0→ H/Htors
1−u−→ H/Htors → Q/Q′ → 0.
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By Lemma 8.17 we conclude

detF
(

1− u | F ⊗A H
)
A = [Q]/[Q′] = [Q]/[K]

as A-submodules of F . �

4. Special values of L-functions of τ-sheaves

Let C = SpecA be an integral curve over Fq, with function field
F . In particular A is a Dedekind domain. Let X be a proper smooth
scheme over SpecFq and F be a coherent τ -sheaf on X with coefficients
in A. As in the previous chapter, we assume

(H2) there is an OX-module F0 so that F ∼= pr?X F0 as OC×X-
modules.

A triple (A,X,F) of particular interest is the triple (Fq[t], X, π̄
?Fn,d)

of Proposition 8.5. In this section we will express the order of vanishing
and leading coefficient of L(X,F , T ) at T = 1 in terms of the extension
groups Exti(1,F).

Under our assumptions the Hi(C × X, F) are free A-modules of
finite rank on which τs acts linearly. We make the following additional
hypothesis

(SS) the eigenvalue 1 of τs acting on F ⊗A H•(C ×X,F) is semi-
simple.

The Exti(1,F) are finitely generated modules over the Dedekind
domain A, so we can talk about their rank rkA Exti(1,F) and about
the Fitting ideal of their torsion submodule

[
Exti(1,F)tors

]
.

Theorem 8.19. Let C = SpecA be an integral curve over Fq, with
function field F . Let X be a proper smooth scheme over SpecFq and
F be a coherent τ -sheaf on X with coefficients in A. Assume (H2) and
(SS). Then we have

L(X,F , T ) = λ · (T − 1)r + higher order terms

where
r =

∑
i≥0

(−1)ii rkA Exti(1,F),

and λ ∈ F× satisfies

λA =
∏
i≥0

[
Exti(1,F)tors

](−1)i

as A-modules in F .
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Proof of Theorem 8.19. We split the long exact sequence of
Theorem 8.13 in exact sequences

0→ Ki → Hi(C ×X,F)
1−u−→ Hi(C ×X,F)→ Qi → 0

and
0→ Qi−1 → Exti(1,F)→ Ki → 0.

indexed by i. By Theorem 7.5 we have

(37) L(X,F , T ) =
∏
i

detF
(

1− τsT | F ⊗A Hi(C ×X,F)
)(−1)i+1

in F (T ) and by Lemma 8.18 we have

detF
(

1−τsT | F ⊗AHi(C×X,F)
)

= λi(1−T )ri +higher order terms

with ri = rkKi = rkQi and λiA = [Qitors]/[K
i
tors]. Multiplying out the

factors in (37) we find

λA =
∏
i

λ
(−1)i+1

i A =
∏
i

[
Qitors

](−1)i+1 [
Ki

tors

](−1)i

=
∏
i

([
Qi−1

tors

] [
Ki

tors

])(−1)i

=
∏
i

[
Exti(1,F)tors

](−1)i

for the leading coefficient and

r =
∑
i

(−1)i+1ri =
∑
i

(−1)i+1
(
(i+ 1) rkAK

i − i rkAQ
i
)

=
∑
i

(−1)ii rkAK
i + i rkAQ

i

=
∑
i

(−1)ii rkA Exti(1,F)

for the order of vanishing. �

5. An example failing the semi-simplicity hypothesis

We end with an example of a Goss zeta value where the hypothesis
(SS) is not satisfied, and where the conclusion of Theorem 8.19 does
not hold. It is based on the observation that the F2-linear map F4 →
F4, x 7→ x2 has two eigenvalues 1, but is not semi-simple.
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Let A = F2[t], and C = SpecA and denote the quadratic cover
SpecF4[t] byX. We will consider the Goss zeta function ζG(X/C,−1, T )
and its behavior at T = 1.

Consider the sheaf π?F1,2 on X = P1
F4
. By Corollary 8.4 we have

ζG(X/C,−1, T ) = L(P1
F4
, π?F1,2, T ).

By construction we have an isomorphism

π?π
?F1,2 = F4 ⊗F2 F1,2.

An easy computation shows that H0(P1
F2[t],F1,2) = 0 and that H1(P1

F2[t],F1,2)

is free of rank 1 over F2[t], on which τs acts as the identity. It fol-
lows that the action of τs on the rank 2 module H1(P1

F4[t], π
?F1,2) =

F4 ⊗F2 H1(P1
F2[t],F1,2) is given by a matrix(

1 1
0 1

)
and hence π?F1,2 does not satisfy (SS). It follows from this computation
that

ζG(X/C,−1, T ) = 1 + T 2

in 1 + TA[[T ]], so that the order of vanishing at T = 1 is 2. On the
other hand, using the long exact sequence of Theorem 8.13 we see that
Exti(1X,A, π

?F1,2) has rank 0, 1, 1 for i = 0, 1, 2 respectively, so that∑
i

(−1)ii rkA Exti(1X,A, π
?F1,2) = 1

and the conclusion of Theorem 8.19 fails to hold.
I do not know what to conjecture or expect for the order of vanishing

and leading coefficient of the L-function of a τ -sheaf that does not
satisfy (SS).

Notes

The main result of this chapter, Theorem 8.19, is essentially due to
V. Lafforgue [38, §2]. Compared to [38], we have provided more de-
tailed arguments, and have generalized the result to higher-dimensional
X.

It is a positive-characteristic analogue of results of Kato [33] and
Milne and Ramachandran [42]. In fact, by analogy with Lichtenbaum’s
conjectures [40], one could compare the groups Ext1(1X , π

?Fn,d) and
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Ext2(1X , π
?Fn,d) for a finite X → C with the Quillen K-groups K2n−1

and K2n−2 of a number field, respectively.
The hypothesis that X be smooth and our hypothesis (H2) simplify

the arguments and statement, but are not essential. The semi-simplicity
hypothesis however, is crucial. It is trivially satisfied if the order of
vanishing of the L-fuction is at most one, which covers ζG(C/C,−n, T )
for C = SpecFq[t] and many other basic cases, see [48, §3].

At positive integers, the Goss zeta function is no longer a rational
function. Yet, if v is a place of the function field F , then seen as a power
series over the completion Fv, it has an analytic continuation, and its
value at T = 1 is well-defined. These values are typically transcenden-
tal [53]. They are related to periods of (generalizations of) Drinfeld
modules and shtukas, see [4, 38, 46, 21]. The most powerful results in
this direction are again applications of the Woods Hole trace formula.

Exercises

Exercise 8.1. Let X be a scheme of finite type over Fq. Let F
be a coherent τ -sheaf on X, let n be an integer. Show that there is a
natural isomorhpism

ExtnCohτ X(1,F) = ExtnCrysX(1,F)

of Yoneda extension groups.

Exercise 8.2 (“Beilinson’s basic lemma”). Let X be of finite type
over Fq. Let F be a crystal on X. Show that there is a non-empty
affine subscheme j : U → X such that Extn(1, j!j

?F) = 0 for all n 6= 1.

Exercise 8.3. Let C = SpecFq[t]. Let n be a positive integer.
Show that ζG(C/C,−n, T ) vanishes at T = 1 if and only if n is divis-
ible by q − 1. (Compare with the Riemann zeta function at negative
integers.)



APPENDIX A

The trace formula for a transversal
endomorphism

In this appendix we give a proof of the Woods Hole trace formula
for a transversal endomorphism f of a proper smooth scheme X over a
field, see Theorem A.4. The only published proof of this theorem is by
Illusie in SGA5 [27, Exp. III, 6.12], using Grothendieck-Serre duality.
However, the proof is rather convoluted. We also use Grothendieck-
Serre duality, but deduce the formula in a more direct way.

It should be noted that special cases of the trace formula admit
simpler proofs. This is the case if the endomorphism is the Frobenius
endomorphism (see these notes, or [22], or [3]), or if it is an automor-
phism of finite order co-prime to the characteristic (see [9] or [18]). In
these cases the Grothendieck group of pairs (F , ϕ) of a coherent OX -
module with a map f?F → F becomes a manageable object, which
allows a reduction to trivial instances of the formula.

1. Extensions

1.1. Extension groups and cup product. Let X be a noether-
ian scheme. Let F and G be quasi-coherent OX -modules. Then we have
higher extension groups ExtpX(F ,G), which can be defined either as
the derived functors of either HomOX (F ,−) or HomOX (−,G). Equiv-
alently, they can be defined as Yoneda extension groups in either the
category of OX -modules or the category of quasi-coherent OX -modules.
The groups ExtpX(F ,G) are modules over the ring Γ(X,OX).

If F , G and H are quasi-coherent OX -modules then we have cup
product pairings

ExtpX(F ,G)× ExtqX(G,H) −→ Extp+qX (F ,H)

which are bilinear over Γ(X,OX).

109
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1.2. Base-change of extensions. Let X be a noetherian scheme.
Let F , G and H be coherent OX -modules. Assume that F is acyclic
for − ⊗H. For example, this is the case if H is locally free. Then we
have for every p a natural map

(38) ExtpX(F , G) −→ ExtpX(F ⊗H, G ⊗H).

Similarly, let f : X → Y be a morphism of noetherian schemes, let F
and G be coherent OY -modules and assume that F is acyclic for f?.
Then for every p there is a natural map

(39) ExtpY (F , G) −→ ExtpX(f?F , f?G).

In the special case F = OX we obtain a map

Hp(Y, G) −→ Hp(X, f?G)

which is simply the pull-back map on cohomology.
Pull-back of extensions is compatible with product of extensions: if

F , G and H are coherent OY -modules and if F and G are f?-acyclic,
then for every p and q the diagram

ExtpY (F ,G)⊗ ExtqY (G,H) Extp+qY (F ,H)

ExtpX(f?F , f?G)⊗ ExtqX(f?G, f?H) Extp+qX (f?F , f?H)

commutes.

1.3. Künneth formula. Let k be a field and let X and Y be
noetherian schemes over Spec k. Consider the product X × Y over
k. Let F1 and F2 be coherent OX -modules and G1 and G2 coherent
OY -modules. Then for each i the OX×Y -module

Fi � Gi := π?XFi ⊗ π?Y Gi
is coherent. Combining the natural maps of (38) and (39) we obtain
maps

ExtpX(F1,F2) −→ ExtpX×Y (F1 � G1,F2 � G1)

and
ExtqY (G1,G2) −→ ExtqX×Y (F2 � G1,F2 � G2).

The images can be cupped together into a map

ExtpX(F1,F2)⊗k ExtqY (G1,G2) −→ Extp+qX×Y (F1 � G1, F2 � G2).
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The Künneth formula is a theorem stating that for every n the map
(40)⊕
p+q=n

ExtpX(F1,F2)⊗k ExtqY (G1,G2)
∼−→ ExtnX×Y (F1 � G1, F2 � G2)

is an isomorphism.

2. Grothendieck-Serre duality

Grothendieck-Serre duality is a generalization of Serre duality to
arbitrary proper maps of noetherian schemes. Serre duality covers the
case of a proper smooth morphism to the spectrum of a field. The state-
ment is most natural (and certainly most economical) in the language
of derived categories. We give the statement below, in section 2.1. In
the subsequent sections we explicitly spell out a few consequences of
Grothendieck-Serre duality that will be used in the proof of the Woods
Hole trace formula. These consequences are given in the language of
extension groups and do not refer to the derived category.

We refer to [30] for more details.

2.1. Duality in the derived category. For a scheme X we de-
note by Db(X) the bounded derived category of complexes of OX -
modules with quasi-coherent cohomology. Let X and Y be noetherian
schemes. Let f : X → Y be a proper morphism. Then we have a total
derived push-forward functor

Rf? : Db(X)→ Db(Y ).

It maps complexes with coherent cohomology to complexes with co-
herent cohomology. Grothendieck-Serre duality states that there is a
functor

f ! : Db(Y )→ Db(X)

and for every F• ∈ Db(X) and G• ∈ Db(Y ) an isomorphism

(41) HomDb(X)(Rf?F•, G•)
∼−→ HomDb(Y )(F•, f !G•)

functorial in F• and G•. If f : X → Y and g : Y → Z are proper
morphisms of noetherian schemes then we have natural isomorphisms
Rg?Rf? ∼= R(gf)? and (gf)! ∼= f !g!, compatible with (41).

For some classes of f the functor f ! can be explicitly computed. In
particular, if f : X → Y is proper smooth of relative dimension n then
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the functor f ! is given by

f !G• = (Ωn
X/Y ⊗ Lf?G)[n]

and if i : X → Y is a regular closed immersion of codimension d then

i!G• = (N d
X/Y ⊗ Li?G)[−d]

where N d
X/Y := ∧dNX/Y is the determinant of the normal bundle, see

2.5 below for more details.

2.2. Duality for proper smooth variety. Let X be proper and
smooth of dimension n over Spec k. Then Serre duality provides a
canonical map

trX : Hn(X,Ωn
X/k)→ k.

For every coherent OX -module F and for every p the resulting map

Hp(X,F)⊗ Extd−pX (F ,Ωn
X/k) −→ Hn(X,Ωn

X/k)
trX−→ k

is a perfect pairing. This follows from Grothendieck-Serre duality, to-
gether with the explicit computation of f !OY for the map f : X → Y =
Spec k.

2.3. Duality for proper smooth map. Let X and Y be noe-
therian schemes and let f : X → Y be proper and smooth of relative
dimension n. Let F be a coherent OX -module which is acyclic for
f?, and let G be a locally free OY -module. Then Grothendieck-Serre
duality provides for every p a canonical isomorphism

(42) Extn+p
X (F , f?G ⊗ Ωn

X/Y )
∼−→ ExtpY (f?F , G).

If Y = Spec k then these groups vanish unless p = 0. For p = 0 and
G = OY we find an isomorphism

ExtnX(F , Ωn
X/k)

∼−→ Hom(H0(X,F), k)

which coincides with the isomorphism of Serre duality for X/k.

2.4. Künneth and duality for a coordinate projection. Let
k be a field. Let X and Y be proper smooth of relative dimension n
and m respectively. Let F be a coherent OY -module and G a coherent
OX -module. We have

π?XG ⊗ Ωm
X×Y/X = G � Ωm

Y .
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Duality for πX gives, as a special case, an isomorphism

ExtmX×Y (OX � F , G � Ωm
Y )

∼−→ ⊕p ExtpX(OX ⊗k Hp(Y,F), G).

This isomorphism is compatible with duality for Y in a sense that we
now make precise. Let p be an integer and consider the square
(43)

ExtmX×Y (OX � F , G � Ωm
Y ) ExtpX(OX ,G)⊗ Extn−pY (F ,Ωm

Y )

ExtpX(OX ⊗k Hp(Y,F), G) Homk(H
p(Y,F), Hp(X,G)).

Here the top map is the Künneth map, the left map is duality for πX
and the right map is duality for Y . Then this square commutes for p
even and anticommutes for p odd.

2.5. Duality for regular closed immersion. Let X be a noe-
therian scheme. A closed immersion i : Z → X is said to be regular
of codimension d if the ideal sheaf I is locally generated by a regular
sequence of length d. For example, if X and Z are smooth of rela-
tive dimension n resp. n − d over a field k then any closed immersion
i : Z → X is regular of codimension d.

Let i : Z → X be a regular closed immersion of codimension d.
Let I ⊂ OX be the ideal sheaf of Z. Then the conormal sheaf CZ/X :=

i?I/I2 and the normal sheafNZ/X := C∨Z/X are locally free OZ-modules
of rank d. We denote their determinants by CdZ/X and N d

Z/X . These are
mutually inverse invertible OZ-modules.

We have i!G = Li?G⊗N d
Z/X [−d], so Grothendieck-Serre duality pro-

vides for every coherent OZ-module F and every coherent OX -module
G which is acyclic for i? a canonical isomorphism

(44) αZ/X : ExtpZ(F , i?G ⊗N d
Z/X)

∼−→ Extp+dX (i?F ,G),

functorial in F and G.

2.6. Compatibility. Now assume f : X → Spec k and g : Z →
Spec k be proper smooth of relative dimension n and n−d respectively.
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Let i : Z → X be a closed immersion.

Z X

Spec k.

i

g
f

We have g! = i!f !, and a related compatibility between Serre duality on
X and Z, and Grothendieck-Serre duality for i. An explicit instance of
this compatibility is as follows. The short exact sequence

0→ CZ/X → i?Ω1
X/k → Ω1

Z/k → 0,

induces an isomorphism

i?Ωn
X/k ⊗N

d
Z/X
∼= Ωn−d

Z/k ,

and the square

(45)

Extn−dZ (OZ , i?Ωn
X/k ⊗N

d
Z/X) ExtnX(i?OZ ,Ωn

X/k)

k ExtnX(OX ,Ωn
X/k)

αZ/X

trZ

trX

commutes.

2.7. Transversal base change. Let f : X ′ → X be a morphism
of noetherian schemes over Spec k. Let i : Z → X be a regular closed
immersion of codimension d. Let i′ : Z ′ → X ′ be the base change of i
along f , so that we have a cartesian square

Z ′ X ′

Z X

f ′

i′

f

i

Then i′ : Z ′ → X ′ is a closed immersion, but it need not be regular of
codimension d.

Assume now that f : X ′ → X is a regular closed immersion which
is transversal to Z. Then i′ : Z ′ → X ′ is a regular closed immersion of
codimension d and the canonical map

f ′?CZ/X → CZ′/X′
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is an isomorphism of locally free OZ′-modules of rank d.
Let F be a locally free OZ-module of finite rank, and let G be a

coherent OX -module. Then F is acyclic for f ′? and i?F is acyclic for
f?. We obtain a square

(46)

ExtpZ(F , i?G ⊗N d
Z/X) Extp+dX (i?F ,G)

ExtpZ′(f
′?F , i′?f?G ⊗N d

Z′/X′) Extp+dX′ (i′?f
′?F , f?G).

α

α

where the vertical maps are the base change maps as in (39). This
square commutes.

3. A local computation

Let X be separated and smooth of relative dimension d over a field
k. Let f : X → X be a morphism over k.

Let Γ = (id, f) : X → X × X be the graph of f and ∆: X →
X ×X be the diagonal. These are closed immersions. Assume Γ and
∆ intersect transversally in X×X. Let C be their intersection, so that
we have a cartesian square

X X ×X

C X

Γ

i

i

∆

In particular if = i and Γi = ∆i.
We have Ω1

X×X = Ω1
X � OX ⊕ OX � Ω1

X . Taking exterior powers
gives

Ωd
X×X = ⊕p Ωp

X � Ωd−p
X .

Consider the composition of natural maps

CdΓ
d−→ Γ?Ωd

X×X � Γ?
(
OX � Ωd

X

)
= f?Ωd

X .

Pulling back along i we obtain a map

π0 : i?CdΓ → i?f?Ωd
X = i?Ωd

X
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of invertible OC-modules. (The π0 is to indicate the map originates in
the projection Ωd

X×X � OX � Ωd
X on the component for p = 0.) On

the other hand, transversal base change gives a map

∆? : i?CdΓ → Cdi
Finally, the map f induces a map df : i?Ω1

X → i?Ω1
X and hence a

map df : i?Ωd
X → i?Ωd

X .

Proposition A.1. The following diagram of invertible OC-modules

i?CdΓ Cdi

i?Ωd
X i?Ωd

X

π0

∆?

d

det(1−df)

commutes.

Note that the four arrows are isomorphisms.

Proof. This is a local computation. Let x ∈ C be a point. Let
t1, . . . , td be a system of local parameters of X near x. Put xi := ti⊗ 1
and yi := 1⊗ ti. Then

(x1, . . . , xd, y1, . . . , yd)

is a system of local parameters of X×X near (x, x). Near this point the
closed subscheme Γ is cut out by the regular sequence (y1−f(x1), . . . , yd−
f(xd)), so that i?CdΓ is generated (near x) by

s := (y1 − f(x1)) ∧ · · · ∧ (yd − f(xd)).

The image of s under π0 is dt1 ∧ · · · ∧ dtd. The image of s under ∆? is

(t1 − f(t1)) ∧ · · · ∧ (td − f(td))

which is mapped to the section det(1−df) ·dt1 ∧ · · · ∧dtd of i?Ωd
X . �

4. Duality for the graph of a morphism

Let X and Y be proper smooth of dimension n (resp. m) over k.
Let f : X → Y be a morphism over k. Consider the graph of f , that is
the map

Γ = (id, f) : X → X × Y.
Note that Γ is a regular closed immersion of codimension m and that
CΓ = f?ΩY .
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Let F be a an OY -module and G an OX -module. Assume F and G
are locally free of finite rank.

Since πXΓ = idX we have

Γ?(G � Ωm
Y )⊗Nm

Γ = G
so duality for Γ provides an isomorphism

(47) HomX(f?F ,G)
∼−→ ExtmX×Y (Γ?f

?F , G � Ωm
Y ).

Composing with the canonical map OX�F → Γ?f
?F we obtain a map

θ : HomX(f?F ,G)−→ExtmX×Y (OX � F , G � Ωm
Y ).

The Künneth formula and Serre duality for Y give a decomposition

ExtmX×Y (OX � F , G � Ωm
Y )

∼−→ ⊕p Homk(H
p(Y,F), Hp(X,G)).

Proposition A.2. Let ϕ : f?F → G be a morphism of OX-modules.
Let p be a positive integer. Then the image of θ(ϕ) in the component

Homk(H
p(Y,F), Hp(X,G))

of ExtmX×Y (OX � F , G � Ωm
Y ) is (−1)p times the map

Hp(Y,F)
f?−→ Hp(X, f?F)

ϕ−→ Hp(X,G)

coming from functoriality of cohomology.

Proof. Let πX : X × Y → X be the projection. Note that πXΓ =
idX . In particular, Γ?f

?F is πX,?-acyclic, and we have πX,?Γ?f?F =
f?F . Therefore duality for the projection X×Y → X gives an isomor-
phism

ExtmX×Y (Γ?f
?F , G � Ωm

Y )
∼−→ HomX(f?F , G).

This is the inverse of the isomorphism (47). It therefore suffices to show
that the square

ExtmX×Y (Γ?f
?F , G � Ωn

Y ) ExtmX×Y (OX � F , G � Ωn
Y )

HomX(f?F , G) Hom(Hp(Y,F),Hp(X,G))

commutes for even p and anticommutes for odd p. Here the top and
bottom maps are the canonical ones. The left map is duality for πX
and the right map is Künneth combined with duality for Y/k. This
then follows from functoriality of duality for πX (applied to the map
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OX �F → Γ?f
?F), and the commutativity resp. anticommutativity of

the square (43). �

Corollary A.3. Assume moreover that X = Y and F = G. Let
ϕ : f?F → F be a morphism of OX-modules. Then θ(ϕ) is mapped
under the composition

ExtnX×X(OX � F , F � Ωn
X)

∆?

−→ ExtnX(F ,F ⊗ Ωn
X)

trX−→ k

to the alternating sum
∑

p(−1)p trk(ϕ, Hp(X,F)). �

5. Woods Hole trace formula

Theorem A.4. Let X be proper smooth over Spec k and let f be
an endomorphism of X over k. Let F be a locally free OX-module of
finite rank. Let ϕ : f?F → F be a map of OX-modules. Assume that
the graph of f intersects the diagonal in X ×X transversally. Then∑

p

(−1)p trk(ϕ, Hp(X,F)) =
∑

f(x)=x

trk(ϕ, x
?F)

detk(1− df, x?Ω1
X/k)

in k.

Proof. As before, we denote by Γ = (id, f) : X → X × X the
graph of f and by ∆: X → X ×X the diagonal. We have a cartesian
square

X X ×X

C X

Γ

i

i

∆

Consider the locally free OX×X -module H := F � F∨.
Step 1. The natural map d: CΓ → Γ?Ω1

X×X induces a map

(48) CdΓ → ∧dΓ?Ω1
X×X = Γ?Ωd

X×X

and hence a section of Γ?Ωd
X×X⊗N d

Γ . Using Grothendieck-Serre duality
(44) for Γ this induces a map

H0(X,Γ?H) −→ ExtdX×X(Γ?OX , Ωd
X×X ⊗H)

and composing with the canonical map OX×X → Γ?OX we obtain a
map

γ1 : H0(X,Γ?H) −→ Hd(X ×X, Ωd
X×X ⊗H).
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By transversal base change we have a natural isomorphism Cdi ∼=
∆?CdΓ, and hence pulling back the map in (48) along ∆ we obtain a
map

Cdi −→ i?Γ?Ωd
X×X = i?∆?Ωd

X×X .

This gives a section of i?N d
i ⊗ ∆?Ωd

X×X and hence, just as above,
Grothendieck-Serre duality for i yields a map

γ2 : H0(C, i?Γ?H)→ H0(X,∆?Ωd
X×X ⊗∆?H).

By transversal base change (46) the square

(49)

H0(X,Γ?H) H0(C, i?∆?H)

Hd(X ×X,Ωd
X×X ⊗H) Hd(X,∆?Ωd

X×X ⊗∆?H)

∆?

γ1 γ2

∆?

commutes.
Step 2. We have ∆?H = F ⊗F∨, so there is a canonical trace map

trF : ∆?H → OX
which locally sends a section of H to the trace of the corresponding
endomorphism of F . We have a natural commutative square

(50)

H0(C, i?∆?H) H0(C,OC)

Hd(X,∆?Ωd
X×X ⊗∆?H) Hd(X,∆?Ωd

X×X)

γ2

trF

γ3

trF

where γ3 is the analogue of the map γ2 (for F = OX).
Step 3. The natural map d: Ci → i?Ω1

X induces a section of i?Ωd
X ⊗

N d
i and therefore, with Grothendieck-Serre duality for i, a map

γ4 : H0(C,OC) −→ Hd(X,Ωd
X).

Now by the local computation in Proposition A.1 also the diagram

(51)

H0(C,OC) H0(C,OC)

Hd(X,∆?Ωd
X×X) Hd(X,Ωd

X).

γ3

det(1−df)−1

γ4

π0
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commutes.
Step 4. Joining the commutative squares (49), (50) and (51) and

using the compatibility of (45) we find a commutative diagram

(52)

H0(X,Γ?H) H0(C,OC)

k

Hd(X ×X,Ωd
X×X ⊗H) Hd(X,Ωd

X)

γ1 γ4

trC

trX

We have Γ?H = F ⊗ f?F∨, so that ϕ induces a section ϕ ∈
H0(X,Γ?H). We will compute its image T (ϕ) in k under the commuta-
tive diagram (52) in two ways, obtaining the left-hand and right-hand
sides of the trace formula.

Tracing the diagrams along the top maps and through trC we find

T (ϕ) =
∑
x∈C

trk(ϕ, x
?F)

detk(1− df, x?Ω1
X/k)

,

which is the right-hand-side of the Woods Hole trace formula.
We now compute the image of ϕ via the bottom path. The bottom

map factors over

Hd(X ×X, (OX � Ωd
X)⊗H)

which using Künneth and Serre duality for X can be identified with

⊕p Homk(H
p(X,F),Hp(X,F)).

By Proposition A.2 and Corollary A.3 we find

T (ϕ) =
∑
p

(−1)p trk(ϕ, Hp(X,F))

and equating the two obtained expressions for T (ϕ) finishes the proof
of the Woods Hole trace formula. �
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