
TWISTOR CONNECTIVITY OF THE COHOMOLOGICAL
MODULI SPACES

EMRE CAN SERTÖZ

Abstract. These notes are an expanded version of my talk at the Intercity
Geometry Seminar in Netherlands, Spring of 2016. The goal of the seminar
was to study Buskin’s paper [Bus].

These notes provide a detailed exposition of Section 4 of [Bus] where twistor
connectivity of the cohomological moduli spaces Mφ is proven.

A large chunk of the calculation surrounding Lemma 4.9 in [Bus] can be
bypassed. If you are already familiar with Buskin’s paper jump to Section 4.3
to see this shortcut.
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1. Introduction

In this first section we will give a highly informal summary of Buskin’s proof and
an overview of the contents of these notes. Starting from Section 2 our arguments
are fully rigorous.

1.1. Summary of Buskin’s proof. The summary here is intended to put the
content of these notes in perspective and to be short. I sacrificed historical and
mathematical accuracy for the sake of readability, please use the original paper if
you want either of those.

Let S and T be K3 surfaces and let ψ : H2(S,Q) → H2(T,Q) be a rational
Hodge isometry. Using Künneth’s formula, the isometry ψ gives us a class [ψ] ∈
H2,2(S × T,Q). Buskin proved that the class [ψ] is of analytic type (or algebraic
when S and T are) as predicted by Hodge conjecture.

Buskin’s proof can be summarized in 4 steps. The first step is to realize that
the composition of Hodge isometries of analytic type are still of analytic type. As
such, we find atomic pieces (called Hodge isometries of n-cyclic type) and proceed
to show that all of these atomic pieces are of analytic type. The Hodge isometries
that are atomic and of the same nature form a moduli spaceMφ (see Remark 3.2).

The second step is to construct, for each of the moduli spacesMφ, one example
of an atomic Hodge isometry that is of analytic type. The original construction is
due to Mukai.

The third step is to show that each of these examples, when suitably deformed,
remain of analytic type. The right notion of deformation here is via twistor lines,
see Section 4.3 for more on this notion.

The last step is to prove that the moduli spacesMφ are connected via twistor
lines (see Theorem 5.10). Hence, by the previous step all the atomic pieces are of
analytic type. Then by the first step every Hodge isometry is of analytic type.

1.2. Content of these notes. In these notes we focus on step 4 of the summary
above, i.e., we prove that the moduli spaces Mφ (see Definition 3.1) are twistor
connected. A crucial step is to find a way to deform a given Hodge isomorphism,
which is done in Section 4.3.

From Section 2 until Section 4.3 we cover the basic material to define the relevant
objects. From that point on, we specialize to the constructions involving pairs of
K3s, linked by a “common” Kähler class. The Kähler class gives a sphere of complex
structure on each of the K3s. An identification between these spheres allows one to
deform the two K3s simultaneously. However, only one of these identifications allows
a given Hodge isometry to preserve the Hodge decomposition on the cohomologies
as the complex structures vary. This is proven in Theorem 4.25. The corresponding
simultaneous deformation carves a line in the cohomological moduli space, which is
called a twistor line.

Finally in Section 5 we tinker with established results on the twistor connectivity
of the moduli space of K3 surfaces to construct twistor paths between any two
points inMϕ. This concludes the proof thatMφ is twistor connected.

Since these notes are isolated from the rest of the proof of Buskin, we took the
liberty in assuming that φ is any real isometry rather than a rational isometry of
n-cyclic type. The proofs here work with this weaker hypothesis.

1.3. Acknowledgments. I would like to thank Daniel Huybrechts for his comments
during and after the talk, the last section of these notes are significantly better as
a result. I also would like to thank Bas Edixhoven for making me realize that the
emphasis on Section 4.3 has to be on the uniqueness of the correct simultaneous
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deformation. Finally, I would like to thank Lenny Taelman who brought up a critical
point that is now addressed in Remark 4.27.

2. Preliminaries: Moduli of K3s

Fix Λ, a representative of the unique isomorphism class of lattices with signature
(3, 19). The inner product on Λ will be denoted by q(·, ·). As is usual, for any field
k we will denote Λ⊗Z k by Λk.

A morphism of lattices η : Λ′ → Λ extends to a k-linear morphism which we
denote by ηk : Λ′k → Λk. Often we will drop the subscript of ηk as the context
makes it clear.

Definition 2.1. A pair (S, η) is a marked K3 surface if S is a K3 surface and
η : H2(S,Z)→ Λ is an isometry (the former lattice is taken with the topological in-
tersection product). Two marked K3 surfaces (S, η) and (S′, η′) are called equivalent
if there exists an isomorphism f : S → S′ such that η′ = η ◦ f∗.

Notation 2.2. ByM we denote the moduli space of (the equivalence classes of)
marked K3s. It is a non-Hausdorff complex analytic space and a fine moduli space
for the corresponding functor, see Section 7.2.1 of [Huy].

Definition 2.3. The set CΛ = {l ∈ ΛR | q(l, l) > 0} = C ′ ∪ C ′′ breaks into two
disjoint cones such that −C ′ = C ′′. Distinguishing one of these components will be
called an orientation on CΛ and the distinguished cone is called the positive cone of
Λ.

Definition 2.4. With S a K3 surface let CS = {v ∈ H2(S,R) | v · v > 0}. Out of
the two components of CS only one of them contains the Kähler cone and as such
we have a natural orientation on CS with the component containing the Kähler cone
chosen to be the positive cone of S, denoted C+

S .

From this point onward, we assume that an orientation on CΛ is fixed.

Definition 2.5. A marked K3 surface (S, η) is called signed if the isomorphism ηR :
H2(S,R)→ ΛR is orientation preserving between the cones CS and CΛ. Otherwise,
(S, η) is called unsigned.

Remark 2.6. The moduli spaceM has two connected components, denotedM+

andM−, consisting of signed and unsigned marked K3s respectively. Notice that if
(S, η) ∈M+ then (S,−η) ∈M−.

2.1. The period map.

Definition 2.7. The period domain of Λ is the set ΩΛ = {[l] ∈ P(ΛC) | q(l, l) =
0, q(l, l̄) > 0}.

Definition 2.8. The natural holomorphic map π : M → ΩΛ taking (S, η) to
[η(H2,0(S,C))] is called the period map.

The following two major results will be evoked without further mention. Their
proofs are in [Huy], labeled Theorem 7.4.1 and 7.5.3 respectively.

Theorem 2.9 (Surjectivity). The period map π is surjective.

Theorem 2.10 (Global Torelli). If π(S, η) = π(S′, η′) then S ' S′.

3. Preliminaries: Moduli of pairs of K3s

Let φ : ΛR → ΛR be a real isometry preserving the orientation of CΛ. For a K3
surface let KS ⊂ H2(S,R) denote the Kähler cone of S.
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Definition 3.1. LetMφ ⊂M×M denote the moduli space of pairs (S1, η1, S2, η2)
such that the following hold:

• ψφ := η−1
2 ◦ φ ◦ η1 : H2(S1,C)→ H2(S2,C) is a Hodge isometry.

• The image of the Kähler cone KS1
intersects KS2

, i.e., ψφ(KS1
) ∩KS2

6= ∅.
The spaceMφ is called the cohomological moduli space.

Remark 3.2. Perhaps the most natural way of viewing the cohomological moduli
spaceMφ is to see it as the space of all Hodge isometries {ψ} between marked K3s
such that η2 ◦ ψ ◦ η−1

1 = φ.

Remark 3.3. Buskin takes φ to be a rational isometry (in fact of n-cyclic type), as
this is what he needs. But to define the cohomological moduli space and to prove
that it is twistor connected it suffices to assume that φ is a real isometry.

Remark 3.4. If a Hodge isometry ψφ : H2(S1,R)→ H2(S2,R) sends a Kähler class
to a Kähler class then ψ restricts to an orientation preserving map CS1 → CS2 .
Consequently, as φ is orientation preserving, if (S1, η1, S2, η2) ∈ Mφ then either
both ηi’s are signed or both are unsigned.

SinceM has two connected componentsM− andM+ (see Remark 2.6),M×M
has 4 which we will label asM++,M+−,M−+,M−− in the obvious manner. By
the previous remark we concludeMφ ⊂M++

∐
M−−.

Notation 3.5. LetM+
φ =Mφ ∩M++ andM−φ =Mφ ∩M−−.

Our goal is to show that M+
φ and M−φ are twistor connected. A notion that

will be made precise in the coming sections. To facilitate the study of pairs of K3
surfaces, we will now define the space to keep track of their periods.

Definition 3.6. We will call the space Ωφ = {([l], [φ(l)]) ∈ ΩΛ × ΩΛ} the twisted
period domain.

Remark 3.7. The map ΩΛ → ΩΛ taking [l] 7→ [φ(l)] is well defined. To see this
note that as φ is real, we have φ(x) = φ(x). Now use the fact that φ is an isometry.
This shows that the projection maps Ωφ → ΩΛ are surjective.

4. Twistor paths

Set-up 4.1. Fix a marked K3 surface (S, η) and let α ∈ H1,1(S,R) be a positive
class, i.e., α · α > 0. Denote by σS ∈ H0(S,Ω2

S) a non-zero holomorphic differential
form.

Notation 4.2. Define VS,α to be the real vector space

η (〈α,ReσS , ImσS〉) ⊂ ΛR.

Notation 4.3. Denote by QS,α the intersection P(VS,α ⊗ C) ∩ ΩΛ within P(ΛC).
Since q restricts to a positive definite inner product on VS,α, the condition q(l, l̄) > 0
is superfluous. On the other hand, q(l, l) = 0 cuts out a quadric curve on
P(VS,α ⊗ C) ' P2. Thus QS,α ' P1.

Definition 4.4. The projective line QS,α ⊂ ΩΛ is called a twistor line through
π(S, η).

Remark 4.5. Observe that if π(T, µ) ∈ QS,α then there exists a positive class
β ∈ H1,1(T,R) such that QS,α = QT,β . To find β proceed as follows. By hypothesis
any differential form σT ∈ H2,0(T ) will land in VS,α⊗C and so the real and imaginary
parts of σT will lie in VS,α. We may choose any µ(β) orthogonal to µ(ReσT ) and
µ(ImσT ) in VS,α.
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Definition 4.6. If q0, q1, . . . , qn ∈ ΩΛ and for i = 1, . . . , n each Qi ⊂ ΩΛ is a twistor
line through qi−1 containing qi, then the tuple (Q1, . . . , Qn) is called a twistor path
from q0 to qn.

If in addition the intermediate points qi for i = 1, . . . , n− 1 are the periods of
generic K3s then the path is called a generic twistor path.

Despite the power of its implications, the proof of the following theorem is
surprisingly simple. See Proposition 7.3.2 in [Huy].

Theorem 4.7. Any two points of ΩΛ may be connected by a generic twistor path.

4.1. Crash-course on hyperkähler structures. Let X be a complex manifold
and M the underlying real manifold. Then multiplication by i ∈ C induces an
automorphism on the real tangent bundle TM which is denoted by I : TM → TM .
Note I2 = − Id.

One may recover X from the pair (M, I), and thus I is referred to as the complex
structure of X (or on M). A Riemannian metric g on X is called I-invariant if
g(I(·), I(·)) = g.

Definition 4.8. If g is I-invariant then ω = g(·, I(·)) is a real (1, 1)-form. If
dω = 0 then both the metric g and the form ω are called Kähler. In this case
[ω] ∈ H1,1(X,R).

Definition 4.9. Suppose M admits 3 complex structures I, J and K which satisfy
IJ = −JI = K, i.e., {Id, I, J,K} generate a quaternionic subalgebra of End(TM).
The (ordered) triple (I, J,K) is called a hypercomplex structure on M .

Definition 4.10. Let M admit a hypercomplex structure (I, J,K) and suppose
that there is a metric g on M invariant with respect to I, J and K. Then g is called
a hyperkähler metric and the datum (g, I, J,K) is called a hyperkähler structure on
M .

Remark 4.11. Given a hyperkähler structure (g, I, J,K) let S = {aI + bJ + cK |
a2 + b2 + c2 = 1} and notice that any λ ∈ S gives rise to a complex structure on
M such that g is λ-invariant. As such, a hyperkähler structure defines a sphere of
complex structures that invariate g.

4.2. Kähler lines. See Theorem 7.3.6 and the discussion after it in [Huy] for a
more comprehensive treatment of what we will do here.

Recall Set-up 4.1. Let SR denote the underlying real manifold of S and I the
complex structure of S. If α ∈ H1,1(S,R) is a Kähler class then there exists a unique
hyperkähler metric g on S with the associated Kähler form in α. Furthermore the
associated sphere of complex structures S as described in Remark 4.11 depends only
on g (although the choice of the hypercomplex structure (I, J,K) is not unique).

Notation 4.12. The sphere of complex structures, S, on SR is determined by α
together with a complex structure. Moreover a sphere admits a unique complex
structure. As such we will denote by PS,α the sphere S together with a complex
structure.

For λ ∈ S let Sλ = (SR, λ). Then there is a complex structure on the real
manifolds SR × S→ S making this a family of K3 surfaces S ν→ PS,α with the fiber
over λ isomorphic to Sλ.

Let η be a marking of S. As the marking is defined at a topological level, while
we vary the complex structure on SR we may keep η fixed. Then the family ν can
be marked with η, giving a family of marked K3 surfaces.

Notation 4.13. The resulting moduli map corresponding to the family ν of marked
K3s will be denoted by ΨS,α : PS,α →M.
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Definition 4.14. For λ ∈ S denote by ωλ the Kähler form g(·, λ(·)). Let αλ =
[ωλ] ∈ H2(SR,R) be the associated Kähler class. As we can view αλ ∈ H1,1(Sλ,R)
we will later refer to αλ as a deformation of α.

Remark 4.15. If PS,α passes through (T, µ) then there exists a Kähler class β
on T such that PT,β = PS,α. Indeed, we may assume (T, µ) = (Sλ, η). We will
take β = αλ so that we only have to show that the sphere of complex structures
associated to αλ is S. This follows from the uniqueness of the hyperkähler metric:
From αλ we recover g and thus S.

Lemma 4.16. Let (I, J,K) be a hypercomplex structure arising out of a Kähler
class α on S. Then VS,α = η(〈αI , αJ , αK〉).

Proof. As αI = α it suffices to prove that ωJ + iωK ∈ H0(S,Ω2
S). This follows from

the discussion before Proposition 13.3 in Chapter VIII of [Bar+04]. �

Remark 4.17. The previous reference allows one to calculate the norms of αI , αJ , αK
and see that they are equal to one another. As such, for any λ ∈ S we have
‖αλ‖ = ‖α‖.

Lemma 4.16 implies that VS,α does not depend on the complex structure on SR
nor on α, but on the hyperkähler metric g that is obtained from α. Since αλ recovers
g we have the following result.

Corollary 4.18. For any λ ∈ S we have VS,α = VSλ,αλ . This implies QS,α =
QSλ,αλ .

Lemma 4.19. π ◦ΨS,α : PS,α → QS,α is an isomorphism.

Proof. For any hypercomplex structure (I, J,K) on S, Lemma 4.16 makes this map
explicit:

I, J,K 7→ [αI ], [αJ ], [αK ],

which is clearly invertible. �

Definition 4.20. The twistor line QS,α is called a Kähler twistor line if α is a
Kähler class.

Remark 4.21. In summary, whenever α is Kähler, the twistor line QS,α ⊂ ΩΛ

admits a lift toM. Namely, PS,α.

4.3. Simultaneous deformation of complex structures. Fix an isometry φ :
ΛR → ΛR. Take (S, η, T, µ) ∈Mφ and let ψ = µ−1 ◦ φ ◦ η. Pick α ∈ KS ∩ψ−1(KT ),
i.e., a Kähler class on S such that ψ(α) is also Kähler on T .

Notation 4.22. Given any isomorphism τ : PS,α → PT,ψ(α) denote the graph of τ
by Γτ ⊂ PS,α × PT,ψ(α).

Using the natural maps PS,α →M and PT,ψ(α) →M we get a map Γτ →M×M.
As such we get to simultaneously deform (S, η) and (T, µ) over P1 ' Γτ . Given
λ ∈ Γτ denote the image of λ inM×M by (Sλ, η, Tλ, µ).

In fact, we are interested in deforming not just the K3 surfaces but also the
Hodge isometry ψ. Noticing H2(S,Q) and H2(T,Q) are topological invariants we
may define, for each λ ∈ Γτ , the isometry ψλ := ψ : H2(Sλ,Q) → H2(Tτ(λ),Q).
However, as the complex structure changes so does the Hodge decomposition of the
cohomology. Therefore, one may ask if ψλ is still a Hodge isometry. We will show
that there is precisely one identification τ that makes ψλ a Hodge isometry for each
λ.
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Remark 4.23. Since ψ(H0(S,Ω2
S)) = H0(T,Ω2

T ) the map φ restricts to an isometry
VS,α

∼→ VT,ψ(α), where we used Notation 4.2. In particular, φ restricts to an
isomorphism QS,α

∼→ QT,ψ(α).

Definition 4.24. Let τα denote the composition of the series of isomorphisms

PS,α
π→ QS,α

φ→ QT,ψ(α)
π−1

→ PT,ψ(α),

Where we used Lemma 4.19 to invert the last map. To comply with Buskin’s
notation we will denote the graph of τα by Pψ,α ⊂ PS,α × PT,ψ(α).

Theorem 4.25. The map Γτ → M ×M yields a family of Hodge isometries
{ψλ | λ ∈ Γτ} if and only if τ = τα.

Proof. Indeed ψλ is a Hodge isometry iff ψλ(H2,0(Sλ,C)) = H2,0(Tλ,C). Letting
xλ = π(Sλ, η) and yλ = π(Tλ, µ) this last condition is equivalent to the statement
that φ(xλ) = yλ since ψ = µ−1 ◦ φ ◦ η.

For λ = (λ1, λ2) ∈ Γτ , identifying λi’s with the marked K3 surfaces they represent,
we conclude that ψλ is a Hodge isometry iff φ ◦ π(λ1) = π(λ2). In other words, iff
λ2 = τα(λ1). �

Remark 4.26. This means that Pψ,α may be seen as a deformation of the Hodge
isometry ψ.

Remark 4.27. As S and T deform so does the fourfold S × T . Buskin defines
sheaves on the deformation space of S × T to prove that Mukai’s examples can
be deformed. One may ask at this point, having bypassed a detailed analysis of
the complex structures on S × T have we sacrificed a foothold in the later parts of
Buskin’s proof? In fact, we have not. All that will be needed later on in the paper
is an understanding of how α and ψ(α) deform on S and T when we choose the
simultaneous deformation corresponding to Pψ,α.

With λ = (λ1, λ2) ∈ Pψ,α, we will abuse Definition 4.14 and denote by αλ := αλ1

and ψ(α)λ := ψ(α)λ2 the deformations of the classes α and ψ(α) respectively.

Lemma 4.28. ψ(α)λ = ψ(αλ)

Proof. Let σλ1 ∈ H0(Sλ,Ω
2
Sλ

) be a differential form on Sλ. As ψ is Hodge σλ2 :=
ψ(σλ1

) is a differential form on Tλ. Let Vλ = 〈αλ,Reσλ1
, Imσλ1

〉 and Wλ =
〈ψ(α)λ,Reσλ2

, Imσλ2
〉.

As proven in Corollary 4.18 the vector spaces V := Vλ, W := Wλ are constant
with respect to λ. Hence as shown in Remark 4.23, ψ restricts to an isometry
V →W .

Since ψ : V → W is an isometry, and the (1, 1)-forms are orthogonal to the
differential forms we must have ψ(αλ) = cλψ(α)λ for some non-zero cλ ∈ R. We
cited in Remark 4.17 that the norms of the Kähler classes remain constant as they
deform. Thus ‖αλ‖ = ‖α‖ = ‖ψ(α)‖ = ‖ψ(α)λ‖.

This forces c2λ = 1. Since the deformations are continuous, so must cλ vary
continuously. Hence cλ assumes its original value throughout, which is 1. �

Corollary 4.29. Image of the map Pψ,α →M×M lies in Mφ.

Proof. Definition 3.1 states two conditions that need to be checked on ψλ. The first
condition requires ψλ to be a Hodge isometry, which is the statement of Theorem
4.25. The second condition requires the Kähler cones to intersect and this is implied
by the lemma above since αλ and ψ(α)λ are both Kähler, while ψλ maps one to the
other. �
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Definition 4.30. Let α ∈ H1,1(S,R) be a positive class on S, which is not necessarily
Kähler. Denote the graph of φ : QS,α → QT,ψ(α) in Ωφ by Qψ,α. Then Qψ,α is
called a twistor line in the twisted period domain Ωφ.

Remark 4.31. We have shown that if α ∈ KS ∩ ψ−1(KT ) then Qψ,α admits a lift
toMφ, namely Pψ,α.

5. Twistor connectivity of Mφ

Definition 5.1. A K3 surface is generic if it has trivial Picard group. A point of
M,Mφ, ΩΛ or Ωφ corresponding to a generic K3 (or a pair of generic K3s) will be
called a generic point. Any twistor path containing a generic point will be called a
generic twistor path.

Lemma 5.2. If S is a generic K3 then any positive α ∈ H1,1(S,R) is Kähler.

Proof. See Proposition 7.3.7 of [Huy] and the reference therein. �

Corollary 5.3. Let (S, η) be a generic marked K3. Then any twistor line through
x := π(S, η) ∈ ΩΛ is Kähler.

Proof. We showed in Remark 4.5 that any twistor line Q through x is of the form
QS,α for some positive (1, 1)-class α on S. This class α is Kähler by Lemma 5.2. �

Corollary 5.4. Any generic twistor path in ΩΛ with generic end points lifts to a
connected path in M+ (or in M−) connecting the unique lifts of the end points.

Proof. The previous corollary allows for the existence of lifts as stated in Remark
4.21. Injectivity of π over the periods of generic K3s ensure that the path is
connected. �

Corollary 5.5. Any two points in Ωφ are connected by a generic twistor path.

Proof. Given x = (x′, x′′), y = (y′, y′′) ∈ Ωφ, find a generic twistor path in ΩΛ

connecting x′ to y′. The graph of this path lies in Ωφ (see Remark 3.7) and connects
x to y. �

Remark 5.6. There is an isomorphism M+
φ → M−φ established by sending

(S, η, T, µ) to (S,−η, T,−µ). In particular, this means that we only need to prove
connectivity results forM+

φ and the analogous results will hold forM−φ .

Lemma 5.7. Any twistor line in Ωφ through a generic point lifts to a twistor line
in M+

φ .

Proof. Let Q be a twistor path containing a generic point x ∈ Ωφ. Let (S, η, T, µ) ∈
M+

φ be the preimage of x and let ψ = µ−1 ◦ φ ◦ η. We may express Q as Qψ,α for
some positive α ∈ H1,1(S,R). Since S and T are generic, by Lemma 5.2, both α
and ψ(α) are Kähler classes. Consequently Pψ,α provides a lift of Q. �

Corollary 5.8. Any two generic points of M+
φ are connected by a twistor path.

(Similarly for M−φ .)

Proof. Take generic x, y ∈ M+
φ and a generic twistor path through their images

π(x) and π(y) in Ωφ. As each component of the path contains generic points, we
may lift each component toM+

φ as in Lemma 5.7. ButM+
φ → Ωφ is injective over

generic points. As such the lift of the path is connected with end points x and y. �

Lemma 5.9. Take an arbitrary point (S, η, T, µ) ∈M+
φ , let ψ = µ−1 ◦ φ ◦ η. There

exists a Kähler class α ∈ KS ∩ ψ−1(KT ) such that the twistor line Pψ,α contains a
generic point.
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Proof. For non-zero l ∈ Λ denote by Hl ⊂ ΛR the orthogonal hyperplane to l. A
twistor line QS,α contains no generic elements precisely when VS,α is contained in⋃

0 6=l∈ΛHl. As VS,α and Hl are all linear spaces, this can happen only if there exists
an l such that VS,α ⊂ Hl.

Let V ′ = η (〈ReσS , ImσS〉) ⊂ VS,α be the part independent of α. Let Λ1,1 =
η
(
H1,1(S,R)

)
. If V ′ ⊂ Hl then the inclusion Λ1,1 ∩Hl ( Λ1,1 is proper (otherwise

Hl = ΛR, which is absurd).
Define the union H ′ =

⋃
V ′⊂Hl Hl. This (at most) countable union of hyperplanes

can not cover Λ1,1 since they all properly intersect it. As such, H ′ can not cover
the open cone η(KS ∩ ψ−1(KT )).

Pick any α ∈ KS ∩ ψ−1(KT ) such that η(α) 6∈ H ′. Then VS,α 6⊂ Hl for any
non-zero l ∈ Λ. Hence the lift Pψ,α contains a generic point. �

Theorem 5.10. M+
φ is twistor connected (and so is M−φ ).

Proof. Let x, y ∈M+
φ . Using Lemma 5.9 we may connect x and y to generic points

via twistor lines. Any two generic points ofM+
φ are connected by a twistor path as

stated in Corollary 5.8 and we are done. �
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