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Snake robot models in CGA
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Conformal Geometric Algebra (CGA)

The Conformal Geometric Algebra (CGA) is the Clifford algebra Cly41,1 along with the
embedding C:RVN > X — M ¢ Cln41,1- The embedding of the point X in terms of
the null basis {e1, ..., en, €p, ex} is then given by

1
X+—>x1e1+---+xNeN+§(x12+~--+x,%,)eoo+e0. (1)
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Snake robot

(1,91) (5, 3)

Figure: A snake robot in 2D.
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Snake robot

m Robotic mechanism inspired by the locomotion of biological snakes.
m The snake robot consists of a series of links, equipped with passive wheels located

in the centres, connected by actuated joints.
m The mechanism is nonholonomic, meaning there is a constraint defined on the

tangent bundle TQ of the configuration space Q.
A3
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Figure: A three-link snake robot.
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Kinematics

m The i-th link of the robot is represented by the point pair P; = A; A Ajy1.

m Denote the initial configuration as P?.

: . : : 1
m Denote a transformation acting on the links as M; in the form of M; = e~ 2Ha(1),
where g(t) is a point in the configuration space at time t.

m Then the configuration of the mechanism at time t can be represented by the
kinematic chain

1 k
Pi(t) = [ miP? T] M. (2)
=k j=1
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Nonholonomic constraint

m The mechanism is subject to the non-slip condition, i.e. the links' wheels are
assumed not to slip sideways.

m Denoting the velocity of the i-th link’s centre as v; and the normal of the i-th link
as n;, the constraint is expressed as

Vi-ni= 0. (3)
m In CGA, we express the condition as

pi \ Pi \ ex = 0, (4)

where p; is the velocity of the i-th link's centre p; = Pie . P;.
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2D CGA Model

Differential kinematics

m The nonholonomic constraint can be used to obtain forward or inverse kinematics.
m In the 2D case, results have been obtained before.

m It is possible to express p; as

k
pi=> lpi-Lj], (5)
=1

> 71(0q;L;)q; is the derivative of the "axis" of the j-th

where L; = 9:L;(q(t)) "
e zl(a(t )) applied to link P; in the kinematic chain.

transformation M; =
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2D CGA Model

Differential kinematics

Denote q(t) = [x(t), y(t), 0(t), #1(t), $2(t)] as a point in the configuration space and

a(t) = (x(t), y(t), 6(t), ¢1(t), d2(t)) as a vector in the tangent space. Expanding the
nonholonomic constraint in 2D, we would arrive at

(9’ — 2%sin (6) + 2y cos (9)) I =0,
(qlﬁl + 20 cos (¢1) + 0 — 2% sin (¢ + ) + 2y cos (¢1 + 9)) I =0,

<2q51 cos (¢2) + $1 + by + 20 cos (¢2) + 20 cos (o1 + d2) + H—
—2xsin(¢1 + ¢2 +0) +2ycos(p1 + p2+0)) 1 =0,

(6)

where | = ejesrepe.
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3D CGA Model of Planar Motion

3D CGA Model of Planar Motion

m Moving to the 3D case, the z dimension is added in appropriate places and so we
turn to 3D CGA.

m Again, it is useful to utilise p; expressed as

k

pi=> [pi-Lj], (7)

j=1
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3D CGA Model of Planar Motion

3D CGA Model of Planar Motion

m We proceed by again expanding the nonholonomic condition p; A P; A e =0 in
order to obtain a set of differential equations with multivector coefficients.

m In order to simplify the equations obtained, we evaluate the equations in the origin

([x,y,z] =[0,0,0]) (invariance of the velocity w.r.t. the starting position in
space).
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3D CGA Model of Planar Motion

Nonholonomic constraint

For the first link we obtain:

(92 — 2xzsin (0) + 2yzcos (0) + 2zxsin () — 2zy cos (9)) e;

Aer ez ey + (9 — 2xsin (0) + 2y cos (9)) e

NeyANeg/esx+2zcos(f)er NesAeyg A esx+
2zsin(0)ex ANe3 Aeg Aex =0.
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3D CGA Model of Planar Motion

Nonholonomic constraint

For the second link we obtain:

(gz512 + 20z cos (¢1) + 0z — 2xzsin (¢1 + 0) + 2yz cos (¢1 + 0)
+ 2zxsin (¢1 + 0) — 27y cos (¢1 + 0) + 2zsin ((251)) es NexNe3 ey

+ ((]51 + 20 cos (¢1) + 0 — 2xsin (¢1 + 0) + 2y cos (¢1 +c9)> e; )
NexNegesx—+2zcos(p1+0)er NesAeg
A€o +2zsin(¢1 +0)ea Nes AegAesx =0.

Roman Byrtus
CGA-Based Snake Robot Control Models



Snake robot models in CGA
0000e000

3D CGA Model of Planar Motion

Nonholonomic constraint

For the third link we obtain:

(2q'>lzcos (62) + d12 + oz + 20z cos (¢2) + 20z cos (b1 + o) + bz
— 2%zsin (¢1 + ¢p + 0) + 2yz cos (¢ + G + 0) + 22xsin (¢1 + b2 + 0)
— 22y cos (d1 + G + 0) + 2z 5sin (¢2) + 22sin (dy + (252)) e1 M e e
A €so + (2&1 cos (¢h2) + 1 + 2 + 26 cos (¢2) + 20 cos (¢1 + ¢2)
+ 0 = 2%sin (91 + b2 + 0) + 2y cos (91 + 62+ 6) ) 1

NexAegAes +2zcos(pr+ ¢o+0)er ANesAeg
A es +2zsin (¢ + ¢+ 0)ea Nes Aeg Aes, =0.
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3D CGA Model of Planar Motion

Nonholonomic constraint

m We proceed by expanding the nonholonomic condition to p; A P; A e A €j =0,
j=1,2,3.

m P; \ e A e defines a plane, which helps us split velocity components.
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3D CGA Model of Planar Motion

Nonholonomic constraint

Expanding p; A P A e A €3 = 0 we get:

(9 — 2xsin (0) + 2ycos(0)) et Nex Ne3Negex =0,

((;'51 +29cos(¢1)+é—2ksin (61 + 0) + 2y cos (p1 +0)) eiNexNesNeyNes =0,
(24131 cos (¢2) + ¢1 + ¢2 + 20 cos (¢2) + 20 cos (1 + ¢2) + 0

—2xsin (¢1 + ¢2 + 0) + 2y cos (p1 + ¢2 +6)> et Nex Nes /ey e,
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3D CGA Model of Planar Motion

Nonholonomic constraint

Expanding p; A P; A e A €3 = 0 we get:

—2zcos(f)er Nex Nes AegAesx =0, (11a)
—22COS(¢1 —|—6)e1 ANexANesNeyg/Nesx =0, (11b)
—2Z'COS(¢1 +¢2+9)€1 ANexNesNeyg/Nesx =0, (11C)

Expanding p; A P A e A €1 = 0 we get:

2zsin(f)e1 Nex Nes NeygAes =0, (12a)
2zsin (¢1 + 9)61 ANexNesNeyg/Nesx =0, (12b)
2zsin(¢1 +¢2 +0)er ANex Nezs Aeg A es =0. (12¢)

Roman Byrtus
CGA-Based Snake Robot Control Models



Snake robot models in CGA

€000000
3D CGA Model

Three DOF Joint Model

m In 3D, we need to choose a way to model the joints connecting the mechanism’s
links.

m The links are connected by spherical joints, thus allowing pitch, yaw and roll.

Lol

Denote a rotor representing the spherical joint as R, = e™2%", where

Ly = RayLl ’éay = RayRoaXe12§ax 'éa

y?

_1 _1
and R,, = e 2%®12 and Ray — e 2wl2,
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3D CGA Model

Sphere Joint Model
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3D CGA Model

Two DOF Joint Model

m In this model, we restrict the motion realised by the joints to yaw and pitch.

m An interesting parametrisation is as follows:

m The first plane of rotation p; for the yaw motion can be represented by the three
points defining the two connected links: thus, p1 = A1 A Ap A A3 A e.

m Let / and &, be the lines passing through the first and second links.

m Then the axis of rotation L;; for the plane p; can be expressed as

Liv = hxh,

where X is the commutator product.
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3D CGA Model

Two DOF Joint Model

Figure: The axes of rotation axis1, axis2 for the link represented by points A, As.
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3D CGA Model

Two DOF Joint Model

m The second plane of rotation po for the yawing motion is the plane containing the
link P that is orthogonal to the first axis L;j1; thus its axis L;, is given by

Lip = Lixxh.
The rotation realised by the 2-DOF joint can then be expressed as
R; = e—%¢iLi’

with the axis L; given by
Li = wiLliy + (1 — |wi|) L.
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3D CGA Model

Two DOF Joint Model
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3D CGA Model

Difficulties with the approach

If we were to proceed with the full 3D CGA model, we run into a few difficulties:
m So far, all results were obtained using symbolical calculations.

m Both the 2 DOF and 3 DOF variants start to be computationally problematic.
m Difficulty in determining controllability of the mechanism.
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A Purely Geometry Based Control Algorithm
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A Purely Geometry Based Control Algorithm
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A Purely Geometry Based Control Algorithm
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A Purely Geometry Based Control Algorithm
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A Purely Geometry Based Control Algorithm
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A Purely Geometry Based Control Algorithm
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Thank you for your attention.
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