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Overview I

The STA is the geometric algebra of spacetime
Given the success of the STA in dealing with electromagnetism
and gravity then this suggests the question:
Is the STA itself is enough to get to all the laws of physics?
This would have the overwhelming ‘good feature’ that we only
know about 4 dimensions existing, and we know what metric
((1,3) or (3,1)) they satisfy
So the GA of such a space seems a truly minimal way of
approaching physical laws
Separately, Cohl Furey and others have been showing how the
Octonions, the last of the four division algebras after the reals,
the complex numbers and quaternions, have some interesting
properties as regards the gauge groups of particle physics, and
may be linked with the symmetries that nature has chosen
Over the last 3 years, I’ve been able to show how octonions can
be successfully implemented and understood in the STA and
have made progress on how the application of the STA to particle
physics this link with octonions brings about



Overview II

It also has effects for other groups, of interest in geometry and
computer graphics, and I will discussing some perhaps
surprising aspects of this
Not much time to cover a lot of ground, so excuse the brevity of
introductions to various topics!
For a summary of where things stood about 2 years ago, see
Anthony Lasenby, Some recent results for SU(3) and octonions
within the geometric algebra approach to the fundamental forces
of nature, Mathematical Methods in the Applied Sciences,
(2022), https://doi.org/10.1002/mma.8934, arXiv:2202.06733
For a summary talk on this given online in October 2023 see
https://www.youtube.com/watch?v=0m__fhtkMzg

And there’s another paper underway with a good deal more,
hopefully ready shortly!

https://www.youtube.com/watch?v=0m__fhtkMzg


The STA I

Have four vectors {e0,ei}, i = 1 . . . 3 with properties

e0
2 = 1, ei

2 = −1 e0·ei = 0, ei ·ej = −δij

Have 6 bivectors, 3 each squaring to +1 or -1
Spacelike (Euclidean) bivectors satisfy

(ei∧ej)
2 = −ei

2ej
2 = −1

and generate rotations in a plane
Timelike (Lorentz) bivectors satisfy

(ei∧e0)
2 = −ei

2e0
2 = 1

and generate hyperbolic geometry e.g.:

eαe1e0 = 1 + αe1e0 + α2/2! + α3/3!e1e0 + · · ·
= coshα+ sinhαe1e0



The STA II

THE PSEUDOSCALAR

Define the pseudoscalar I

I = e0e1e2e3

Reverses to itself, and squares to -1
NB I anticommutes with vectors and trivectors. (In space of even
dimensions). I always commutes with even-grade.
Now settle on a given fixed Cartesian frame of vectors in which
to do our physics — can think of this as the laboratory frame, and
rename our eµ to be γµ
Now have the basic tool for relativistic physics — the STA

1 {γµ} {γµ∧γν} {Iγµ} I = γ0γ1γ2γ3

1 4 6 4 1
scalar vectors bivectors trivectors pseudoscalar



The STA III

We drop down to 3d by defining σi = γiγ0

These are actually spacetime bivectors, but can function as
spatial vectors in the frame orthogonal to γ0

A nice feature is that the volume element is

σ1σ2σ3 = (γ1γ0)(γ2γ0)(γ3γ0) = −γ1γ0γ2γ3 = I

so the 3-d subalgebra shares same pseudoscalar as spacetime!
So projected onto the even subalgebra of the STA we have the
following picture:

Combinations of the elements on the second line here gives us
what we will call Dirac spinors, and later Octonions!



Octonions I

Octonions are generalisations of quaternions, and have 8
elements, e0 through e7, instead of 4
e1 through e7 all mutually anticommute and square to -1
The key features of Octonions is that they form a ‘normed
division algebra’
Any product of octonions has a norm which is the product of the
individual norms, and two non-zero octonions always multiply to
produce a further non-zero octonion
As is well known, the only normed division algebras are the real
numbers, complex numbers, quaternions and octonions
Among these, the complex numbers are commutative and
associative, the quaternions are non-commutative but still
associative, while famously the octonions are neither
commutative nor associative
In particular, there is no general rule that

(ab)c = a(bc) (1)

for general elements a, b and c



Octonions II

So e.g. differs from the geometric product of GA in this regard
Why then might it they be useful in Physics, and how are we
going to be able to represent them within GA?
We are going to use the STA!
The key is that (in the STA) the Dirac spinors ψ can be divided
into parts that commute or anticommute with the unit timelike
vector γ0

Can use these two parts (the ‘Pauli’ and ‘non-Pauli’ parts of the
Dirac spinor), in a way which defines the octonionic product of
two Dirac spinors in terms of these sub-parts.
An STA spinor has 8 real degrees of freedom, so we are able to
identify an octonion directly with a spinor.
For an ‘octonion’ ψ, we define

ψ+ = 1
2 (ψ + γ0ψγ0) , ψ− = 1

2 (ψ − γ0ψγ0) (2)

as the two sub-parts of ψ.



Octonions III

These will correspond to the even and odd parts of the full 3d
Pauli algebra, in the usual ‘spacetime split’ correspondence
between the Pauli and Dirac geometric algebras, given by
multiplication by γ0

Then given two octonions, ψ and ϕ, the octonionic product
between them, which we will denote ‘⋆’, is the Dirac spinor θ
given by

θ = ψ ⋆ ϕ = ψ+ϕ+ + ϕ̃−ψ− + ϕ−ψ+ + ψ−ϕ̃+ (3)

Note carefully that the four individual products on the right hand
side of this equation are all usual geometric products taking
place within the ordinary STA, the ‘reverse’ is just an ordinary
STA reverse, and the spinors involved are just ordinary STA
spinors
Hence our claim about being able to compute everything entirely
within the STA!



Octonions IV

From the form of this we can see that such a product is highly
unlikely to be associative, and indeed in general it is not
The property it does have, however, comes from the (essentially)
defining property of the octonions, already discussed, that they
form a normed division algebra
To define the norm, we need to define a conjugate element. For
us this is (using ∗ to denote conjugation)

ψ∗ = ψ̃+ − ψ− (4)

where (as said above) the tilde over the first term on the r.h.s.
denotes the usual GA reversion.
This yields the following norm:

||ψ|| ≡ ψ ⋆ ψ∗ = 1
2

(
γ0ψγ0ψ̃ + ψγ0ψ̃γ0

)
= J·γ0 (5)

where J = ψγ0ψ̃ is the Dirac current!



Octonions V

We know from its interpretation as a probability current, that J is
always non-zero and future pointing as long as ψ is non-zero
This, along with its scalar nature (in the sense of grades present)
coincides perfectly with properties a norm should have
The other property we need for our product and norm to be
representing a normed division algebra is the fundamental
relation that the norm respects multiplication, so we require

||ψ ⋆ ϕ|| = ||ψ|| ||ϕ|| (6)

for all Dirac spinors ψ and ϕ.
Given our definitions so far, this is a matter of computation, and
one can find that this does indeed work and with θ = ψ ⋆ ϕ it
corresponds to the (ordinary STA) result

||θ|| =
(
θγ0θ̃

)
·γ0 =

[(
ψγ0ψ̃

)
·γ0

] [(
ϕγ0ϕ̃

)
·γ0

]
(7)



Assigment of STA elements to unit Octonions

On this diagram, which
shows the Fano plane
construction for
Octonion
multiplication, we
explicitly display the
assignment of
Octonion units to STA
elements
Lot of ways of doing
this — we have settled
on one which gives a
central position to the
pseudoscalar I and
treats the Pauli even
and odd elements
symmetrically



Octonion chains I

Cohl Furey (and others) have particularly emphasised the role of
chains of octonion operators
This is a clever technique to do with using sequences of
octonions to pack in a great deal of ‘information’ despite the
relatively small size of the spaces involved
The non-associativity of the octonions is crucial to this, since
then e.g.

A(Bϕ) for some octonions A and B acting on a state ϕ
is different from the sequence

(AB)ϕ also acting on ϕ
The possibilities increase as we go to longer sequences, rather
like a code, though find that if we consider purely one-sided
multiplications, then we should consider sequences of a
maximum of 6 of these, and Furey and others show that this is
isomorphic to the 6 dimensional anti-Euclidean Clifford algebra
Cl(0,6)
This is the algebra that has all grade 1 objects squaring to −1,
and anticommuting



Octonion chains II

That this happens we can understand quite well from the STA
viewpoint
Have recently understood that stucture of our product makes it
easiest to translate into STA if consider chains on the right
instead
Find the translations then are very simple:

ψ ⋆ ei ↔ γ0ψγ0ei , i = 1,2,4, i.e. for −Iσ1,−Iσ2,−Iσ3

ψ ⋆ ei ↔ eiγ0ψγ0 , i = 3,5,6, i.e. for σ1, σ3, σ2

ψ ⋆ e7 ↔ −Iψ = −ψI , i = 7

We call them ‘sandwich forms’
From these we read off the properties we want more or less by
eye!
E.g. squaring to minus 1 for the Iσi is because they square to -1
themselves but commute with γ0



Octonion chains III

Squaring to minus 1 for the σi is because they square to 1
themselves but anticommute with γ0

Proving anti-commutativity goes similarly
Summarising, we really do have

(ϕ ⋆ ei) ⋆ ej =

{
−ϕ i = j
−
(
ϕ ⋆ ej

)
⋆ ei i ̸= j

(8)

which if we define a ‘vector’ as the map ϕ 7→ ϕ ⋆ ei are the
defining relations for the unit vectors in a Clifford algebra
As we build up the chains of Octonionic multiplications, we are
building up blades in the algebra of Cl(0,6)
And each of these is a defined map of an STA even-grade
element (a spinor) to new spinor!
Thus by a 4d Clifford algebra acting on itself (the STA, with a
total of 16 elements), we have generated a 6d Clifford algebra,
Cl(0,6), with 64 elements



Octonion chains IV

If build up the 64 elements corresponding to chains of right
multiplication, then we are going to number the resulting chains
as R0 (the identity) to R63 (the pseudoscalar of the space)
Similarly for left multiplications, which we’ll call Li , i = 0, . . . ,63
Note we choose the numbering such that e.g. Ri translates as
ψ ∗ ei , i = 0, . . . ,7
This defines what we are going to work with — each of these is
effectively map in the STA from a Dirac spinor to Dirac spinor
Worth thinking a little about the non-associativity of the octonions
versus the maps we have introduced
Let’s work with an example of non-associativity
Start with pure octonions

(e1e2)e3 ̸= e1(e2e3)
↓ ↓

e4e3 e1e5
↓ ↓

−e6 e6



Octonion chains V

So could write this e.g. as

R3(R2e1) = −e6, L1(L2e3) = e6

or (R3R2)e1 = −e6, (L1L2)e3 = e6

or R12e1 = −e6, L7e3 = e6

since the maps are associative. (In the last line we are using our
numbering system for chain states.)
So can begin to see how the chain states can be pulled away
and treated as operators in their own right
Also, can see how different maps are involved when comparing
the non-associative expressions, so the fact that the maps
themselves are associative is not an issue
Ok, have got enough in place that we can start exploring the use
of these octonionic maps in some unexpected contexts



Dirac’s SO(3,2) space I

Going to look at a first example, where we have a natural
imaginary present
In a 5d Clifford algebra, the pseudoscalar always commutes with
all elements of the algebra (eie1e2e3e4e5 = e1e2e3e4e5ei ,∀i)
We are going to ask (a) that the traditional Iσ3 on the right
constitutes the ‘imaginary’
and (b) That this same state functions as the pseudoscalar of the
resulting Clifford Algebra, and so automatically commutes with
everything
Turns out this immediately pins down the algebra to Cl(3,2) or
Cl(4,1) (or their inverted signature equivalents)
These are quite interesting
SO(3,2) is the group which Dirac concentrated on in two papers
from the 1960’s and 1970’s which have recently started to get
more attention



Dirac’s SO(3,2) space II

These are A Remarkable Representation of the 3 + 2 de Sitter
Group, P. A. M. Dirac, J. Math. Phys., Vol. 4, pp. 901–909 (1963)
and A Positive-Energy Relativistic Wave Equation, P. A. M. Dirac,
Proceedings of the Royal Society of London. Series A, Vol. 322,
No. 1551, pp. 435-445 (1971)
The second paper uses the SO(3,2) representation of the first to
construct a new relativistically covariant wave equation for a
particle that has positive energy only — at this stage Dirac felt
that having negative energy solutions was not a good thing,
despite of the success of his first relativistic particle equation
(from the 1920’s) in predicting anti-particles!
It turns out these new particles cannot interact with anything
electromagnetically, and recently they have been discussed as
possible dark matter candidates (e.g. Positive-Energy Dirac
Particles and Dark Matter, E. Bogomolny, arXiv:2406.01654
(2024))
What we do here generalises SO(3,2) to the whole Cl(3,2)



Dirac’s SO(3,2) space III

We will skip over some central aspects of what Dirac did, in
particular that his wavefunction is a complex function of two
‘internal’ variables at each point, as well as spacetime position,
and just look at the matrices he uses
These are new versions of the previous γ matrices
Find out by looking at the action on a Dirac column spinor, that in
the STA these are all of the ‘sandwich’ form, and we translate
them as follows:

γ̂0 ↔ γ0ψγ3 ↔ R59
γ̂1 ↔ γ3ψγ3 ↔ R39
γ̂2 ↔ −γ1ψγ3 ↔ R41
γ̂3 ↔ −ψσ3 ↔ R56

So Dirac here was using octonions, without knowing it!
The implied signature is (R2

59,R
2
39,R

2
41,R

2
56) = (−1,1,1,1), i.e.

(3,1)



Dirac’s SO(3,2) space IV

We then take commutator products of these to give the 6
bivectors of the space, which Dirac then adds to the vectors we
have just found to give a set of 10 quantities, which he interprets
as the generators (bivectors) of SO(3,2)
We can instead seek the underlying vectors which produce these
bivectors, and thence construct a whole Cl(3,2) space upon
them
The particular numbers won’t mean anything, but we find these
are the set

R6,R18,R21,R38,R46

Starting afresh with these as vectors, then leads, as stated, to
entire Cl(3,2),plus a commutative imaginary, R7, which is also
the pseudoscalar of the space
So this is good for understanding (a part of) what Dirac was
attempting in the 1971 paper, but why is any of this interesting as
regards geometry and computer graphics?



Dirac’s SO(3,2) space V

Point is that the commutative imaginary means that we can
multiply it into any of these ‘vectors’ and thereby change their
signature
So actually we have decoded all of Cl(3,2), Cl(2,3), Cl(1,4) and
Cl(4,1) in octonion/STA terms
Looking first at the last, we recognise this in the Conformal
Geometric Algebra (CGA) of 3d Euclidean space
The vectors in this case are

R6,R38,R44,R46,R47

and all the rest of the elements of the Cl(4,1) 32d algebra are in
1-1 correspondence with unique elements of our ‘right chain’
space
This means we can implement all CGA operations using the
underlying STA software we use for the octonion chain mappings



Dirac’s SO(3,2) space VI

Will say a bit more about this below — the octonion mapping
method seems quite efficient, and is probably worth investigating
as regards implementions of CGA and PGA
(‘Look Ma: Octonions!)

Note that indeed we can get to the PGA via the method that I laid
out in a paper in the Amsterdam proceedings from 2010 (see
Lasenby, A. (2011). Rigid Body Dynamics in a Constant
Curvature Space and the ‘1D-up’ Approach to Conformal
Geometric Algebra. In: Dorst, L., Lasenby, J. (eds) Guide to
Geometric Algebra in Practice. Springer, London.
https://doi.org/10.1007/978-0-85729-811-9_18)

Let’s look at some code:

https://doi.org/10.1007/978-0-85729-811-9_18


PGA via Octonions I



PGA via Octonions II

What’s going on here as regards the algebra is explained in the
following extract:



The Hestenes-Dirac case I

There’s another algebra which is of interest to us in 4d

An obvious question which arises is about the Hestenes form of
the Dirac equation!

What does this look like in this approach?

This is a somewhat ‘meta’ proceeding, since we can already do
the Dirac equation in the STA of course!

But what does it look like when we make the link with octonions?

Is there an Octonionic form of the Dirac equation for the
electron? (People have searched for this, and proposed some
answers, for some while.)



The Hestenes-Dirac case II

Come back to this, but let’s go straight to the translation of the γ
matrices. Here we already know the first two columns of the
following

γ̂0 ↔ γ0ψγ0 ↔ −R23
γ̂1 ↔ γ1ψγ0 ↔ R3
γ̂2 ↔ γ2ψγ0 ↔ R6
γ̂3 ↔ γ3ψγ0 ↔ R5

but the third column is new to us. Again, we’ve in fact been doing
octonions all the time, in the STA version of the Dirac algebra!
(Note a difference with the (2,3) case is that here it ends up that
the pseudoscalar of the space is different from the ‘imaginary’ —
former is R63, latter is still R7.)
Useful to think about these actions in terms of the idea of
preservation of the time component of the Dirac current, which
as we said is equivalent to ‘conservation of norm’ in multiplying
octonions
So consider ⟨γ0ψγ0ψ̃⟩ where we let ψ 7→ γµψγ0



The Hestenes-Dirac case III

We get

⟨γ0ψγ0ψ̃⟩ 7→ ⟨γ0γµψγ0γ0γ0ψ̃γµ⟩ = γ2
0⟨γµγ0γµψγ0ψ̃⟩

by the cyclic property of taking the scalar part
So we see that we preserve the norm provided γ2

i = −γ2
0 for

i = 1,2,3
This gives an interesting connection between the metric and the
octonionic norm!
We can think about this more generally
Let Ei and Ej , i , j = 1, . . . ,16 be any two of the basis elements of
the STA and use these to sandwich ψ, i.e. we let

ψ 7→ EiψEj



The Hestenes-Dirac case IV

We now get (no sum on repeated indices)

⟨γ0ψγ0ψ̃⟩ 7→ ⟨γ0EiψEjγ0Ẽj ψ̃Ẽi⟩

Now it is a fact, easy to verify, that
γ0 commutes with 1, Iσk , Iγk , γ0, k = 1,2,3

and each of these satisfies Ei Ẽi = +1
while

γ0 anticommutes with I, σk , γk , Iγ0, k = 1,2,3
and each of these satisfies Ei Ẽi = −1

From the cyclic reordering property of ⟨. . .⟩ we thus get that the
signs always cancel and the octonionic norm is always preserved
by the sandwiching
Note we didn’t have to say that Ei and Ej were either both even or
both odd, but we’ll need this currently to keep ψ still being even
So what can we get by trying these for all possible elements?



The Hestenes-Dirac case V

Counting such that we only include linearly independent
elements is not immediately obvious, since 1 and I commute with
(even) ψ
But what we in fact get is precisely the set of all 64 ‘right chain’
states, which we’ve also established are the same as Cl(0,6)!
Moreover, one can show that each ‘right chain’ state can be
expressed as a sum of either 1 or 4 ‘left chain’ states, and vice
versa (not sure that others know this, by the way), and this
means we’ve got the whole chain space covered
Returning to the question about an octonionic form of the Dirac
equation, here’s our answer:
With the current assignment of octonion units to STA elements
this is

−∂tψ ⋆ e4 + ((∂xψ ⋆ e1) ⋆ e2) ⋆ e3 + ((∂yψ ⋆ e1) ⋆ e2) ⋆ e6

+((∂zψ ⋆ e1) ⋆ e2) ⋆ e5 − mψ = 0



The Hestenes-Dirac case VI

Looks rather clumsy, but this is because we haven’t optimised
the order of assignment of STA elements to octonions
However, have verified that it actually works, and e.g. starting
from the equation for an electron at rest can then use covariance
to get the ‘wavefunction’ (=octonion) for a particle in motion,
which works out to be the right thing
Finally, on the issue of what Clifford algebras we can get to in the
64 element chain space, if we forego having a state available for
use as an ‘i’ equivalent, we can successfully step up from a (4,1)
space, the CGA, to a (4,2) space, the CSTA
Then applying the same method as in the Amsterdam paper just
discussed, can drop down from this to 2 copies of the PSTA (or
STAP), which Martin, Steven, David and others are working on
The 64d chain space as a whole, i.e. our set of elements R0
through R63, is in 1-1 correspondence with CL(0,6), hence this is
another space which we can represent all operations in



The Hestenes-Dirac case VII

Thus in starting to talk about SU(3) etc. our answers with the
STA, and Cohl Furey’s with pure octonions, can be compared in
detail with those from Martin et al. for their own approaches to
e.g. SU(3) using Cl(6)

Lot’s of interesting comparisons to come!


