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Abstract

In this work, we propose three architectures for mapping pixel coordinates in an im-
age to their corresponding RGB (or grayscale) values. These three architectures are
based on the CocoNet (coordinates-to-color network) model: the Coordinates to Color
Quaternion Neural Network (CoCoQNN), the Coordinates to Color Convolutional Neu-
ral Network (CoCoCNN) and Coordinates to Color Quaternion Convolutional Neural
Network (CoCoQCNN). The first model, is a modified CocoNet model using quaternion
fully connected layers whereas the last model incorporates quaternion convolutional lay-
ers. The proposed quaternion-valued architectures have the advantage of requiring only
25% of trainable parameters when compared to their real-valued counterparts. Dur-
ing the training process, these architectures learn to encode the input image within
their layers. At test time, when providing normalized coordinates as input, these ar-
chitectures will output the approximate RGB (or grayscale) values reconstructing the
entire learned image. We conducted experiments using images from the CIFAR10, Set5
and the UCSD retinal OCT datasets, in order to test the proposed models, showing a
competitive performance when compared to the baseline CocoNet architecture.

CoCoQNN

We propose a quaternion neural network that learns a mapping function f from the
pixel coordinates in an image to the corresponding RGB (or grayscale) values. The
input layer consists of a single quaternion neuron which is constructed from two pairs of
Cartesian coordinates (x1, y1) and (x2, y2). The origin of one set of Cartesian coordinates
is situated in the bottom-right corner of the image, diagonally opposite from the corner
(top-left) that serves as the origin for the other set of Cartesian coordinates (see Fig.
1). We are using normalized coordinates in the interval [0, 1] and the pixel values are
normalized within the range [0, 1] (normalized pixel value = pixel value/255). For and
RGB image, the mapping function f learned by the proposed quaternion neural network
is defined as follows:

f : H −→ H, (1)

that is, for an input quaternion q = x1+y1i+x2j+y2k we have its corresponding output
GR + Ri+Gj+ Bk, where GR, R, G and B denote the grayscale, red, green, and blue



values of the pixel, respectively. For a grayscale image, the map is given by:

f : H −→ [0, 1]. (2)

CoCoQCNN

We proposed a modification of the previous architecture by using quaternion convolu-
tional layers [6] instead of quaternion fully-connected layers. In this new scenario we
use four input channels constructed from the x1, y1, x2 and y2 coordinates (see Fig. 2)
obtained from two cartesian systems.

Figure 1: Sample im-
age from the Set5
[4] dataset where the
coordinates are ob-
tained from two carte-
sian systems.

Figure 2: General architecture of the CoCoQCNN: Four input
channels are constructed from the coordinates of two carte-
sian systems. Then the channels are processed by means of a
QCNN.

This CoCoQCNN aims to learn the following mapping function g:

g : Hm×n −→ Rm×n×3. (3)

for an RGB image and the following mapping for a grayscale image:

g : Hm×n −→ Rm×n. (4)

The coordinates can be mapped to a grayscale and an RGB image at the same time
with the following mapping:

g : Hm×n −→ Hm×n. (5)

where the output quaternion image can be constructed as follows: GRch+Rchi+Gchj+
Bchk, where GRch, Rch, Gch and Bch denote the grayscale image, red channel, green
channel and blue channel, respectively..

Experimental Results

We carried out experiments focusing on three main tasks: image reconstruction, image
upsampling and image denoising. Additionally, for all the experiments in this work, we
used the mean squared error (MSE) loss function.



CIFAR10: Reconstruction and Upsampling

The reconstruction and upsampling capabilities of the CoCoQNN were tested using an
image of size 32× 32 from the CIFAR10 dataset [3]. The architecture used for this task
consists of 6 quaternion fully-connected layers having 64 quaternion neurons with the
exception of the last layer, that has only 1 quaternion neuron.
We trained the CocoNet and CoCoQNN with learning rate equal to 5×10−4 and 10 000
epochs with a batch size equal to 256. Additionally, we utilized the Adam Optimization
algorithm.
All layers have tanh as activation function with the exception of the last layer that has
the sigmoid activation function. From Figs 4 and 5, we can observe that the learned
(reconstructed) image in both CoCoQNN and its real-valued counterpart keep the high
level features of the original image. Regarding upsampling, we tested an upscale factor
equal to 20, see Figs. 6 and 7. Apart from upscaling the image, both models exhibit
image smoothing.

Figure 3: Orig-
inal sample
image from CI-
FAR10 dataset.

Figure 4: Recon-
structed/learned image using
CoCoQNN with MSE loss equal
to 2.9385 × 10−5 and 67 332
trainable parameters.

Figure 5: Recon-
structed/learned image using
CocoNet with MSE loss equal
to 8.0297 × 10−6 and 265 476
trainable parameters.

Figure 6: Upsampled image using
the CoCoQNN model.

Figure 7: Upsampled image using
the CocoNet model.

Set5: Reconstruction and Upsampling

In order to provide a metric for upsampling, we use an image from the Set5 dataset
[4]. First we downscale the image by a factor of 3. Then, the downscaled image is
learned by the model. Finally, the image upscaled to its original size (upscaling factor
of 3) is obtained from the models by using its corresponding normalized coordinates as
input, see Figs. 12 and 13. The architectures of the CocoNet and CoCoQNN consist
of 10 hidden layers using the ReLU activation function, with 200 real-valued and 100



quaternion-valued output neurons, respectively. We used the same learning rate, batch
size and optimization algorithm as with CIFAR10. The number of epochs during training
was set equal to 2000.

Figure 8: Sam-
ple image from the
Set5 dataset.

Figure 9: Down-
sampled image by
a factor of 3.

Figure 10: Learned (reconstructed)
image by the CocoNet model with
MSE equal to 1.1590×10−3 and 363
604 trainable parameters.

Figure 11: Learned (reconstructed)
image by the CoCoQNN model
with MSE equal to 9.8506 × 10−4

and 364 804 trainable parameters.

Figure 12: Learned image upsam-
pled to its original size by the Co-
coNet model with MSE equal to
5.5591× 10−3.

Figure 13: Learned image upsam-
pled to its original size by the Co-
CoQNN model with MSE equal to
5.0564× 10−3.

Retinal OCT Denoising

The analysis of OCT images and their diagnostic effectiveness is impacted by the pres-
ence of speckle noise [2]. We test the proposed CoCoQNN, CoCoCNN and CoCoQCNN
using the UCSD retinal OCT dataset [5] for the denoising task. We present the denois-
ing results for an OCT image and a random patch in Fig. 14 compared with denoising
by applying mean, median and Gaussian filters of size 3× 3 and 5× 5.



The CocoNet and CoCoQNN consist of 10 hidden layers with 200 real-valued and 50
quaternion-valued output units, respectively. The number of trainable parameters of
the CocoNet and CoCoQNN is 363 001 and 92 401, respectively. For both models the
last layer is a fully connected layer with one output unit, used to provide the grayscale
value of the pixel. We trained both models a with learning rate equal to 5 × 10−4

and 100 epochs with a batch size equal to 1024. Additionally, we utilized the AdamW
optimization algorithm. At the end of the training the obtained MSE losses for the
CocoNet and CoCoQNN were 5.5256× 10−3 and 5.8363× 10−3, respectively.
The architecture for the proposed convolutional models are as follows:

• CoCoCNN: Six convolutional layers. The first and last convolutional layers had
64 and 1 filter, respectively. The rest of the layers use 64 filters. The activation
function for the first five convolutional layers is the tanh. The activation function
for the final convolutional layer is the sigmoid. The number of trainable parameters
for this model is equal to 417 921.

• CoCoQCNN: Same architecture replacing convolutional layers by quaternion
convolutional layers with the exception of the last layer. The first and last convo-
lutional layers had 16 quaternion-valued and 1 real-valued filter, respectively. The
number of trainable parameters for this model is equal to 105 921.

We trained both models a with learning rate equal to 1 × 10−4 and 5000 epochs with
a batch size equal to 1. Additionally, we utilized the AdamW optimization algorithm.
At the end of the training the obtained MSE losses for the CoCoCNN and CoCoCQNN
were 5.3815× 10−3 and 5.6179× 10−3, respectively.

(a)
(b)

Figure 14: Comparison of denoising results for (a) the complete image and (b) a random
patch: original image, CoCoCNN, CoCoQCNN, CocoNet, CoCoQNN, mean 3×3, mean
5 × 5, Gaussian 3 × 3, Gaussian 5 × 5, median 3 × 3 and median 5 × 5. The proposed
models remove the Speckle noise effectively and show defined borders. Filtering results
with mean, median and Gaussian filters do not remove all the speckle noise.

Conclusions

The proposed models are constructed from the CocoNet architecture by replacing the
fully connected layers by quaternion fully connected layers, convolutional layers and



(a) (b)

(c) (d)

Figure 15: Comparison of the difference between the original image and denoised image
(a) CocoNet (b) CoCoQNN (c) CoCoCNN and (d) CoCoQCNN.

quaternion convolutional layers resulting in the CoCoQNN, CoCoCNN and CoCoQCNN,
respectively. We conducted a series of experiments including reconstruction, upsampling
and denoising of images in order to test the CoCoQNN, CoCoCNN and CoCoQCNN
models.
The proposed CoCoCNN showed a competitive performance when compared to the
Coconet model in the OCT denoising task. Additionally, the proposed quaternion-valued
architectures have the advantage of requiring only 25% of trainable parameters when
compared to their real-valued counterparts while having a competitive performance.
The proposed models show some advantages regarding denoising of OCT images (effec-
tive Speckle noise removal and defined borders). Future work will involve classification
and segmentation of OCT images applying denoising with the proposed models as a
pre-processing step.
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