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Summary of the Abstract 

In this paper it will be shown that there is a bridge between hyperbolic and circular symmetry. This bridge, based 

on a hyperbolic rotation with Euclidean rotation parameter, reveals a hidden spacetime property - connection 

between future and past mass-shell - that is obscured when using a hyperbolic rotation parameter. The hyperbolic 

and circular symmetry are connected by a single Euclidean rotation parameter. A full circular rotation in the 

circular symmetry is one to one connected to a full hyperbolic rotation in the hyperbolic symmetry, connecting the 

future and past mass-shell (future and past part of the hyperbola). So, the bridge includes passing infinity with a 

single Euclidean rotation parameter. The spacetime spinor derived from this bridge is a solution of the Dirac 

equation. 

 

1. Introduction 

The six independent generators of the Lorentz group [1-4] divide in two parts: (a) three generators related to 

temporal (hyperbolic) rotations in the three temporal planes (𝓍𝑡, 𝓎𝑡 and 𝓏𝑡), and (b) three generators related to 

spatial (circular) rotations in the three spatial planes (𝓍𝓎, 𝓎𝓏 and 𝓏𝓍). Using three from the six generators is 

sufficient to cover all possible spacetime rotations. These three generators can be chosen as: one temporal generator 

(𝓏𝑡 plane) with a hyperbolic rotation angle 𝜑, and two spatial generators (𝓏𝓍, 𝓍𝓎 planes) with two Euclidean 

rotation angles {𝜃, 𝜙}. So, using a mixed set of generators (temporal and spatial) with a mixed set of rotation 

parameters (hyperbolic and Euclidean) {𝜑, 𝜃, 𝜙}. In section 2 it will be shown that the division in hyperbolic and 

Euclidean rotation parameters can be broken by the introduction of a temporal (hyperbolic) rotor with Euclidean 

rotation parameter 𝛽, utilizing an all-Euclidean set of rotation parameters {𝛽, 𝜃, 𝜙} [5].   

 

A physical connection to the Euclidean set of rotation parameters can be made by mapping Euclidean angle 𝛽 to 

relative speed 𝑣/𝑐, in the same way has done with hyperbolic angle 𝜑 (known as rapidity). As will be shown in 

section 3 the mapping of tanh(𝜑) = sin(𝛽) = 𝑣/𝑐 reveals a bridge between hyperbolic and circular symmetry 

{sec2(𝛽) − tan2(𝛽) = cos2(𝛽) + sin2(𝛽) = 1} that is using a single Euclidean rotation parameter 𝛽 ∈ [−𝜋

2
, 3𝜋

2
]. 

 

The all-Euclidean set of rotation parameters {𝛽, 𝜃, 𝜙} form the polar coordinates of a causal three-sphere 𝕊𝐶
3  (the 

light cone of a past event) with the squared spacetime proper distance 𝑠2 = 𝑐2𝑡2 − 𝓍2 − 𝓎2 − 𝓏2 as symmetrical 

condition. In section 4 it will be shown that all possible rotations in causal three-sphere 𝕊𝐶
3  can be obtained by a 

spacetime spinor with an all-Euclidean set of rotation parameters {𝛽, 𝜃, 𝜙}. This spacetime spinor is a solution of 

the Dirac equation and is composed of three irreducible rotors represented by the orthogonal spacetime bivectors 

{𝜎3, 𝕚𝜎2, 𝕚𝜎3} (one temporal 𝓏𝑡 plane orthogonal to two orthogonal spatial 𝓏𝓍, 𝓍𝓎 planes). 

 

The mathematical formalism used in this paper is based on the geometric algebra (GA) of spacetime (STA) as 

developed by David Hestenes [6-8]. Foundations of geometric algebra where jointly developed by Grassmann [9] 

and Clifford [10] in the late 19th century. There are many positive arguments for using GA, especially in physics 

[11-22]. However, the most decisive argument is the generalization of rotation which can be applied in any 

dimension, and which can act on any multi-vector by means of the so-called rotors [6, 7, 11-20, 23, 24]. Rotors 

are directly related to spinors and automatically integrate Lie algebra [25-27] by the GA bivectors.  

 

In spacetime algebra (STA) [6] a spacetime inertial frame (reference frame) {𝑡, 𝓍, 𝓎, 𝓏} is represented by a set of 

four orthogonal basis vectors 𝛾𝜇 = {𝛾0, 𝛾1, 𝛾2, 𝛾3}. The temporal basis vector 𝛾0 squares to one, while the spatial 

basis vectors 𝛾𝑘 square to minus one, i.e., a Minkowski space with a ℝ1,3 metric. The STA orthogonal basis vectors 

𝛾𝜇 satisfy the algebra of the Dirac gamma matrices.  
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2. Hyperbolic rotation 

For clarity in this section on hyperbolic rotation, we will focus only on the 𝑡𝓏-plane as spanned by the temporal 

and spatial basis vectors {𝛾0, 𝛾3}. A generalization follows from section 3 on. A hyperbolic unit-vector 𝑤(𝜑) in 

the 𝑡𝓏-plane as function of a hyperbolic angel 𝜑 is given by: 

 𝑤(𝜑) = cosh(𝜑)𝛾0 + sinh(𝜑)𝛾3       𝜑 ∈ [−∞, ∞]       𝑤2 = cosh2(𝜑) − sinh2(𝜑) = 1   (2.1) 

where 𝑤(𝜑) describes only the future side of an implicit hyperbolic symmetry: cosh
2

(𝜑) − sinh
2

(𝜑) = 1. The past 

side of the hyperbola is missing (Fig. 2.1a). However, a hyperbolic unit vector can also be described as function 

of a Euclidean angle 𝛽:  

 𝑝(𝛽) = sec(𝛽)𝛾0 + tan(𝛽)𝛾3             𝛽 ∈ [−
𝜋

2
, 3𝜋

2
]            𝑝2 = sec2(𝛽) − tan2(𝛽) = 1 (2.2) 

where 𝑝(𝛽) covers the full hyperbolic symmetry - both the future and the past side - of the hyperbolic symmetry: 

sec2(𝛽) − tan2
(𝛽) = 1. These two hyperbolic unit-vectors {𝑤(𝜑), 𝑝(𝛽)} are equal ±𝑤(𝜑) = 𝑝(𝛽) if the two 

different angle types {𝜑, 𝛽} have the following implicit relationship: 

 tanh(𝜑) = sin(𝛽)                                 𝜑 ∈ [−∞, ∞ →  ∞, −∞] ↔ 𝛽 ∈ [−
𝜋

2
,

𝜋

2
 →  

𝜋

2
,

3𝜋

2
]         (2.3) 

The hyperbolic angle interval 𝜑 ∈ [−∞, ∞ →  ∞, −∞] is bound by infinities, while angle 𝛽 ∈ [−
𝜋
2, 3𝜋

2
] has an 

interval that is periodic and that provides a full hyperbolic symmetry (Fig. 2.1b). By substitution of the 

Gudermannian function [28] 𝜑 = 𝑡𝑎𝑛ℎ−1(𝑠𝑖𝑛(𝛽)) (2.3) in 𝑤(𝜑), the two-hyperbola will become equal: 

 

+𝑤 (tanh−1(sin(𝛽))) = 𝑝(𝛽) = sec(𝛽)𝛾0 + tan(𝛽)𝛾3     𝛽 ∈ [−
𝜋
2, 𝜋

2
]     

−𝑤 (tanh−1(𝑠𝑖𝑛(𝛽))) = 𝑝(𝛽) = sec(𝛽)𝛾0 + tan(𝛽)𝛾3      𝛽 ∈ [𝜋
2, 3𝜋

2
]     

(2.4) 

Therefore, 𝑝(𝛽) is under the implicit relationship tanh(𝜑) = sin(𝛽) (2.3) a hyperbolic unit-vector ±𝑤(𝜑) as 

function of Euclidean angle 𝛽 ∈ [−
𝜋
2, 3𝜋

2
]  (Fig. 2.1b). The next step involves formulating a mixed type of rotor that 

combines hyperbolic rotation with a Euclidean rotation angle 𝛽. 

 

Fig. 2.1: (a) The hyperbolic unit-vector +𝑤(𝜑); 𝜑 ∈ [−∞, ∞] covers only half of the hyperbolic symmetry: 

cosh2(𝜑) − sinh2(𝜑) = 1. (b) The hyperbolic unit-vector 𝑝(𝛽);  𝛽 ∈ [−
𝜋
2, 3𝜋

2
] covers the full hyperbolic 

symmetry: sec2(𝛽) − tan2(𝛽) = 1. In (a) the future and past hyperbola are disconnected (missing part of 

the symmetry), whereas in (b) there is a full hyperbolic symmetry sec2(𝛽) − tan2(𝛽) = 1 ↦ 𝛽 ∈ [−
𝜋
2, 3𝜋

2
] 

with a connection between the future and past hyperbola. 

𝛽 ∈ [−
𝜋

2
, 3𝜋

2
] 

𝑡𝑎𝑛ℎ(𝜑) = 𝑠𝑖𝑛(𝛽) 

𝜑 ∈ [−∞, ∞, ∞, −∞] 

𝛽 ∈ [−
𝜋

2
,

𝜋

2
,

𝜋

2
,  

3𝜋

2
]  
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A STA rotor 𝑅 = 𝜌𝑆𝑅 ∈ (〈𝑀〉0 + 〈𝑀〉2+〈𝑀〉4) is unitary 𝑅�̃� = 1 and consists of a scalar density 𝜌 times a spinor 

𝑆𝑅 [11]. Where spinor 𝑆𝑅 - part of the 𝑆𝑇𝐴 even subalgebra - provides a rotation that includes scaling. The scalar 

density 𝜌 is determined by taking the inverse magnitude of the spinor part, ensuring the unitarity of the rotor 𝑅:  

 𝑅 = 𝜌𝑆𝑅     𝑅�̃� = 1  ↦   𝜌 = (𝑆𝑅�̃�𝑅)
−1/2

               Unitarity of 𝑅�̃� = 1 defines the scalar density 𝜌 (2.5) 

An irreducible rotor 𝑅 ∈ (〈𝑀〉0 + 〈𝑀〉2) is unitary 𝑅�̃� = 1 and consists of a scalar 〈𝑀〉0 plus a bivector 〈𝑀〉2. 

Where 〈𝑀〉2 can be either a temporal 𝜎𝑗 or spatial 𝕚𝜎𝑗 bivector. The calculation of a irreducible rotor can be realized 

by taking the square root of the geometric product (GP) of two unit-vectors that span a bivector plane [29]. Hence, 

an irreducible hyperbolic rotor for the {𝛾3𝛾0 = 𝜎3 → 𝑧𝑡-plane} can be calculated from the square root of the GP 

of hyperbolic unit vector 𝑤(𝜑) (2.1) with temporal basis vector 𝛾0: 

 
𝑅(𝜑) = √𝑤𝛾0 = √cosh(𝜑) + sinh(𝜑)𝜎3 = √𝑒𝜎3 𝜑 = 𝑒𝜎3 𝜑/2     𝜑 ∈ [−∞, ∞]    (𝜎3)2 = 1 

𝑅(𝜑) = 𝑒𝜎3 𝜑/2 = cosh(𝜑 2⁄ ) + sinh(𝜑 2⁄ )𝜎3       𝑀′ = 𝑅𝑀�̃�       𝑅�̃� = 1       �̃� = 𝑒−𝜎3 𝜑/2 

(2.6) 

where 𝑅(𝜑) is an irreducible hyperbolic rotor with temporal bivector (generator) 𝜎3. The type of a rotor is defined 

by the bivector. A hyperbolic rotor has a positive squared bivector (𝜎𝑗)
2

= +1  whereas a Euclidean rotor has a 

negative squared bivector (𝕚𝜎𝑗)
2

= −1. Substitution of the Gudermannian function [28] 𝜑 = tanh−1(sin(𝛽)) 

(2.3) in the irreducible hyperbolic rotor 𝑅(𝜑) (2.6) yields a mixed type of rotor: 

 

𝑅 (tanh−1(sin(𝛽))) = 𝐿𝑧(𝛽) = 𝜌𝐿𝑢1(𝛽)            𝐿𝑧�̃�𝑧 = 1   ↦    𝜌 = (𝐿𝑢1�̃�𝑢1)
−1/2

= √sec(𝛽)   

𝐿𝑧(𝛽) = √sec(𝛽)(cos(𝛽 2⁄ ) + sin(𝛽 2⁄ )𝜎3)      𝐿𝑢1(𝛽) = cos(𝛽 2⁄ ) + sin(𝛽 2⁄ )𝜎3           

(2.7) 

where 𝐿𝑧(𝛽) = 𝜌𝐿𝑢1(𝛽) is an irreducible hyperbolic rotor ((𝜎3)2 = +1) with a Euclidean rotation parameter 𝛽 

and 𝐿𝑢1(𝛽) is a temporal spinor with typical spinor characteristics: picking up a minus sign at 𝐿𝑢1(𝛽 + 2𝜋) =

−𝐿𝑢1(𝛽) and remaining unchanged at 𝐿𝑢1(𝛽 + 4𝜋) = 𝐿𝑢1(𝛽). Note that temporal spinor 𝐿𝑢1(𝛽) with a squared 

bivector (𝜎𝑗)
2

= +1 is not a Euler relationship 𝐿𝑢1(𝛽) ≠ exp(𝜎3 𝛽/2). 
 

3. Spacetime symmetries 

A connection to spacetime symmetries can be made by mapping relative speed 𝑣/𝑐 to Euclidean rotation angle 𝛽, 

similar to how relative speed 𝑣/𝑐 is mapped to hyperbolic angle 𝜑 (known as rapidity): 

 

tanh(𝜑) = sin(𝛽)             ↦   tanh(𝜑) = sin(𝛽) = ± 𝑣 𝑐⁄              Mapping to relative speed  

𝑣

𝑐
∈ [−1, +1]                       ↔   𝜑 ∈ [−∞, ∞]                                            One to one and part of symmetry 

𝑣

𝑐
∈ [−1, +1 → +1, −1]   ↔   𝛽 ∈ [−

𝜋

2
,

𝜋

2
→

𝜋

2
 
3𝜋

2
]                            Periodic and full symmetry 

(3.1) 

Hyperbolic angle 𝜑 is non-periodic and covers only a part of the hyperbolic symmetry, whereas Euclidean angle 

𝛽 is periodic and covers the full hyperbolic symmetry (Fig. 2.1b). By mapping tanh(𝜑) = sin(𝛽) = ±𝑣/𝑐, four 

trigonometric relativistic proportionality factors emerge, revealing a bridge between hyperbolic and circular 

symmetry: 

 

sin(𝛽) = ± 𝑣 𝑐⁄                      cos(𝛽) = ±√1 − (𝑣 𝑐⁄ )2  ↦   sin2(𝛽) + cos2(𝛽) = 1  𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 

sec(𝛽) =
1

±√1 − (𝑣 𝑐⁄ )2
    tan(𝛽) =

± 𝑣 𝑐⁄

±√1 − (𝑣 𝑐⁄ )2
 ↦   sec2(𝛽) − tan2(𝛽) = 1  𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 

(3.2) 

So, this mapping tanh(𝜑) = sin(𝛽) = ±𝑣/𝑐 creates a bridge between hyperbolic and circular symmetry 

{sec2(𝛽) − tan2(𝛽) = cos2(𝛽) + sin2(𝛽) = 1} via a single Euclidean rotation parameter 𝛽 ∈ [−
𝜋
2, 3𝜋

2
]. This 
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bridge reveals a connection between the future and past mass-shell that is obscured when using a hyperbolic angle. 

So, a rotation specified by rotation parameter 𝛽 in the circular symmetry cos2(𝛽) + sin2(𝛽) = 1 has a one to one 

connection to a rotation in the hyperbolic symmetry sec2(𝛽) − tan2(𝛽) = 1. Where, the circular symmetry is 

related to the causality relationship 𝑠2 = 𝑐2𝑡2 − �⃗�2, while the hyperbolic symmetry is related to the energy-

momentum relationship 𝑚0
2𝑐4 = 𝐸2 − 𝑝2𝑐2 (mass-shell). So, the future and past mass-shell (future and past 

hyperbola) are connected in terms of their full hyperbolic symmetry, revealing a hidden spacetime property. 

 

4. Spacetime rotor and spinor 

Each position 𝑞 in 3D space can be represented by three cartesian coordinates {𝓍, 𝓎, 𝓏} or by two polar coordinates 

{𝜃, 𝜙} connected to a symmetrical 3D condition 𝑟2 = 𝓍2 + 𝓎2 + 𝓏2, an invariant squared spatial distance. For 

spacetime each event 𝑞 can be represented by four cartesian coordinates {𝑐𝑡, 𝓍, 𝓎, 𝓏}. However, by using the 

Euclidean Lorentz group rotation parameters {𝛽, 𝜃, 𝜙} (section 2), each event 𝑞 can also be represented by three 

polar coordinates {𝛽, 𝜃, 𝜙} (Fig. 4.1) and the condition of an invariant squared spacetime proper distance 

(𝑠2 = 𝑐2𝑡2 − 𝓍2 − 𝓎2 − 𝓏2). 

 

Fig. 4.1: All possible spacetime event vectors 𝑞(𝛽, 𝜃, 𝜙) pointing to the surface of causality volume 𝑉𝑐  together with 

all possible spacetime momentum vectors 𝑝(𝛽, 𝜃, 𝜙) pointing to the future and past mass-shell in a 2D 

representation. This 4D object in ℝ1,3 can be depicted in a 2D plane because all spatial unit vector 𝑒3(𝜃, 𝜙) 

(spanning two-sphere 𝕊0,2) are orthogonal to temporal basis vector 𝛾0. 

The Lorentz group consist of six independent generators, represented by the six spacetime bivectors {𝜎𝑘 , 𝕚𝜎𝑘}. To 

perform all possible spacetime rotations three of the six bivectors are needed. They can be chosen as: (a) temporal 

bivector 𝜎3 (𝓏𝑡 plane) and (b) two spatial bivectors {𝕚𝜎2, 𝕚𝜎3} (𝓏𝓍, 𝓍𝓎  plane) [18, 24]. From this set of three 

orthogonal planes represented by the spacetime bivectors {𝜎3, 𝕚𝜎2, 𝕚𝜎3}, three unitary irreducible rotors 

{𝐿𝑧(𝛽), 𝒮𝜃(𝜃), 𝒮𝜙(𝜙)} can be calculated [29] (2.6) (2.7): 

 

𝐿𝑧(𝛽) = √sec(𝛽) (cos (
𝛽

2
) + sin (

𝛽

2
) 𝜎3) Temporal rotor : 𝜎3 ↦ 𝓏𝑡 plane   (𝜎3)2 = +1  

𝒮𝜃(𝜃) = cos (
𝜃

2
) − sin (

𝜃

2
) 𝕚𝜎2  Spatial rotor : 𝕚𝜎2 ↦ 𝓏𝓍 plane   (𝕚𝜎2)2 = −1 

𝒮𝜙(𝜙) = cos (
𝜙

2
) − sin (

𝜙

2
) 𝕚𝜎3  Spatial rotor : 𝕚𝜎3 ↦ 𝓍𝓎 plane  (𝕚𝜎3)2 = −1 

(4.1) 

where 𝐿𝑧(𝛽) = √sec(𝛽)𝐿𝑢1(𝛽) is an unitary irreducible temporal rotor (boost in the z-direction) with scalar 

density √sec(𝛽) times temporal spinor 𝐿𝑢1(𝛽) (2.7) and {𝒮𝜃(𝜃), 𝒮𝜙(𝜙)} are two unitary irreducible spatial rotors.  

 

Momentum vector 𝑝: 

𝑝 = 𝑅1𝛾0�̃�1  on mass-shell 

𝑝 = sec(𝛽)𝛾0 + tan(𝛽) 𝑒3(𝜃, 𝜙) 

𝑝2 = sec2(𝛽) − tan2(𝛽) = 1  

 

Event vector 𝑞: 

𝑞 = 𝑈1𝛾0�̃�1  on area of causality 𝑉𝑐  

𝑞 = 𝛾0 + sin(𝛽) 𝑒3(𝜃, 𝜙)  

𝑞2 = 𝑠2 = cos2(𝛽) = 1 − (𝑣 𝑐⁄ )2 

 

Spacetime rotor 𝑅1: 

𝑅1(𝛽, 𝜃, 𝜙) = 𝜂1𝑈1(𝛽, 𝜃, 𝜙) 

𝑅1�̃�1 = 1 

 

Spacetime spinor 𝑈1: 

𝑈1(𝛽, 𝜃, 𝜙) = 𝑆1(𝜃, 𝜙)𝐿𝑢1(𝛽) 

𝑈1�̃�1 = cos(𝛽) = ±√1 − (𝑣 𝑐⁄ )2 

 

Scalar density 𝜂1: 

𝜂1 = (𝑈1�̃�1)
−1/2

= √sec(𝛽) 

𝑅1 = √sec(𝛽) 𝑈1 
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The GP of the two irreducible spatial rotors {𝒮𝜙, 𝒮𝜃} connected to the orthogonal spatial bivectors {𝕚𝜎3, 𝕚𝜎2}, covers 

all possible spatial rotations in a 3D two-sphere 𝕊0,2: 

 

𝑆1(𝜃, 𝜙) = 𝒮𝜙(𝜙)𝒮𝜃(𝜃) = 𝜆1𝑊1 = (𝑐𝑜𝑠 (
𝜙

2
) − 𝑠𝑖𝑛 (

𝜙

2
) 𝕚𝜎3) (𝑐𝑜𝑠 (

𝜃

2
) − 𝑠𝑖𝑛 (

𝜃

2
) 𝕚𝜎2)    

𝜆1 = (𝑊1�̃�1)
−1/2

= 1       𝕊0,2 = {𝑒𝑘 = 𝑆1𝛾𝑘�̃�1 ∈ 𝑅0,3: 𝑒𝑘
2 = −1}       𝑒𝑘. 𝑒𝑗 = 𝑑𝑖𝑎𝑔(−1, −1, −1) 

(4.2) 

Spatial rotor/spinor 𝑆1(𝜃, 𝜙) is equal to a complex Pauli spinor [11, 16, 30, 31].  

 

The GP of spatial spinor 𝑆1(𝜃, 𝜙) with irreducible temporal rotor 𝐿𝑧(𝛽) (4.1), yields a spacetime rotor 

𝑅1(𝛽, 𝜃, 𝜙) = 𝑆1(𝜃, 𝜙)𝐿𝑧(𝛽):    

 𝑅1 = √sec(𝛽)𝑆1(𝜃, 𝜙) (cos (
𝛽

2
) + sin (

𝛽

2
) 𝜎3)          𝑅1�̃�1 = +1  (4.3) 

Spacetime rotor 𝑅1(𝛽, 𝜃, 𝜙) is characterized by a hyperbolic symmetry and covers all possible momentum vector 

𝑝 = 𝑅1𝛾0�̃�1 rotations. These rotations are represented by the light cone of a future and past event and are bound by 

the future and past mass-shell (𝑝2 = +1) (Fig. 4.1), i.e., a hyperbolic three-sphere 𝕊𝐻
3 . Spacetime rotor 𝑅1 = 𝜂1𝑈1 

consist of a scalar density 𝜂1 = √𝑠𝑒𝑐(𝛽) times a spacetime spinor 𝑈1 = 𝑆1𝐿𝑢1, which is the GP of a spatial spinor 

𝑆1 times temporal spinor 𝐿𝑢1 (2.7):  

 𝑈1(𝛽, 𝜃, 𝜙) = 𝑆1(𝜃, 𝜙) (cos (
𝛽

2
) + sin (

𝛽

2
) 𝜎3)           𝑈1𝑈1 = cos(𝛽) = ±√1 − (𝑣 𝑐⁄ )2  (4.4) 

Spacetime spinor 𝑈1(𝛽, 𝜃, 𝜙) is characterized by a circular symmetry and covers all possible event vector rotations 

𝑞 = 𝑈1𝛾0�̃�1. These rotations are represented by the light cone of a past event and are bound by the proper length 

of event vector 𝑞 (𝑞2 = cos2(𝛽)) (Fig. 4.1), i.e., a causal three-sphere 𝕊𝐶
3  covering a causality volume. Although 

𝑈1 = 𝑆1𝐿𝑢1 is STA even (〈𝑀〉0 + 〈𝑀〉2+〈𝑀〉4), the intensity 𝑈1𝑈1 = cos(𝛽) = ±√1 − (𝑣 𝑐⁄ )2 is a scalar value. 

The pseudoscalar part 〈𝑀〉4 is zero because the spatial spinor is wrapped inside the temporal spinor 𝑈1 =

cos (
𝛽

2
) 𝑆1 + sin (

𝛽

2
) 𝑆1𝜎3. So, the demand for unitarity of 𝑅1�̃�1 gives a scalar density factor 𝜂1 = √sec(𝛽). 

 

Spacetime spinor 𝑈1 = 𝑆1𝐿𝑢1 is a solution of the Dirac equation. Hence, all rotations 𝑞 = 𝑈1𝛾0�̃�1 spanning causal 

three-sphere 𝕊𝐶
3  yield the same result as solving the Dirac equation with complex quantum mechanical eigenvalue 

eigenvector matrix equations. Causal three-sphere 𝕊𝐶
3  is a circular symmetry related geometrical object that is 

bound by the light cone of a past event and the proper length of event vectors 𝑞, i.e., the causality volume of the 

light cone of a past event (Fig. 4.1). Whereas spacetime rotor 𝑅1 ↦ 𝑝 = 𝑅1𝛾0�̃�1 is spanning a hyperbolic three-

sphere 𝕊𝐻
3 , which is a hyperbolic symmetry related geometrical object that is bound by the light cone of a future 

and past event and the future and past mass-shell (Fig. 4.1). 

 

5. Discussion 

Introducing a irreducible hyperbolic rotor 𝐿𝑧(𝛽) (2.7) (4.1) with Euclidean rotation parameter 𝛽 eliminates the 

division between hyperbolic and Euclidean rotation parameters in the Lorentz group, and this allows the utilization 

of an all Euclidean set of rotation parameters {𝛽, 𝜃, 𝜙}. Hyperbolic rotor 𝐿𝑧(𝛽) = 𝜌𝐿𝑢1(𝛽) (4.1) (boost in the z-

direction) combines a scalar density 𝜌 and a temporal spinor 𝐿𝑢1(𝛽) (2.7). 

 

A connection to spacetime symmetries can be made by mapping relative speed 𝑣/𝑐 to Euclidean rotation angle 𝛽. 

This mapping tanh(𝜑) = sin(𝛽) = ±𝑣/𝑐 (3.1) reveals a bridge between hyperbolic and circular symmetry 

{sec2(𝛽) − tan2(𝛽) = cos2(𝛽) + sin2(𝛽) = 1} with a single Euclidean rotation parameter 𝛽 ∈ [−
𝜋
2
, 3𝜋

2
]. Hence, a 

full 2𝜋 Euclidean rotation in the circular symmetry cos2(𝛽) + sin2(𝛽) = 1 has a direct connection to a full 

hyperbolic rotation in the hyperbolic symmetry sec2(𝛽) − tan2(𝛽) = 1. The hyperbolic sec2(𝛽) − tan2(𝛽) = 1 

and circular symmetry cos2(𝛽) + sin2(𝛽) = 1 cannot exist in the same bivector plane. So, to perform all possible 

spacetime rotations the dimensionality of the bridge must increase to ℝ1,3 (4D Minkowski space). Causal three-
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sphere 𝕊𝐶
3  in ℝ1,3 and hyperbolic three-sphere 𝕊𝐻

3  in ℝ1,3 are depicted in a 2D plane because all spatial unit vectors 

𝑒3(𝜃, 𝜙) ∈ 𝕊0,2 ↦ (𝑒3)2 = −1 are orthogonal to temporal basis vector 𝛾0 (Fig. 4.1). 

 

To perform all possible Lorentz group spacetime rotations, a selection of three bivectors is necessary. These can 

be chosen as: (a) temporal bivector 𝜎3 (𝓏𝑡 plane) and (b) two spatial bivectors {𝕚𝜎2, 𝕚𝜎3} (𝓏𝓍, 𝓍𝓎  plane) [18, 24]. 

Using these three orthogonal planes represented by the spacetime bivectors {𝜎3, 𝕚𝜎2, 𝕚𝜎3}, three unitary irreducible 

rotors {𝐿𝑧(𝛽), 𝒮𝜃(𝜃), 𝒮𝜙(𝜙)} can be calculated [29] (4.1). This set of irreducible rotors enables the composition of 

a spatial rotor 𝑆1(𝜃, 𝜙) (4.2), a spacetime rotor 𝑅1(𝛽, 𝜃, 𝜙) (4.3) and a spacetime spinor 𝑈1(𝛽, 𝜃, 𝜙) (4.4). 

 

Spatial rotor 𝑆1(𝜃, 𝜙) (4.2) allows to obtain all possible spatial rotations in two-sphere 𝕊0,2 and is equal to a 

complex Pauli spinor [11, 16, 30, 31]. Spacetime rotor 𝑅1(𝛽, 𝜃, 𝜙) (4.3) allows to obtain all possible momentum 

vector 𝑝 = 𝑅1𝛾0�̃�1 rotations, which are characterized by a hyperbolic symmetry and point to the future and past 

mass-shell (Fig. 4.1). Whereas spacetime spinor 𝑈1(𝛽, 𝜃, 𝜙) (4.4) allows to obtain all possible causal event vector 

𝑞 = 𝑈1𝛾0�̃�1 rotations, which are characterized by circular symmetry and point at the surface of causality volume 

𝑉𝑐 (Fig. 4.1). The shape of causality-volume 𝑉𝑐 is a causal three-sphere 𝕊𝐶
3  (Fig. 4.1). Spacetime spinor 𝑈1(𝛽, 𝜃, 𝜙) 

(4.4) - related to all possible causal rotations in three-sphere 𝕊𝐶
3  - is a solution of the Dirac equation. 
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