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In acoustic and electromagnetic phenomena, the concept of gauge freedom plays a
pivotal role in understanding the underlying physics and its observable effects. Our
recently published work extends traditional scalar and vector potential representations
of measurable fields to multivector-valued gauge potentials, with each representation
grade naturally coupling to distinct types of physical source. Notably, combining the
possible potential representations into multi-graded representations further constrains
the traditional gauge freedoms of both theories. This talk explores the physical relevance
of each of the allowed potential fields in each theory and discusses the interplay between
representational and gauge freedoms [1, 2].

In electromagnetism, the electromagnetic field F is traditionally represented by a
dynamical vector potential A that must be varied in the Lagrangian to produce the
equations of motion. This traditional representation of F by the (electric) vector poten-
tial A has the form,

F = ∇∧ A. (1)

Gauge symmetries are precisely those transformations of the potential representation A
that preserve the measurable field F . The form of the representation as a curl yields the
familiar U(1) gauge freedom of the spacetime vector potential

A 7→ A+∇ϕ, (2)

because the curl of a curl vanishes,

∇∧ (∇ϕ) = 0. (3)

However, Equation 1 is just one possible representation of an electromagnetic field
F . Another possible choice of representation is a magnetic pseudovector potential BI,
such that

F = ∇ · (BI), (4)

which remains invariant under

BI 7→ BI +∇ϕI. (5)

One’s choice of representation, which is distinct from choice of particular gauge, has
significant bearing on the physics it can describe. As a simple example, the electric
vector potential can couple only to electric charges, while the magnetic vector potential
can couple only to magnetic charges.



An important consequence of this multiplicity of distinct representations is that the
structural symmetries of a system in the absence of electric charge are distinct from those
in which charge is present. Specifically, helicity is a conserved quantity associated with
a dual symmetry that exchanges the electric and magnetic potential representations—a
vacuum symmetry which the traditional source-free electromagnetic Lagrangian does
not possess. That is,

Lem =
〈FF̃ 〉
2

(6)

fails to be invariant under

F 7→ FeIβ, (7)

which precludes helicity from being obtained as a Noether current of the theory.
A second and related role that representation plays is in its effect on the conserved

stress-energy and angular momentum tensors of the theory. The spin angular momentum
predicted by the traditional Lagrangian 6 under the representation F = ∇∧ A is

S⃗em = ϵA⃗× E⃗, (8)

while under the magnetic potential representation F = ∇ · (BI), the same Lagrangian
yields instead

S⃗em = µB⃗ × H⃗, (9)

highlighting the representation dependence of spin, which leads to its gauge dependence.
This asymmetry between electric and magnetic field contributions to spin points to an
asymmetry in representation.

Recent progress in local spin angular momentum density measurements involving
observation of the backaction of local force and torque on small probe particles in opti-
cal fields far from sources, e.g. Refs. [3, 4, 5, 6], require descriptions that respect dual
symmetry to match experimental observations to theoretical predictions. These mea-
surements of spin density include contributions from both electric and magnetic fields
[7, 8, 9, 10], taking the form

S⃗em =
1

2

(
ϵA⃗e × E⃗ + µA⃗m × H⃗

)
. (10)

The representation we proposed to solve these issues is given by[1, 2]

Lem =
〈∇zem∇z̃em〉

2
(11)

where zem = Ae +AmI is an odd multivector-valued potential with electric (vector) and
magnetic (trivector) parts, which transform under duality transformations as zem 7→
zeme

Iβ, yielding the equations of motion

∇2zem = 0. (12)

Importantly, zem is the quantity that transforms under duality transformations, rather
than F , to ensure the Lagrangian is invariant and obtain the helicity as a Noether



current. The full geometric structure additionally permits scalar and pseudoscalar parts
of the measurable field ψ = ∇zem = We/c

2 + F +WmI/c, where We = c2∇ · Ae = 〈ψ〉0
and IWm = c∇∧(AmI) = 〈ψ〉4 play the role of power per unit charge, which make direct
contributions to the energy of the stress tensor [2].

Under this dual symmetric representation, the theory exhibits a distinct gauge sym-
metries. That is, transformations preserving ψ are more restrictive, consisting strictly
of monogenic odd multivector fields

zem 7→ zem + z (13)

where ∇z = 0. This representation respects dual symmetry of vacuum and predicts the
correct form of spin angular momentum, Equation 10, as measured in the laboratory.

Parallel developments have been made experimentally and theoretically in acoustic
field theory. With recent reports concerning the observation of acoustic spin [11, 12],
standard acoustic theory required corrections. Acoustics is ordinarily considered as a
scalar field theory with Lagrangian of the form

Lac =
〈p2〉
2

(14)

with pressure P and velocity v⃗ fields given by a gradient of a scalar field ϕ

p = (P/c+ ρv⃗)γ0 = ∇ϕ = γ0

(
1

c
∂t − ∇⃗

)
ϕ (15)

combined into a single four-vector in a spacetime algebra, where c is the constant speed
of sound and the Lorentz structure reflects the symmetries of the acoustic wave equation

∇2ϕ = 0. (16)

However, Lagrangian 14 predicts zero spin:

S⃗ac = 0. (17)

Analogous to dual symmetry in the absence of charge in electromagnetism, the pres-
ence of directional sources, such as the speakers used in the spin experiments, alters
the structural symmetries of the theory. The correct spin angular momentum was first
calculated from microscopic arguments [11, 13, 14] to match experimental results. Field
theoretic justification followed, as the appropriate description for the experimental con-
ditions under which spin was observed required consideration of a larger class of potential
representation of physical pressure and velocity fields [1, 2]. Under a timelike bivector
potential representation

p = (P/c+ ρv⃗)γ0 = −ρc∇ · x⃗ = (−ρc∇⃗ · x⃗+ ρ∂tx⃗)γ0, (18)

the Lagrangian above predicts a nonzero spin angular momentum density,

S⃗ac = x⃗× (ρv⃗), (19)

where the bivector x⃗ represents microscopic displacements. Notably, this prediction is
twice the experimentally measured value. It is the average of the two representation
predictions that correctly yields the measured result.



A geometric completion of the theory is obtained from the representation

Lac =
〈∇ψac∇ψ̃ac〉

2
(20)

where ψac = ϕ+ρcx⃗+IJ⃗+Iϕw unifies the standard scalar ϕ and displacement potential x⃗
into a full even multivector, with the additional inclusion of a spacelike bivector potential
IJ⃗ representing an intrinsic angular momentum density of the field (analogous to Ae

as momentum per unit charge), as well as a pseudoscalar potential ϕw. Under the
introduction of a full spinor potential, the possible measurable fields extends to include
a pseudovector part wI,

zac = −∇ψac = p+ wI, (21)

which has components playing rotational analogs of the components of p, including
rotational velocity and rotational work density. Interestingly, zac has the same odd-
graded structure as the dual symmetric electromagnetic potential zem.

In the electromagnetic case, the benefits of a multivector representation were limited
to the effects on fields and Noether currents, particularly in vacuum scenarios that obey
dual symmetry. In the presence of sources, however, the geometrically complete theory
admits magnetic charges, which has less utility due to the apparent lack of magnetic
monopoles. In the acoustic case, the geometric completion of the representation admits
a larger array of physically realizable sources, including scalar particle-density sources
ν that couple to the scalar representation ϕ in the standard scalar theory, directional
sources F⃗ like speakers which couple to the displacement bivector potential x⃗, vorticity
sources Ω⃗I like a spinning propeller that couple to the angular momentum potential J⃗I,
and pseudoscalar volume sources νI,

−∇2ψac = ν + F⃗ /c+ ρΩ⃗I + νwI. (22)

Importantly, the gauge fields and symmetries have clear microscopic interpretations in
the acoustic setting, allowing for the transport of intuition from acoustics to electromag-
netism, where we lack such a concrete microscopic picture.

The geometrical completions of the potentials, fields, and sources in both electro-
magnetism and acoustics provides a setting for a rich investigation into the interplay
of geometry, representation, and symmetry in field theories—particularly in considera-
tion of the conserved quantities predicted by a Lagrangian and their realization in the
laboratory. An explicit comparison of key quantities in the two theories, and their ge-
ometrically completed representations, is presented in Table 1. We anticipate that the
insights we have gained from analyzing these electromagnetic and acoustic examples will
affect our understanding of field theories more broadly.



Electromagnetism Acoustics

Potential fields zem = λ−ae + λ+amI ψac = λ− ϕ+ λ+M/3 + λ4 ϕwI

Measurable fields ψem = ∇zem = We/c
2 + F +WmI/c zac = −∇ψac = p+ wI

Symmetric Lagrangian Lem = c
〈∇zem∇z̃em〉

2
Lac = c

〈∇ψac∇ψ̃ac〉
2

Sources j = je + jmI/c ψN = ν + F⃗ /c+ ρΩ⃗I + νwI

Equation of motion ∇ψem = ∇2zem = µj ∇zac = −∇2ψac = −ψN

Canonical Momentum Tem(n) = ∇̇〈żem(∇zemn+ nzem∇)〉
−nLem

Tac(n) = ∇̇〈ψ̇ac(∇ψacn+ nψac∇)〉
−nLac

Canonical Spin Sem(n) = [zem,∇zemn+ nzem∇] Sac(n) = [ψac,∇ψacn+ nψac∇]

Table 1: Summary of electromagnetic and acoustic structure, including all geometrically admissible fields and
sources. Even in the absence of magnetic charge sources jmI in electromagnetism or rotational trivector fields
wI in acoustics, the geometrical completion provides significant insight and utility in its account of fields in the
absence of sources — particularly in consideration of the measurable potential-dependent canonical spin and
momentum. In acoustics, the primary advantage of this completion is a full account of all types of sources,
while in electromagnetism, the primary advantage of this completion is the correct account of canonical spin
and momentum density in the dual symmetric, source-free regime. This complementarity provides opportunity
for cross-pollination between the two theories and makes use of the full geometry of spacetime and the Clifford
algebraic structure.
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