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Summary of the Abstract

The snake robot is a mechanism composed of links equipped with passive wheels connected
by actuated joints whose movement is based on the locomotion of biological snakes. Pla-
nar control models have been obtained before, usually by means of differential geometry
or geometric algebra. We present an extension of the CGA planar model to the full 3D
case using CGA. A quick introduction to the 2D CGA model is given. A planar model
is created using 3D CGA, whose geometry is then exploited in order to formulate the
full 3D model. Two parametrisations of the joints’ rotations as rotors are proposed and
then utilised in the model’s construction. The resulting motion based on the models is
visualised.

2D CGA Model

The 2D CGA is the Clifford algebra Cl3,1 with the basis {e1, e2, e∞, e0} along with the
embedding of a point (x, y) ∈ R2 given by

(x, y) 7→ xe1 + ye2 +
1

2
(x2 + y2)e∞ + e0.

The snake robot consists of a series of links connected by actuated joints, usually revolute
joints. Denote the configuration space of the mechanism as the manifoldQ ⊂ (R2×(S1)3)
with point q = [x, y, θ, ϕ1, ϕ2] representing a configuration of the mechanism at the time
t.
We can represent euclidean transformations in CGA as exponentials of bivectors. The
rotation by angle α about axis L is given by the rotor R:

R = e−
1
2
αL,

a translation in the direction of vector t = t1e1 + t2e2 is represented by the translator
T :

T = e−
1
2

te∞ .

We represent a general transformation M defined by bivector L = L(q(t)) (depending
on some of the state variables in order to parametrise the transformation) as

M = e−
1
2
L(q(t)),



and thus the reverse of M is M̃ = e
1
2
L(q(t)).

Let us now quickly go through the derivation of the control model as shown in [2].
The initial configuration of the i–th link of the mechanism is represented by point pairs
P 0
i = Ai ∧ Ai+1, where Ai are the edges of the links, see Figure 1.
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Figure 1: A three-link snake robot.

A general configuration is then represented as a sequence of transformations applied to
the initial configuration. Then the configuration of the i–th link at time t is given by

Pi =
1∏

j=k

MjP
0
i

k∏
j=1

M̃j, (1)

where Mj is the j–th transformation.
To obtain the differential kinematics, we need to express the velocities of the state
variables defining the mechanism’s configuration - in the 2D case that is ẋ, ẏ, θ̇, ϕ̇1 and
ϕ̇2.
The constraint imposed on snake robots is the non-slip nonholonomic constraint, which
limits the velocity of the i–th link to the direction defined by the point pair Pi. In terms
of CGA, we can express this constraint as

ṗi ∧ Pi ∧ e∞ = 0 (2)

where ṗi = ẋe1 + ẏe2 + że3 is the velocity of the i–th point pair’s centre pi. The centre
pi is obtained by the decomposition

pi = Pie∞P̃i. (3)

Taking the derivative w.r.t. time of Equation (3), we get

ṗi = ∂t(Pie∞P̃i) = Ṗie∞P̃i + Pie∞
˙̃Pi. (4)

Assuming the state of Pi is represented by k transformations, expressing Ṗi we arrive at

Ṗi = ∂t(
1∏

j=k

MjP
0
i

k∏
j=1

M̃j). (5)

The derivative of the general transformation M is then given by

∂tM = −1

2
(∂tL(q(t)))e

− 1
2
L(q(t)) = −1

2
L̇(q(t))M



and thus the derivative of the reverse is ∂tM̃ = 1
2
L̇M̃ . By the chain rule

L̇ = ∂tL(q(t)) =
n∑

i=1

(∂qiL)q̇i.

Denoting ∂tM = Ṁ and expanding Equation (5), we get

Ṗi = ∂t(
1∏

j=k

MjP
0
i

k∏
j=1

M̃j) =

=
k∑

j=1

[Pi · L̇j],

(6)

utilising Lemma 1 from [3] in the last step (see [4] for the calculations). Substituting
Equation (6) into Equation (4) we can write ṗi in the form of

ṗi =
k∑

j=1

[pi · L̇j]. (7)

Finally, substituting Equation (1) and Equation (7) into the nonholonomic condition
Equation (2), we arrive at set of three differential equations with multivector coefficients:(

θ̇ − 2ẋ sin (θ) + 2ẏ cos (θ)
)
I = 0,(

ϕ̇1 + 2θ̇ cos (ϕ1) + θ̇ − 2ẋ sin (ϕ1 + θ) + 2ẏ cos (ϕ1 + θ)
)
I = 0,(

2ϕ̇1 cos (ϕ2) + ϕ̇1 + ϕ̇2 + 2θ̇ cos (ϕ2) + 2θ̇ cos (ϕ1 + ϕ2) + θ̇−

−2ẋ sin (ϕ1 + ϕ2 + θ) + 2ẏ cos (ϕ1 + ϕ2 + θ)) I = 0,

(8)

where I = e1e2e0e∞ is the pseudoscalar. Since I is nonzero, it holds that

θ̇ − 2ẋ sin (θ) + 2ẏ cos (θ) = 0,

ϕ̇1 + 2θ̇ cos (ϕ1) + θ̇ − 2ẋ sin (ϕ1 + θ) + 2ẏ cos (ϕ1 + θ) = 0,

2ϕ̇1 cos (ϕ2) + ϕ̇1 + ϕ̇2 + 2θ̇ cos (ϕ2) + 2θ̇ cos (ϕ1 + ϕ2) + θ̇−
− 2ẋ sin (ϕ1 + ϕ2 + θ) + 2ẏ cos (ϕ1 + ϕ2 + θ) = 0,

(9)

which are the kinematic equations of the 3–link robotic snake in the form as usually
obtained using a differential geometric approach, see for example [1]. We have obtained
only three equations, while the dimension of the tangent bundle TQ is 5, meaning
two more equations will have to be added in order to define the control system of the
mechanism. Denote u1 = u1(t), u2 = u2(t) as the control inputs at time t. Then by
adding two equations ẋ = u1, ẏ = u2, the inverse kinematics are obtained. The forward
kinematics would be obtained by adding the equations ϕ̇1 = u1, ϕ̇2 = u2 instead.

3D CGA Snake Robot Planar Motion Model

Having introduced the 2D model, we can now build on it in order to obtain a 3D model.
In order to verify the modelling approach, the first step is to derive the model for planar



motion (in the xy plane) in 3D space, see Figure 2. For this task, we will move from
using Cl3,1 to Cl4,1 (3D CGA).

Figure 2: The configuration q = (0, 0, 0, 0,−π
3
, π
3
).

Due to the properties of geometric algebra, the derivation of the differential kinematics
remain the same. The new configuration space increases in dimension by one in order
to account for the z–axis coordinate: Q ⊂ (R3 × (S1)3); and thus we denote a configu-
ration at time t as q = [x, y, z, θ, ϕ1, ϕ2]. The rotations used in the kinematic chain are

unchanged, while the translations gain an extra dimension: T = e−
1
2
(t1e1+t2e2+t3e3)e∞ .

Expanding the nonholonomic constraint, we again arrive at a set of three differential
equations with multivector coefficients. Due to the dimensionality of the problem, the
respective equations consist of 4–vectors, with the respective blades being the basis
blades constituting planes. As the kinematics must be invariant w.r.t. the x, y, z coor-
dinates, evaluating the system in the origin of the coordinate system we get

(10a)

(
θ̇ − 2ẋ sin (θ) + 2ẏ cos (θ)

)
e1 ∧ e2 ∧ e0 ∧ e∞ + 2ż cos (θ)e1

∧ e3 ∧ e0 ∧ e∞ + 2ż sin (θ)e2 ∧ e3 ∧ e0 ∧ e∞ = 0,



(10b)

2ż sin (ϕ1)e1 ∧ e2 ∧ e3 ∧ e∞

+
(
ϕ̇1+2θ̇ cos (ϕ1)+ θ̇− 2ẋ sin (ϕ1 + θ)+2ẏ cos (ϕ1 + θ)

)
e1∧e2∧e0∧e∞

+ 2ż cos (ϕ1 + θ)e1 ∧ e3 ∧ e0 ∧ e∞ + 2ż sin (ϕ1 + θ)e2 ∧ e3 ∧ e0 ∧ e∞ = 0,

(10c)

2ż (sin (ϕ2) + sin (ϕ1 + ϕ2)) e1 ∧ e2 ∧ e3 ∧ e∞

+
(
2ϕ̇1 cos (ϕ2) + ϕ̇1 + ϕ̇2 + 2θ̇ cos (ϕ2) + 2θ̇ cos (ϕ1 + ϕ2)

+ θ̇ − 2ẋ sin (ϕ1 + ϕ2 + θ) + 2ẏ cos (ϕ1 + ϕ2 + θ)
)
e1

∧ e2 ∧ e0 ∧ e∞ + 2ż cos (ϕ1 + ϕ2 + θ)e1 ∧ e3 ∧ e0

∧ e∞ + 2ż sin (ϕ1 + ϕ2 + θ)e2 ∧ e3 ∧ e0 ∧ e∞ = 0.

Notice that the term including the blade e1e2e3e∞ vanishes, as it was dependent on x, y
or z in every term.

Lemma 1. The projection of the kinematic equations into the coordinate planes is ob-
tained as

ṗi ∧ Pi ∧ e∞ ∧ ej = 0,

where ej is the normal vector defining the coordinate plane.

Example 1. Taking Equation (10a) to Equation (10c) and wedging them by e3, we get

(11a)
(
θ̇ − 2ẋ sin (θ) + 2ẏ cos (θ)

)
I = 0,

(11b)
(
ϕ̇1 + 2θ̇ cos (ϕ1) + θ̇ − 2ẋ sin (ϕ1 + θ) + 2ẏ cos (ϕ1 + θ)

)
I = 0,

(11c)

(
2ϕ̇1 cos (ϕ2) + ϕ̇1 + ϕ̇2 + 2θ̇ cos (ϕ2) + 2θ̇ cos (ϕ1 + ϕ2)

+ θ̇ − 2ẋ sin (ϕ1 + ϕ2 + θ) + 2ẏ cos (ϕ1 + ϕ2 + θ)
)
I,

which leads precisely to Equation (9), the kinematics system obtained for the 2D motion.
Wedging by e2, we get

(12a)−2ż cos (θ)I = 0,
(12b)−2ż cos (ϕ1 + θ)I = 0,
(12c)−2ż cos (ϕ1 + ϕ2 + θ)I = 0,

and by wedging by e1, we get
(13a)2ż sin (θ)I = 0,
(13b)2ż sin (ϕ1 + θ)I = 0,
(13c)2ż sin (ϕ1 + ϕ2 + θ)I = 0.

Since the functions sin(. . . ) and cos(. . . ) in Equation (12a) to Equation (12c) and in
Equation (13a) to Equation (13c) cannot be both zero at the same time, it follows that
ż = 0, which means that the mechanism remains in the xy plane.



Full 3D CGA Snake Robot Model

In order to obtain the control models in 3D, the kinematic equations must be derived
first. Thanks to the properties of geometric algebra, the description of the mechanism
remains the same as in the 2D case, with only an extra dimension for the z axis appearing
in the configuration space and the parametrisations of the transformations used.
Currently, two models are planned: in the first model, we allow rotation between two
links about an arbitrary axis; that is, the links are connected by a spherical joint. The
rotation of the spherical joint about an axis Lα by angle α is expressed by the rotor
Rα = e−

1
2
αLα . Using this parametrisation, every rotation is described by 3 angles. In the

case of a snake robot with 3 links, the dimension of the configuration space increases: we
have Q ⊂ (R2× (S1)9). Figure 3 depicts three different configurations of the mechanism
using this parametrisation.

Figure 3: Three different configurations of the 3-link robot snake in 3D.

The axis of rotation Lα is parametrised by rotations about two axes, L1 and L2, see
Figure 4. The first axis of rotation L1 = Rαxe12R̃αx is obtained by rotating the z–axis
L0 by angle αx about the x–axis. The second axis L2 = Rαxe13R̃αx is the result of the
same rotation applied to the y–axis. Thus

Lα = RαyL1R̃αy = RαyRαxe12R̃αxR̃αy

where Rαx = e−
1
2
αxe12 and Rαy = e−

1
2
αyL2 . To obtain the kinematic equations, we express

the derivative of Rα:

∂tRα =
−1

2
e−

1
2
αLα∂t(αLα) =

−1

2
e−

1
2
αLα(α̇Lα + αL̇α) (14)

Thanks to the expression of ṗi in the form of Equation (7), using Equation (14) we are
now able to expand the nonholonomic condition Equation (2) and proceed as in the 3D
planar motion model.



Figure 4: Model of a spherical joint.

This model would be appropriate for modelling the motion of snake robots in an aquatic
environment. For the ground-based mechanisms, it makes more sense to restrict the
possible rotations of the joints to two planes in order to avoid any of the links rotating
about its own axis (while not impossible and not without use cases, allowing this mo-
tion would complicate the mechanism’s mechanical construction), leading to the second
model.
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