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1. Introduction

A central aspect of the natural world is the presence of just three degrees of translational

freedom. This is confirmed by the presence of exactly five regular solids, which only

occurs in three dimensions. Three spatial dimensions also leads to the expectation

of inverse square force laws, which for gravity and electromagnetism, has indeed been

experimentally verified to very high precision. These preliminary observations regarding

the nature of physical space provides a general conceptual structure within which to

describe physical processes. The formalism of Clifford’s geometric algebra (GA) of

three dimensions Cℓ(ℜ3) is therefore natural to adopt as a mathematical framework to

describe this space. The appropriateness of this choice of Cℓ(ℜ3) is confirmed by the

fact that Minkowski spacetime is found to be embedded as a four-dimensional subspace,

within the eight-dimensional space of Cℓ(ℜ3) [1, 2]. This shows that Minkoswki

spacetime is a natural consequence of three spatial dimensions described by Cℓ(ℜ3) [1].

A fundamental insight that this provides, is that time is now identified as the scalar

component of Cℓ(ℜ3), rather than as an extra time-like dimension. This gives it an

advantage over other descriptions of spacetime, such as STA. The properties of light

as well as Maxwell’s equations also emerge directly from the algebra, without recourse

to physical arguments [1]. The natural correspondence of Cℓ(ℜ3) with physical theory,

is also illustrated by the fact that there are generally found to be four fundamental

geometric types required to describe physical laws: scalars, vectors, pseudovectors and

pseudoscalars, which correspond directly to the four algebraic grades found within

Cℓ(ℜ3). Scalars naturally describe quantities such as energy or pressure, vectors relate

to quantities such as velocity, acceleration, momentum and electric fields, pseudovectors

describe torque, spin angular momentum and the magnetic field, and the pseudoscalars

describe the property of helicity, such as in the magnetic helicity. Furthermore, as a

significant aid to visualisation, the algebraic elements of scalars, vectors, bivector and

trivectors, correspond with the common geometrical entities of points, lines, areas and

volumes.

Now, while Cℓ(ℜ3) provides a natural representation for many common physical

laws, for computational processes, such as in the human brain, it is natural to assume

that it is able to implement more general higher dimensional Clifford algebras (CA).

Therefore we wish to model neural networks (NN) with the multivectors in the larger

space of Cℓ(p, q, r), which contains p basis vectors that square to +1, q multivectors

that square to −1 and r basis vectors that square to zero. While NN’s typically use

the field of real, complex or perhaps quaternionic numbers to describe the values of

the inputs, outputs and weights, significant advantages have been found for the Clifford

numbers [3], allowing faster and more accurate training. GA is also advantageous for

physics informed neural networks (PINN), which incorporate the laws of physics into

the neural net at a foundational level [4, 5].
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2. The n-dimensional Clifford algebra

A Clifford algebra of dimension n, generates a graded structure with a total of 2n

dimensions, with n+1 distinct geometric types. A general multivector can be represented

as

M = c0 + ciei + cijeiej + cijkeiejek . . . c1...ne1 · · · en, (1)

where e1, e2...en is an n-dimensional orthonormal basis and ci, cij · · · are real scalars. The
number of components for each grade r element e1···r is Cn

r . The basis orthogonality

is simply enforced by stipulating the anti-commutativity of the basis vectors, eiej =

−ejei. We typically specify e2i = 1 for physical space, but for more general spaces

e2i ∈ {−1, 0,+1}.
For planar geometry, we can use Cℓ(2, 0, 1). If we select the basis vectors e1, e2 with

e21 = e22 = 1, and e0, with e20 = 0. Rotations about this point allow translations to be

written as a rotation operator. For 3D geometry, we can use Cℓ(3, 0, 1). If we select the

basis vectors e1, e2, e3 with e21 = e22 = e23 = 1, and e0, with e20 = 0. The e0 basis vector

effectively represents a point at infinity. Rotations about this point allow translations

to be written as a rotation operator, unifying these two transformations.

Now, the Cartan-Dieudonné theorem states that every orthogonal transformation

of a n dimensional space can be decomposed into, at most, n reflections in hyper planes.

In CA, the reflection operation is implemented with the sandwich product M ′ = vMv,

which reflects the multivector about the vector v. With Cℓ(2, 0, 1) we need n = 3

reflections and in Cℓ(3, 0, 1), n = 4 four reflections. As is well known, two reflections

create a rotation, hence this is a general unified form for all orthogonal transformations,

reflections, rotations and translations.

3. Transformations in Cℓ(ℜ3)

We now look at the special case of Cℓ(ℜ3), which allow a general set of transformations

that embody the Lorentz group, thus generalising the orthogonal transformations. Due

to the close connections between invariants and the laws of Nature, we seek the invariants

in the space of Cℓ(ℜ3), after applying the most general transformation rules.

We firstly define Clifford conjugation of a multivector M as

M̄ = t− x− jn+ jb. (2)

Clifford conjugation is an involution that is an anti-automorphism, so that for a product

MN of two multivectors M,N ∈ Cℓ (ℜ3), MN = N̄M̄ . Clifford conjugation can be

written algebraically as M̄ = 1
2
(−M + e1Me1 + e2Me2 + e3Me3). Clifford conjugation

is equivalent to a time reversal.

We define the amplitude squared of a multivector M through Clifford conjugation,

giving the bilinear form

|M |2 = MM̄ = t2 − x2 + n2 − b2 + 2j (tb− x · n) (3)
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forming a complex-like number ∈ C, and thus commuting with the rest of the algebra.

We refer to this as a “complex-like” number because the trivector j is analogous to

the unit imaginary and all other quantities are real scalars. The square root is therefore

well defined from complex number theory and so we can define the multivector amplitude

as |M | =
√

|M |2. We can therefore write a norm relation

|M1M2| = ±|M1||M2|. (4)

We can ensure a positive sign if the appropriate branch is used when finding the complex

square roots. We can view this complex distance measure as combining a real distance

and a phase, analogous to a distance measurement using a photon. Alternatively, this

also naturally describes quantum amplitudes and phases. We thus have a distance

measure between two multivectors M1,M2, of |M1 − M2|, making Cℓ(ℜ3) a metric

space.

We define a general bilinear transformation on a multivector M as

M ′ = KML, (5)

where M,K,L ∈ Cℓ(ℜ3). We then find the transformed multivector amplitude

|M ′|2 = KMLKML = KMLL̄M̄K̄ = |K|2|L|2|M |2. (6)

We can specify a unitary condition |K|2|L|2 = 1 for these transformations, so that the

amplitude |M | will be invariant. The selection of the involution of Clifford conjugation

is not arbitrary, as it is the only involution producing a commuting complex-like number

allowing these invariants to form, according to Eq. (5).

For transformations that are continuous with the identity, we can use the power

series expansion of the exponential function [6] to produce

M ′ = ep+jqMer+js. (7)

This generalises the conventional Lorentz group, which now appear as special cases.

The most general transformation in Eq. (5) also describing reflections and other

transformations. If we consider the transformation

M ′ = ejv/2Mejw/2, (8)

where we have used two distinct rotation axes v and w. This operation acts separately

on two four-dimensional subspaces t + jn and x + jb, with each of the two rotations

being isomorphic to a rotation in a four-dimensional Cartesian space.

Now, since MM̄ is invariant, then (A + B)(A+B) is also invariant, where

A,B ∈ Cℓ(ℜ3). We have (A+B)(A+B) = AĀ+BB̄ +AB̄ +BĀ. Hence, as AĀ,BB̄

are known to be invariant, then we can define a multivector dot product with the final

two terms

A · B̄ =
1

2

(
AB̄ +BĀ

)
= B · Ā. (9)

The invariant dot product thus provides a mechanism to combine two distinct

multivectors, as in the electromagnetic Lagrangian A · J̄ , for example.
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Now, multivectors formed from a product of two multivectors ĀB transform as

Ā′B′ = KALKBL = L̄ĀK̄KBL = L̄ĀBL. (10)

Hence multivectors formed as a product F = ĀB form a distinct class of multivectors

with a distinct transformation law

F ′ = L̄FL. (11)

We refer to such quantities as “fields”, as we find this transformation applies to the

electromagnetic field, for example. We find that the product of two fields F ′
1F

′
2 =

L̄F1LL̄F2L = L̄(F1F2)L, also transforms as a field. This implies that polynomials

of such multivector fields are also invariant, and so can utilized to approximate some

unknown function. The field transformation

F ′ = e−r−jsF er+js, (12)

turns out to be the standard transformation for the electromagnetic field [2]. The

transformation incorporates the Lorentz boost transformation, and so will not be grade

preserving. Now, the product of a multivector with a field XF will transform the same

as a general multivector. That is X ′F ′ = KXLL̄FL = K(XF )L. Hence, we can

write an invariant equation XF = Y , where X, Y transform as multivectors, defined in

Eq. (7), and F = B̄A transforms as a field. Hence, in GA, both spacetime and the fields

arise from the same abstract background structure Cℓ(ℜ3), thus giving a more unified

approach to spacetime.

We can write a spacetime event X, in differential form, as

dX = dt+ dx+ jdn+ jdb, (13)

where the special case dX = dt+ dx is isomorphic to the conventional Minkowski four

vector dX = [dt, dx]. The magnitude of the invariant interval is commonly defined

equal to dτ 2, which defines the proper time. Dividing through by this invariant, from

Eq. (13), we produce the velocity multivector

V =
dX

dτ
=

dt

dτ
+

dx

dt

dt

dτ
+ j

dn

dt

dt

dτ
+ j

db

dt

dt

dτ
(14)

= γ (1 + v + jw + jh) ,

where v = dx
dt
, w = dn

dt
and h = db

dt
. As we defined |dX|2 = dτ 2 then we have

|V |2 = |dX|2
dτ2

= 1, a dimensionless number. This leads to the energy-momentum-spin-

helicity multivector

P = E + p+ s+ h, (15)

each of which component is conserved, with PP̄ = m2, also invariant.

3.1. Physical principles encoded by the algebra

From Eq. (13), lightlike particles satisfy the condition dt2− dx2 = 0, and so the general

condition for null lightlike particles to be

v · n̂ = ±c, (16)
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where for clarity we introduce the speed of light. Hence, due to the nature of the dot

product, we can see that it is only satisfied by a velocity ||v|| = c, parallel to the spin

axis n̂. That is, based on the eight-dimensional structure of Cℓ(ℜ3) alone, we find that

a null particle, if traveling at the speed of light c, is required to have its spin axis parallel

to its direction of motion, exactly as observed for electromagnetic radiation.

3.2. Projectile motion

GA allows a purely vector based approach to projectile motion. We can form the general

expression in GA governing projectile motion

2as = v2 − u2 + 2v ∧ u, (17)

an equation that relates u,v and s and a, where a is the acceleration due to gravity

vector and s is the vector to the target allowing sloping ground and u,v are the initial

and final velocity vectors, respectively. For energy efficient trajectories we can find

directly an expression for the initial velocity vector

u = ŝ

√
as

2
− â

√
as

2
. (18)

3.3. Null fields

Cℓ(ℜ3) also can naturally describe free fields. Using F = ∇∧A, we define A = α∇β, in

terms of two complex potentials α and β [7]. This then automatically satisfies Maxwell’s

equation without sources. We only require two complex scalar functions α, β to define

the electric E and magnetic field B, as we have two less degrees of freedom because of

the constraint ∇ · B = ∇ · E = 0. The condition for divergenceless flow of the field.

Importantly, it has been shown that Bateman’s construction can describe all possible

null electromagnetic fields [8]. This then gives

F = ∇∧A = ∇α ∧∇β. (19)

This approach allows radiating fields to be defined with conserved energy and helicity.

3.4. The action

The invariant distance provides a suitable action integral

S =

∫
|dX|, (20)

where the distance |dX| is given by the amplitude of the spacetime multivector, given

by Eq. (3). Now, as shown previously, with the assumption of a proper time in a rest

frame we have |dX| = dτ and so we have the spacetime distance

|dX|2 =
(
ṫ2 − ẋ2 + ṅ2 − ḃ2

)
dτ 2, (21)
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where we define ṫ = dt
dτ
, ẋ = dx

dτ
, ṅ = dn

dτ
and ḃ = db

dτ
. We can then write the action as

S =
∫ |dX|

dτ
dτ that implies a Lagrangian

L =
|dX|
dτ

= |V | =
√

ṫ2 − ẋ2 + ṅ2 − ḃ2 = 1, (22)

where we now extremize S =
∫
Ldτ .

Using the Euler-Lagrange equation we find the four fundamental conservation laws

for inertial particles, of energy, momentum, spin and helicity are reproduced [9]. A

simple extension of this Lagrangian is L = |V +U |, where the multivector U conceptually

represents a ‘flow’ in the background spacetime, perturbing particle inertial motion V .

We can also add the known invariant of V · Ā to the Lagrangian. We can thus produce

a generalised Lagrangian

L =
1

2
|V + U |2 + A · V̄ , (23)

describing a particle moving in a electromagnetic potential A. We naturally incorporate

physical laws through using the action of a physical process [1].

The formalism of Clifford’s geometric algebra (GA) of three dimensions Cℓ(ℜ3) is

thus a natural framework to describe spacetime, and physical laws, and provides insights

into their fundamental nature.
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