Characteristic multivectors of Coxeter transformations give
novel insights into the geometry of root systems

Pierre-Philippe Dechant

Abstract. There has been increased recent interest in novel Clifford geometric invariants of linear
transformations. This motivates the investigation of such invariants for a certain type of geometric
transformation of interest in the context of symmetry structures: the Coxeter transformations. We
calculate the invariants for the bipartite Coxeter transformations for As, Dg, Fs and Ag, Dg, Fg.
We focus on bivector invariants in particular, and shed new light on the relationships with other
well-known invariant planes, including the Coxeter plane, as well as recent work into orthogonal
decomposition. I will also briefly present results from our recent paper that calculated invariants of
all Coxeter elements exhaustively and analysed the resulting computational algebra dataset using
data science techniques such as Neural Networks and Principal Component Analysis.
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1. Introduction

Recent work [51/6] has sparked great interest in Clifford geometric invariants of linear transformations,
originally proposed in [4]. Orthogonal transformations, such as rotations, and their invariants are
important in engineering, e.g. moving cameras, robots etc. The Coxeter transformations we are looking
at in this work are also rotations, but in this context they are particularly interesting because of their
symmetry structures. In Clifford algebras, algebraic objects have a clearer geometric interpretation
than in the standard matrix approach. There is a systematic way of calculating multivector invariants
of linear transformations via what are called ‘simplicial derivatives’. These Clifford geometric invariants
are then systematically related to geometric invariant spaces of the linear transformation and the
coefficients in the characteristic polynomial and Cayley-Hamilton theorem. The decomposition of a
linear transformation into orthogonal eigenspaces is also related to some interesting recent work by [7],
the connection with which we will also explore. Coxeter elements have well-known invariant planes,
and we will compare the bivectors found as Clifford invariants to the bivectors describing these eigen-
planes. I will briefly present some results from a recent paper [2] that exhaustively computed the
invariants for all such Coxeter transformations and explored the resulting data set using data science
techniques.

2. Background

Thorough introductions to root systems and Clifford algebras are available elsewhere [3] so here we will
be succinct. A root system lives in the arena of a vector space with a scalar product (which immediately
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FiGURE 1. The diagrams of the 8-dimensional simply-laced root systems Ag, Dg and
Eg (vertically downwards respectively), along with our labelling for the simple roots
and a bipartite colouring.

allows one to consider the corresponding Clifford algebra). It is a collection of vectors (called ‘roots’,
and customarily denoted «) in that vector space which is invariant under all the reflections in the
hyperplanes to which the root vectors are perpendicular. We will only consider root systems with
roots of the same length, which can be assumed to be normalised E Such reflections in the normal
hyperplanes are given by  — x — 2(x - n)n, where x is the vector to be transformed and n is a unit
normal to the hyperplane.

A subset called ‘simple roots’ is sufficient to write all roots as (in our case) integer linear com-
binations of this basis of simple roots, whilst their corresponding reflections, the ‘simple reflections’,
generate the reflection group. Taking these simple reflections all exactly once leads to interesting types
of group elements called ‘Coxeter elements’. They are of the same order h (the ‘Coxeter number’),
and have invariant planes, called ‘Coxeter planes’, which are useful for visualising root systems in any
dimension (via projection into these planes). These reflection groups have interesting integer — in fact
prime — invariants, that are characteristic of the geometry, called ‘exponents’ m. This name derives
from the fact that Coxeter elements act on different invariant planes by h-fold rotations by m times
27 /h, which is usually interpreted as a complex eigenvalue of the Coxeter element (even though we are
by assumption in a real vector space). The root system geometry can also be encoded in diagrammatic
form (called ‘Coxeter-Dynkin diagram’), where each simple root corresponds to a node and orthogonal
nodes are not linked, whilst roots at 27/3 angles are connected with a link (we will only be considering
such ‘simply-laced’ examples, see Fig. . Likewise, our simply-laced examples are tree-like and admit
an alternate colouring (or ‘bipartite’; e.g. black and white). This effectively means that all black roots
are orthogonal to each other, and likewise for the white roots. This colouring means that there are
distinguished types of Coxeter elements where first all the black reflections are taken, and then all
the white (or the other way round). We will call these ‘bipartite’ Coxeter elements. This bipartite
colouring also implies the existence of the Coxeter plane via a more complex argument, the details
of which we will omit here, but which relies on the adjacency matrix of the Dynkin diagram having
a distinguished largest eigenvalue and corresponding eigenvector, the Perron-Frobenius eigenvector
(which will make an appearance below). In our labelling of the 8 simple roots for Ag, Dg and Eg, o
to a7 make one long string. The different diagrams arise depending on where the 8th root ag attaches:
at the terminal node a7 for Ag (leading to bilateral symmetry), at the penultimate node «g for Dg
(leading to permutation symmetry of the terminal nodes), or a5 for Ejg.

As mentioned above, Clifford algebras can be constructed when one is working in an n-dimensional
vector space with an inner product, giving rise to a 2"-dimensional algebra of ‘multivectors’. The scalar
product is given as the symmetric part of the geometric product, i.e. a-b = %(ab + ba). The outer
product a A b = %(ab — ba) is the antisymmetric part, is a bivector and determines the plane that
two vectors generically span. Substituting this in the reflection formula above results in a cancellation

INote this is different from the normalisation convention used in Lie theory
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which leads to the uniquely simple ‘sandwiching’ reflection formula in Clifford algebras
x—x—2(x -n)n=—nan. (2.1)

Both n and —n doubly cover the same reflection. Via the Cartan-Dieudonné theorem orthogonal
transformations are just products of such reflections so that one can build up

T — tng---nyzng - ong = Az A (2.2)

such transformations via defining multivectors that are the products of normal vectors which encode
the reflection hyperplanes, A = nj ---ny (called ‘versors’), and a tilde denotes reversing the order of
these vectors in the product. These versors again doubly cover the transformation.

We discuss here for a moment how this applies when the orthogonal transformation is a Coxeter
element. In traditional root system notation, the simple reflections are denoted s; such that a Coxeter
element is denoted w = s; - --s,. In the above versor framework, the reflections are encoded by the
root vectors themselves (as a double cover), whilst the multivectors W that one gets from multiplying
the simple roots together a; - - - o, doubly cover w

wr — *fag - apzay - ap = EWaW. (2.3)

We return now to the setting of linear transformations in Clifford algebras more generally again.
Let us denote this linear transformation by f(z). In order to calculate the desired invariants of this
linear transformation, we define the concept of ‘simplicial derivatives’.

First, let {ar},k = 1,...,n denote a frame, i.e. a basis. Often we use either a Euclidean basis e;
or the basis of simple roots, o;. We denote by {a*} its reciprocal frame such that a’ - aj = 5; In a
Euclidean basis this is effectively the basis itself; for a basis of simple roots the reciprocals are more
commonly known as co-roots (up to a different conventional normalisation factor). We also define
br = f(ax) as the transformation acting on the basis frame vectors. The rth simplicial derivative is
then essentially defined as a combinatorial object

Oy iy = D (a7 A Aa?)(bj, Av- Aby) (2.4)

with sum over 0 < j; < -+ < j, < nﬂ These simplicial derivatives are invariants of the linear
transformation and are therefore ‘characteristic multivectors’ with geometric significance.

Now [4] showed that it is the scalar parts of these geometric invariants (denoted by 0y * f(s))
that constitute the coefficients in the Cayley-Hamilton theorem

m
CrA) =D (=N)""%0() * fs)
s=0
(where d(gy * f(o) is interpreted as 1) and the characteristic polynomial
m
Z(_l)m—sa(s) % f(s)fm—s(a) -0
s=0
for any vector a (where f°(a) is interpreted as a).

One can explicitly perform these calculations for our examples uing the galgebra package,
calculating Coxeter versors from the simple roots, and from that simplicial derivatives and geometric
invariants. We will refer to the simplicial derivatives J(,)f() as the invariant of order r or Inv,. For
our examples, the different grades of each invariant, which we could denote by Invf, are separately
invariant under the Coxeter versor: W Inv® W = Inv”. So these Inv¥ are eigenmultivectors of the
Coxeter element of grade k, but they do not have to be k-blades (i.e. be able to be written as the
outer product of k Vector@. In this work, we are particularly interested in the invariant bivector
parts that arise thus. So amongst other multivector components, e.g. for Eg we in particular have 4
invariant bivectors from the invariants. It turns out that these have vanishing commutator product.

2This is due to the original notion of a multivector derivative essentially being equivalent to a projection.
3Something also noticed in the example in [6].



4 Dechant

We are interested in these in particular because of the following well-known invariant planes of the
Coxeter element.

The Coxeter element is known to have an eigenplane, called the Coxeter plane, that one can
construct by using the Perron-Frobenius eigenvector of the Cartan matrix. For our Eg example it
turns out that one can use any eigenvector of the Cartan matrix and likewise construct invariant
plance. The Coxeter element thus acts on 4 invariant orthogonal bivectors (giving planes, and they
are blades by construction). The way it acts in each plane has deep connections with some integer
characteristic invariant of each symmetry structure: it rotates by some prime number of ‘notches’
2w /h, called the exponents. So there is an immediate question of how our characteristic bivectors
relate to Coxeter bivectors, exponents and degrees. In fact, we will say here already that for FEjg
one can show that the two sets of 4 eigenbivectors (from the simplicial derivatives and the Coxeter
construction) span the same 4d-subspace of the 28d bivector space. So the two sets appear to be linear
combinations of each other, but one set is properly orthogonal (Coxeter planes), whereas the other
set only has vanishing commutator product (invariant bivectors). One is therefore naturally led to the
question of how one can orthogonalise sets of bivectors.

This is a question that has been addressed in [4] and more recently in [7]. If one has a bivector
B one wishes to decompose into orthogonal pieces b;, one can essentially find the size of these pieces
|b;| via the characteristic polynomial

k
0= (W2)o(-A)F

m=0
1 1

where W, = —(B™)2,, = —BABA---AB
m)! m)!

The orthogonal bivector pieces b; can be found as

)\:W0+A:71W2+...+Wk
b= d A WA CWat et Wi
' AW, Wit W
AT Wo+ AT " Wat A Wiy

k even

k odd

3. Results

We perform some explicit calculations for some ADE-type root systems.

3.1. Eg (exponents 1, 7, 11, 13, 17, 19, 23, 29)
For Eg, we in consider the 4 invariant bivectors from the invariants. We omit printing them here but
we calculate their characteristic polynomials.

Invy) + AT+ TA 41402 £ 8X + 1
Invfy) AP+ 8AP+ 14N+ 7TA+ 1

Invy) : AT+ TN+ 1402 +8X +1
Invfy) : A* 42807 + 13402 + 92X + 1
One can show that the basis of the invariants spans the same 4-dimensional subspace of the
28-dimensional bivector space as the Coxeter bivectors. We write the linear combinations numerically

here for succinctness (for some ordering).

—Invgg — 1.98904B¢ + 0.415823 B, + 0.81347B; + 1.4862B,

—Inv(3) = —2.40486 Bc — 1.22929B; + 0.67281B; + 0.502754B,
—Im;g’)) = —1.4862B¢ + 1.98904B5 + 0.41582B5 — 0.813473B,4
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—InvE;‘; — 4.70463B¢ — 2.2460B, + 0.90040B5 — 0.105104 B,

One can find exact expressions in terms of eigenvectors of the Cartan matrix e.g.

13 11 7
—Inv((;g = 2cos ;—OBC + 2cos 3—532 + 2 cos 3—ng + 2cos £B4

7 13 11
—Invg’; = —2cos 3—ch + 2cos ;—OBQ + 2cos 3—539, — 2cos 3—(;TB4

which are explicitly in terms of the Coxeter number and the characteristic exponents. The sums of
squares of these coefficients also add to 7,8, 7,28, which is the first term in characteristic polynomials.
This is just the size of the b;, as one would expect from [4].

3.2. Dg (exponents 1, 3,5, 7, 7,9, 11, 13)

One can find analogous results for Dsg:
Invly) AT+ 1402 £ 8) + 1

Invy) : AT+ 8N+ 1402+ 7A +1

Invy) : AT+ TN+ 1402 £ 8X + 1

Invly) : A* 42807 + 13402 + 92X + 1
Again, exact expressions of the linear combinations involve the exponents

13 11 7
—Inv((ég = 2cos %Bc + 2 cos S—SBQ + 2 cos 3—(;TB3 + 2 cos £B4

7 13 11
—Im;g’; = —2cos 3—7(;Bc + 2cos ;—032 + 2cos B—JB;», — 2cos 3—(;TB4

and again the sums of squares of these coefficients add to first term in characteristic polynomials
7,8,7,28 (since the Coxeter blades are orthogonal).

3.3. Ag (exponents 1, 2, 3, 4, 5, 6, 7, 8)

For Ag, the invariant polynomials are
Tnuly) + AT+ 9N 42707 4 30A+9

Invfy) : A* 418X 4 8147 4 27

Invy) + A+ 27A% 4 5407 + 27

Inuly) ' 43607 +126)% + 84X + 9
and as expected the exponents feature in the linear combination

3 7 1 5
—Im)gg = 2cos %Bl — 2cos %Bz + 2 cos %Bg — 2cos £B4

and the bivector norms b; are 9,18, 27,36 as given by the first term in characteristic polynomials.
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3.4. Eg (exponents 1, 4, 5, 7, 8, 11)
Calculations in 6D for the ADE cases works as expected
AP 45X +T7A+3
A%+ 87 + 40
AP+ 17TA% + 430+ 3

and again one can find exact expressions of the invariant bivectors in terms of the Coxeter blade
construction.

2 4 4
,Ingg = 2cos 1—;31 + 2 cos l—ng + 2 cos TgB?)

2 2
—Im}g)) = (=14 2cos %)Bg + (=1 —2cos %)Bg

2 2 2
ffm)g’; = —2cos %Bl + (2 —2cos l—g)BQ + (2 +2cos 1—7;)33
We again notice that the sum of the squares of these coefficients give exactly the first non-trivial
coefficients in the characteristic polynomial: 5, 8 and 17.

4. Conclusion

This work ties together three pieces of previous work on 1) geometric invariants (Coxeter) 2) Clif-
ford invariants/characteristic multivectors and 3) bivector orthogonalisation. The concrete calcula-
tions above show that indeed the Clifford invariants span exactly the same bivector subspace as the
Coxeter blades, with the exponents featuring in the coefficients of the linear combinations. Bivector
decomposition (of invariants) into orthogonal blades provides an alternative view of the usual Coxeter
construction. The final paper will flesh out some more details and also present some results from
the recent computational algebra and data science paper that calculated Coxeter elements and their
invariants for all simple root permutations explicitly.
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