MULTI-ALGEBRA FLUENCY
C. Doran?

2Cambridge University
Cambridge, UK
cjld1@cam.ac.uk

Summary of the Abstract

When proving results ‘by hand’ in geometric algebra it is frequently helpful to move be-
tween different algebras, most commonly versions of Euclidean, projective and conformal
algebras. This flexibility is harder to achieve in code without a sufficiently powerful type
system. In this talk I describe a solution to the problem in the language of Julia, though
many of the lessons hold for other languages. Julia [1] is dynamically typed and its
type system contains two powerful features: parametric polymorphism and multiple dis-
patch. Utilising these we can develop code that can move between algebras with minimal
overhead. We illustrate how this operates with a simple ray-tracing engine constructed
entirely from GA primitives, with all source code available on GitHub.

Algebra Hopping

There is an unfortunate tendency in the discourse around geometric algebra for people to
argue the merits of one particular instance of a geometric algebra versus another. This
is very much against the spirit geometric calculus as described by David Hestenes and
Garret Sobezyk [2]. There the authors imagine a universal algebra containing every finite
algebra as a specific sub-case, defined by its own pseudoscalar. This is most elegantly
employed in the theory of vector manifolds, where the pseudoscalar defining a manifold
is pictured a living in some larger, unspecified embedding space.

Of course, a completely flexible picture such as this is much harder to achieve in code.
Typically one wants to fix an algebra, so that all objects have a known size, and then
define various properties of these objects. It is possible to work in a much more general
way, by referencing basis blades as coming from an arbitrary-sized (n,n) balanced alge-
bra, and then working out products as they are needed using a binary encoding trick.
But such an approach is slow compared to a direct implementation of a specific algebra.
There are two reasons for this. Each time a blade product is called we repeat a calcu-
lation to find the resulting basis blades, and working with lists of blades as the primary
objects misses some crucial optimisations that are very helpful in the low dimensional
algebras of most interest.

Having said all that, if you really wish to apply geometric algebra to problems in much
higher dimensions, there is no option but to work with lists of blades as the primitive
objects. If you tried to store a complete multivector in 60 dimensions you would quickly
run out of memory! You have to move to some form of sparse representation.

The desire to write heavily optimised code for specific algebras does tend to tie people to
choosing an algebra for a problem up front, and then sticking with it. This is generally
ok for smaller problems. If you are working in 3D geometry, and expect to need rotors
to carry out Euclidean transformations, but also have an idea that you might want
to employ spheres somewhere in your problem, then you can simply opt to work in
the conformal algebra of space, G(4,1), and just live with the fact that this may be
carrying round extra degrees of freedom that are unwanted. There will be a memory
and performance hit, but that may be insignificant.

At the other extreme you could minimise memory and work in G(3,0), and accept the
fact that some of your algorithms are messy and lack the elegance (and often speed)
provided by projective or conformal representations. Or you could take a half-way
approach and work in the projective frameworks of G(4,0) or G(3,0, 1), each with their
own sets of benefits and trade-offs.

In practice, it is highly desirable to be able to move between algebras fluidly. This should
be no surprise to anyone who has worked with graphics or computational geometry code.
There one is frequently moving between 3D and 4D representations of objects, often with
the 4th component set to one of 1 or 0 depending whether you are referring to a point
or a vector. Our code would be simplified enormously if we were able to have multiple
algebras in flight, with promotion rules between them that are fast, and logical and
impose minimal overhead on the coder. Such a scheme is described here, with the
accompanying code provided on GitHub [3].

The algebra relationships

One way to understand how to jump between algebras is through the defining relation-
ships between them, and how these define the underlying representations of the algebras
over reals, complex numbers or quaternions.

There are three relationships for jumping up or down 2 dimensions:

Glp+1,9q+1)=G(p,q) @ G(1,1)
G(q+2,p) = G(p,q) ® G(2,0)
G(g,p+2)=G(p,q) ® G(0,2) (1)

Of these the first is by far the most significant, as it defnines the conformal embedding
of an algebra inside a larger one. This allows us to write the elements of G(p+1,¢+ 1)
as

{Le, freifi} ® G(p, q) (2)

In this decomposition all generators on the left commute with all generators on the right.
This is achieved by making the ‘vectors’ in G(p, q) out of trivectors in G(p + 1,¢ + 1).
This does make sense as the generators of G(p, ¢) are then lines in G(p+1, ¢+1) through
a common origin. But this embedding may not be precisely the one we want. Typically
we want to embed points in, say, G(3,0) as null vectors in G(4,1). Our scheme does
need to flexible enough to cover all of these possibilities.

The second relationship between algebras is the one governing the even sub-algebra
(ESA). We have

G(p,q)" =G(g,p—1)=G(p,q—1) (3)

This is helpful because we can save space in our implementation of an algebra by just
implementing the ESA | together with a rule for moving between even and odd elements.
To see how this works, consider the simple case of G(3,0). As a complete algebra this
can be realised as 2 x 2 complex matrices (the Pauli matrices). But in practice we never
want to combine even and odd grade objects. On the rare occasions where there is a
strong reason to combine even and odd elements this is telling us we should be working in
a higher-dimensional algebra. For example, it does make sense to combine the electric
field (E, a vector in G(3,0)) and the magnetic field (B, a bivector in G(3,0)). But
the correct way to do this is in the spacetime algebra, where the 6 bivector degrees of
freedom are just what we need to combine F and B.

If we only want to store even elements for G(3,0) we need to look at the even sub-algebra

G(3,0)* = H. (4)

This is simply the quaternion algebra. So we need a fast implementation of the quater-
nion algebra to perform multiplications of even-grade elements. We also need a map
from odd elements to even. This is straightforward as in all odd-dimensional algebras
the map is provided by the pseudoscalar:

O — —6162630 =F (5)

where O and F are the odd and even-grade objects respectively. The objects we store are
quaternions, which are simply a struct with 4 entries. These are compact, and relate
naturally to the objects we expect to use in 3D and 4D representations of geometry. So,
for example, a vector in 3D is stored as a struct with entries (x,y, z,0), where z, y and
z are coordinates .

The remaining algebras that most frequently arise in applications to 3D geometry are the
two 4-dimensional algebras G(4,0) and G(3,0,1). The first of these is the appropriate
framework for projective geometry, and its ESA decomposes neatly into

G0 =HaH (6)

An even element in this algebra consists of a pair of quaternions. We can immediately
lift a 3D vector, represented as the quaternion ¢, into G(4,0) by defining

q+ (q,—q). (7)

And this operation can be performed on the fly. If the compiler sees we are trying
to multiply a 3D object with a 4D object, this map can be performed and the result
compute in G(4,0).

The second 4-dimensional algebra of interest is G(3,0, 1), the algebra associated with
the Euclidean group of rotations and translations, and where the grade-1 objects are
planes. In this case we also find

GB,0,0)t=HaoH (8)

T should apologise to the geometric algebra gods for having to resort to coordinates (and matrices)
so soon. But to write performant code you have to make choices about what and how you are storing.
All code can still be written ‘coordinate-free’.

and again the ESA is represented by a quaternion pair. In this case the lifting operation
requires a but more care. But assuming we want to lift a point in 3D (again, the
quaternion ¢) up to the equivalent trivector in G(3,0, 1) then the operation is simply

¢+ (0,9). (9)

Again, there is no need to modify the underlying quaternion.
Finally, the last algebra of direct relevance is the conformal algebra G(4,1). The ESA
of this is represented by

G4,)" = H(2) (10)

so this time we form a 2 x 2 matrix of quaternions. It is remarkable that in all cases we are
led back to quaternions as the primitive object in very much the same way the Clifford
found that the quaternions were central to his original research. For the conformal case

the lift operation is still simple
qg O
q (0 N q> (11)

1 The type system

This section describes the type system used in Julia to distinguish between the algebras,
and to allow rapid interchange between them. This is being worked on currently. We
define two functions, point and vector, for lifting objects from 3D. The former puts
a 1 into the 4th component, and the latter does not. The former also ensures that the
lifted point is a null vector in the conformal representation. Naming conventions and
other details are being worked on.

Acknowledgements

[am grateful to everyone at Monumo for their continued support. I am particularly
grateful to Tom Gilbert for all his work on the SimpleGA codebase, turning it from a
personal hobby to something that should be useful to anyone looking to explore geometric
algebra in Julia.

References

[1] Bezanson, Jeff and Karpinski, Stefan and Shah, Viral B and Edelman, Alan, Julia:
A fast dynamic language for technical computing. arXiv:1209.5145 2010., 2012

[2] Hestenes, D. and Sobczyk, G.,Clifford Algebra to Geometric Calculus, Reidel, Dor-
drecht, 1984

[3] SimpleGA, github.com/MonumoLtd/SimpleGA.jl

