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In photogrammetry, camera calibration is often based on the well-known pinhole camera 
model [1] to describe the camera’s object-sided chief rays. However, this model only applies 
to widely used entocentric lenses, whereas optical imaging and metrology systems often use 
telecentric or sometimes even more exotic hypercentric lenses. These lenses literally 
facilitate new perspectives for mastering otherwise complex tasks by differing fundamentally 
in their chief ray paths – which is why the pinhole model has to be modified or cannot be 
used at all, depending on the camera lens used. This contribution shows, how the pinhole 
model can be unified for all these three lens types using Geometric Algebra [2]. It contains a 
smooth transition between the perspectives and is thus capable of directly calibrating 
telecentricity errors for the important case of telecentric lenses. 

1. INTRODUCTION 

Camera calibration is a crucial task when working with camera-based optical imaging and 
metrology systems. The widely used pinhole camera model [1] has proven itself useful for this 
purpose, as it has a comparatively small number of parameters, yet accurately describes the 
camera’s object-sided chief ray path. However, this model only applies to so-called entocentric 
lenses, whose chief rays converge towards the camera (see Figure 2). As a result, objects further 
away from the camera appear smaller in the camera image (see Figure 1). This lens type is by 
far the most common. 
Nevertheless, other lens types are used especially in optical imaging and metrology to master 
otherwise quite complex tasks. Telecentric lenses provide the same image of an object 
regardless of the distance from the camera (see Figure 1), making them ideal for size 
measurement applications. This is achieved by parallel chief rays (see Figure 2). Hypercentric 
lenses provide a diverging chief ray path towards the camera (see Figure 2), resulting in 
simultaneous imaging of the top and the surrounding sides of an object (see Figure 1). 

Figure 1: Exemplary images of a dice at different distances from the camera with entocentric, telecentric and 
hypercentric lenses. 
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2. STATE OF THE ART 

Currently the fundamentally different object-sided chief ray paths of these three lens types 
cannot be described by one model. Instead, the model must be chosen according to the lens on 
hand (see Figure 2): The well-known pinhole model is used for entocentric lenses, defining the 
chief rays by image points in the image plane and a camera center behind the image plane where 
the chief rays meet (center of the entrance pupil of the optical system). The distance between 
the camera center and the image plane is called the camera constant 𝑐. For hypercentric lenses, 
the pinhole model must be modified by introducing a negative camera constant [3]. For 
telecentric lenses, no form of the pinhole model can be applied at present because the camera 
center resp. entrance pupil is at infinity – resulting in an orthographic rather than a perspective 
projection. 

This contribution shows how the widely used pinhole camera model can be generalized for 
entocentric (converging chief rays), hypercentric (diverging chief rays) and telecentric (parallel 
chief rays) lens types by using the unifying methods of Plane-based [4-7] (or similar: Projective 
[8]) Geometric Algebra (PGA) ℝ!,#,$

∗ . By mainly taking advantage of the algebra’s inherently 
incorporated projective geometry to describe the intrinsic camera behavior, the proposed 
enhanced “anycentric” pinhole model contains a smooth transition between perspective 
projection and orthographic projection, making it well suited for the optimization process 
during camera calibration, and resulting in a more complete and more general camera model 
without greatly increasing its complexity. Furthermore, due to the smooth transition between 
the perspectives, this camera model provides a highly practical way to directly calibrate 
telecentricity errors of telecentric lenses. 
Note that the following will focus on the projection step of the camera model, but it can easily 
be extended by additional common calibration parameters like pixel skew, principal point 
position, distortion (e.g. [9]) or extrinsic camera pose (as motor). The model does not aim to 
describe the focusing properties of the imaging system, which can be achieved by implementing 
the full paraxial ray path for arbitrary rays within the aperture of a given field point – this is 
done for example in [10] and [11]. It instead describes the (simplified) system behavior of the 
camera in a concise manner by only modelling the chief rays on the object side (assuming an 
infinite depth of field), as is the standard procedure for camera calibration – but in a unifying 
manner for ento-, tele- and hypercentric lenses. In [12] the so-called inversion camera model 
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Figure 2: Object-sided chief ray path and camera model with camera constant 𝑐 for entocentric, telecentric 
and hypercentric lenses. 
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was introduced, demonstrating that the classical pinhole model can alternatively be 
implemented in terms of a circle inversion, making the model amenable to computations within 
the Conformal Geometric Algebra [13]. By then varying the position and size of the inverting 
circle, it is shown that both a special form of distortion (as in [14]) and the case of a catadioptric 
camera for the application of omnidirectional viewing (as in [15]) can be incorporated. While 
the telecentric case can in principle already be represented by these models as well (by 
deliberately choosing the camera center as an ideal point resp. point at infinity – a possibility 
that is however not explicitly addressed), they do not contain a smooth transition between the 
different perspectives. The concept presented below allowing for such a smooth transition with 
only one calibration parameter may also be adapted accordingly for these models. The 
formulation of the anycentric camera pinhole model proposed here aims to be minimal, hence 
PGA was chosen. 

3. ANYCENTRIC PINHOLE CAMERA MODEL 

The following proposed “anycentric” camera model (see Figure 3) is built in Plane-based 
Geometric Algebra (PGA) [4-7] ℝ!,#,$

∗  with 𝑒&' = 1 for 𝑖 = 1,2, … , 𝑛 and 𝑒#' = 0, describing 
the Euclidean space with dimension 𝑛. Constructing the model can be broken down into the 
following three steps. The camera center1 is called 𝒄, the Hodge duality operator [7] is denoted 
as “∗”. 

 
1 Mind the deliberately subtle difference between the camera center 𝒄 (multivector, printed in bold) and the 

classical camera constant 𝑐 (scalar). 
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Figure 3: Anycentric camera model with smooth transition 
between ento-, tele- and hypercentric perspective. 
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1. Coordinate system: 
Although Geometric Algebra is generally coordinate-free, the first step is to introduce a 
coordinate system to be able to parameterize the model concisely. Classically, the origin of 
the camera coordinate system is placed in the camera center. However, since it should be 
possible to move the camera center to infinity (telecentric case), it is preferred to place it into 
the image with the “last” (𝑛th) axis corresponding to the optical axis of the camera. Of course, 
for the ento- and hypercentric case, it can be easily traced back to the classical model by the 
translation .𝒄 𝒆𝟎∗⁄ . 

2. Camera center 𝒄: 
The camera center is described by 

	 𝒄 = 𝒆𝒏∗ − 𝑘𝒆𝟎∗ 					with					𝑘 ∶= 1 𝑐9  (1) 

utilizing the projective geometry incorporated in the algebra. The new calibration parameter 
𝑘 (reciprocal camera constant) replaces the classical camera constant. Due to this 
formulation, the camera center can smoothly be moved (without case differentiation) to 
infinity. Thus, the model has a smooth transition between perspective and orthographic 
projection by varying only one calibration parameter (𝑘) – resulting in an entocentric pinhole 
model for 𝑘 > 0 (resp. 𝑐 > 0 like in [1]), a “telecentric pinhole model” for 𝑘 = 0 (resp. 𝑐 =
∞) and a hypercentric pinhole model for 𝑘 < 0 (resp. 𝑐 < 0 like in [3])2. 

3. Camera chief rays: 
Given image points 𝒑 that (of course) lie in the image, the chief rays can finally be 
constructed by the regressive product 

	 𝒄 ∨ 𝒑	. (2) 

The proposed model is dimension-agnostic: It models a camera in 𝑛-dimensional space 
capturing a (𝑛 − 1)-dimensional image, e.g. a line camera for 𝑛 = 2 or the standard areal 
camera for 𝑛 = 3. In order to be able to distinguish between physical light rays (𝒄 ∨ 𝒑) and 
“lines of sight” (𝒑 ∨ 𝒄), a fully oriented version [16] of PGA has been implemented (using both 
orientation-preserving undualization [7] and sandwich product [17]), since the camera center 𝒄 
flips its orientation in the entocentric case compared to the tele- and hypercentric cases. It is 
important to point out that the proposed model has ambiguities (especially with poor starting 
values). For example, the model in the hypercentric configuration can also be used 
“entocentrically” if the object is further away than the camera center (which, however, is not 
even a shortcoming of the model, but mirrors actual physical system behavior), or the camera 
model can inadvertently be used “backwards” (the object lies in negative optical axis direction, 
which is physically not possible). However, these ambiguities are more or less a matter of 
interpretation. If desired, they can easily be detected and reduced to the intuitive case by 
multireflections within the algebra after the calibration. 

4. SUMMARY 

This contribution demonstrates how the widely used pinhole camera model can be unified in a 
dimension-agnostic way for ento-, tele- and hypercentric lenses without greatly increasing its 
complexity using (oriented) PGA. The proposed implementation incorporates a smooth 
transition between these three perspectives by only varying one calibration parameter and is 
thus capable of directly calibrating telecentricity errors for the important case of telecentric 
lenses. 

 
2 The “missing” case 𝑘 = ∞ (𝑐 = 0) makes no sense optically, as ports can never coincide with pupils. 
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