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Summary of the Abstract

In this talk, we introduce and study generalized Lipschitz and spin groups in degenerate geo-

metric (Clifford) algebras of arbitrary dimension and signature. The generalized degenerate

Lipschitz and spin groups contain the corresponding ordinary Lipschitz and spin groups as

subgroups and coincide with them in the low-dimensional cases. We prove that an element of

the generalized degenerate Lipschitz group can be represented as a product of an element of

fixed parity and an element of the Grassmann subalgebra. It is shown that the values of norm

functions of elements of the generalized degenerate Lipschitz groups belong to the kernel of

the twisted adjoint representation. The introduced groups can be interesting for applications

in physics, engineering, and computer science.

Abstract

In this talk, we consider degenerate and non-degenerate real and complex geometric (Clifford)

algebras Gp,q,r, p + q + r = n ≥ 1, of arbitrary dimension and signature (in the case of

complex geometric algebra, we can take q = 0). We concentrate on the degenerate Gp,q,r,
r ̸= 0, however all the statements are true in the case r = 0. In particular, we consider the

Grassmann (exterior) algebra G0,0,r, which is denoted by Λr.

One of the most significant notions in the theory of spin groups is the twisted adjoint

representation ǎd. It is used to describe two-sheeted coverings of orthogonal groups by spin

groups. For the first time, ǎd has been introduced by Atiyah, Bott, and Shapiro in [2] in the

case r = 0. This definition can be straightforwardly generalized to the case of arbitrary Gp,q,r
in the following way. The twisted adjoint representation ǎd acts on the Lipschitz group Γ±Λ

p,q,r

(3) in the way ǎd : Γ±Λ
p,q,r → Aut(G1

p,q,r) as T 7→ ǎdT , where ǎdT : G1
p,q,r → G1

p,q,r is defined for

elements of the grade-1 subspace G1
p,q,r as

ǎdT (U) = T̂UT−1, U ∈ G1
p,q,r, T ∈ Γ±Λ

p,q,r, (1)
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where ̂ is the grade involution. The kernel of the twisted adjoint representation ǎd coincides

with the set of all invertible elements of the Grassmann subalgebra Λr:

ker(ǎd) = {T ∈ Γ±Λ
p,q,r : T̂UT−1 = U, ∀U ∈ G1

p,q,r} = Λ×
r , (2)

where × denotes the subset of all invertible elements of a set.

In the non-degenerate geometric algebras Gp,q,0, the Lipschitz group is defined as the

group of all invertible elements preserving the grade-1 subspace under the twisted adjoint

representation ǎd. Generalizing this definition to the case of the degenerate Gp,q,r, we similarly

define the Lipschitz group Γ±Λ
p,q,r as

Γ±Λ
p,q,r := {T ∈ G×

p,q,r : T̂G1
p,q,rT

−1 ⊆ G1
p,q,r}. (3)

The definition (3) of the degenerate Lipschitz group is used, for example, in the works

[3, 4, 6]. The upper index ±Λ in the notation of the Lipschitz group is due to the equivalent

definition (4), which we prove using Theorems 2 and 3:

Γ±Λ
p,q,r = {T ∈ (G(0)×

p,q,r ∪ G(1)×
p,q,r )Λ

×
r : T̂G1

p,q,rT
−1 ⊆ G1

p,q,r}. (4)

In the talk, we also discuss other approaches to define the degenerate Lipschitz group Γ±Λ
p,q,r

considered in the literature. In the particular case of the Grassmann algebra Λn, the Lipschitz

group Γ±Λ
0,0,n coincides with the kernel (2) of the twisted adjoint representation ǎd:

Γ±Λ
0,0,n = Λ×

n = ker(ǎd). (5)

The structure of the Lipschitz groups in the case of other degenerate geometric algebras Gp,q,r,
r ̸= n, is more complicated. We discuss the details in the talk.

We also consider the subgroup Γ±
p,q,r of the Lipschitz group Γ±Λ

p,q,r (4):

Γ±
p,q,r := {T ∈ G(0)×

p,q,r ∪ G(1)×
p,q,r : TG1

p,q,rT
−1 ⊆ G1

p,q,r} ⊆ Γ±Λ
p,q,r. (6)

The subgroup Γ±
p,q,r is discussed, for example, in [11]. Let us note Corollary E.27 of this work

regarding the form of an arbitrary element of the group Γ±
p,q,r (this statement can be found,

for example, in [6] as well). It is of interest to generalize this statement to more general cases.

In the case of the non-degenerate geometric algebra Gp,q,0, the groups Γ±
p,q,0 (6) and Γ±Λ

p,q,0

(3) coincide:

Γ±
p,q,0 = Γ±Λ

p,q,0. (7)

Theorem 1 The Lipschitz group Γ±Λ
p,q,r (4) can be represented as a product of the groups:

Γ±Λ
p,q,r = Γ±

p,q,rΛ
×
r . (8)

We consider the Lie group Q̌1
p,q,r:

Q̌1
p,q,r := {T ∈ G×

p,q,r : T̂G1
p,q,rT

−1 ⊆ G1
p,q,r}, (9)
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where G1
p,q,r is the subspace determined by the grade involution ̂ and the reversion ˜ :

Gkp,q,r := {U ∈ Gp,q,r : Û = (−1)kU, Ũ = (−1)
k(k−1)

2 U} =
⊕

j=k mod 4

Gjp,q,r, k = 0, 1, 2, 3.

We call the group Q̌1
p,q,r (9) the generalized degenerate Lipschitz group because of Theorem 2.

Theorem 2 The group Q̌1
p,q,r contains the Lipschitz group Γ±Λ

p,q,r as a subgroup and coincides

with it in the case of the low-dimensional Gp,q,r:

Γ±Λ
p,q,r ⊆ Q̌1

p,q,r, ∀n; Γ±Λ
p,q,r = Q̌1

p,q,r, n ≤ 4. (10)

We also consider the following Lie group introduced and studied in [8, 9]:

P±Λ
p,q,r := (G(0)×

p,q,r ∪ G(1)×
p,q,r )Λ

×
r , (11)

where G(0)
p,q,r and G(1)

p,q,r are the even and odd subspaces respectively.

Theorem 3 We have the following inclusion:

Q̌1
p,q,r ⊆ P±Λ

p,q,r. (12)

Consider the following two norm functions, which are widely used in the theory of spin

groups:

ψ(T ) := T̃ T, χ(T ) :=
̂̃
TT, ∀T ∈ Gp,q,r. (13)

Theorem 4 The generalized Lipschitz group Q̌1
p,q,r has the following equivalent definition:

Q̌1
p,q,r = {T ∈ G×

p,q,r : T̃ T ∈ ker(ǎd),
̂̃
TT ∈ ker(ǎd)}. (14)

Therefore, the values of the norm functions (13) of the degenerate Lipschitz groups’ elements

are in the kernel of ǎd (2):

T̃ T ∈ ker(ǎd),
̂̃
TT ∈ ker(ǎd), ∀T ∈ Γ±Λ

p,q,r. (15)

The degenerate spin groups are discussed in many papers [1, 3, 4, 5, 6, 7, 11, 10, 12]. In

the talk, we discuss several approaches how to define these groups and the relation between

them. We define the ordinary degenerate spin groups (17)–(20) as normalized subgroups of

the Lipschitz group Γ±Λ
p,q,r (4) and its even subgroup

Γ+
p,q,r := {T ∈ G(0)×

p,q,r : TG1
p,q,rT

−1 ⊆ G1
p,q,r} ⊆ Γ±

p,q,r (16)

in the following way:

Pinψ(p, q, r) := {T ∈ Γ±Λ
p,q,r : T̃ T = ±e}, Pinχ(p, q, r) := {T ∈ Γ±Λ

p,q,r :
̂̃
TT = ±e}, (17)

Pin+ψ(p, q, r) := {T ∈ Γ±Λ
p,q,r : T̃ T = +e}, Pin+χ(p, q, r) := {T ∈ Γ±Λ

p,q,r :
̂̃
TT = +e},(18)

Spin(p, q, r) := {T ∈ Γ+
p,q,r : T̃ T = ±e} = {T ∈ Γ+

p,q,r :
̂̃
TT = ±e}, (19)

Spin+(p, q, r) := {T ∈ Γ+
p,q,r : T̃ T = +e} = {T ∈ Γ+

p,q,r :
̂̃
TT = +e}. (20)
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In the particular case of the non-degenerate geometric algebras Gp,q,0, the groups Pinψ(p, q, 0)
and Pinχ(p, q, 0) coincide. However in the general case of arbitrary Gp,q,r, the six groups (17)–

(20) are different.

In this talk, we introduce and study the generalized degenerate spin groups. We define

them as normalized subgroups of the generalized degenerate Lipschitz group Q̌1
p,q,r (9) and

its even subgroup G(0)×
p,q,r :

PinQ
ψ (p, q, r) := {T ∈ (G(0)×

p,q,r ∪ G(1)×
p,q,r )Λ

×
r : T̃ T = ±e}, (21)

PinQ
χ (p, q, r) := {T ∈ (G(0)×

p,q,r ∪ G(1)×
p,q,r )Λ

×
r :

̂̃
TT = ±e}, (22)

PinQ
+ψ(p, q, r) := {T ∈ (G(0)×

p,q,r ∪ G(1)×
p,q,r )Λ

×
r : T̃ T = +e}, (23)

PinQ
+χ(p, q, r) := {T ∈ (G(0)×

p,q,r ∪ G(1)×
p,q,r )Λ

×
r :

̂̃
TT = +e}, (24)

SpinQ(p, q, r) := {T ∈ G(0)×
p,q,r : T̃ T = ±e} = {T ∈ G(0)×

p,q,r :
̂̃
TT = ±e}, (25)

SpinQ
+(p, q, r) := {T ∈ G(0)×

p,q,r : T̃ T = +e} = {T ∈ G(0)×
p,q,r :

̂̃
TT = +e}. (26)

The generalized degenerate spin groups (21)–(26) contain the corresponding ordinary degen-

erate spin groups (17)–(20) as subgroups.

The ordinary degenerate Lipschitz groups and spin groups [1, 3, 4, 6] have applications in

construction of Clifford group equivariant neural networks [11] and geometric Clifford algebra

networks [12], representation theory of Galilei group in quantum mechanics [4], etc. The

generalized degenerate spin groups can be interesting for applications of geometric algebras,

for example, in physics, computer vision, and neural networks.

References

[1] Ablamowicz R., Structure of spin groups associated with degenerate Clifford algebras.

J. Math. Phys., volume 27(1), pages 1–6, 1986.

[2] Atiyah M., Bott R., and Shapiro A., Clifford Modules. Topology, volume 3, pages 3–38,

1964.

[3] Brooke J., A Galileian formulation of spin. I. Clifford algebras and spin groups. J. Math.

Phys., volume 19, 1978.

[4] Brooke J., Spin Groups Associated with Degenerate Orthogonal Spaces. Clifford Alge-

bras and Their Applications in Mathematical Physics, Part of the NATO ASI Series,

volume 183, pages 93–102, 1986.

[5] Brooke J., Clifford Algebras, Spin Groups and Galilei Invariance – New Perspectives.

Thesis, University of Alberta, 1980.

[6] Crumeyrolle A., Orthogonal and Symplectic Clifford Algebras. 1st edition. Springer,

Netherlands, 1990.

4



[7] Dereli, T., Kocak, S., Limoncu, M.: Degenerate Spin Groups as Semi-Direct Products.

Advances in Applied Clifford Algebras 20, 565–573 (2010).

[8] Filimoshina E., Shirokov D., On some Lie groups in degenerate geometric algebras. In:

Eckhard Hitzer & Dietmar Hildenbrand (eds), First International Conference, ICACGA

2022, Colorado Springs, CO, USA, 2022, Proceedings. Lecture Notes in Computer Sci-

ence, volume 13771, pages 186–198, 2024.

[9] Filimoshina E., Shirokov D., On Some Lie Groups in Degenerate Clifford Geometric Al-

gebras. Advances in Applied Clifford Algebras, volume 33(44), 2023, arXiv:2301.06842.

[10] Roelfs M., De Keninck S., Graded Symmetry Groups: Plane and Simple. Adv. Appl.

Clifford Algebras, volume 33(30), 2023.
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