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Summary of Abstract

The second author has recently shown that one can define and study Lorentzian
vector spaces based on the concept of compatible null vectors. Around the same time the
first author used the relation r “ t{s between the in-radius r, area t and semi-perimeter
s of a triangle to generalize Heron’s classical formula to simplices in all dimensions.
A few years earlier, Udo Hertrich-Jeromin, Alastair King and Jun O’Hara used the
conformal model of Euclidean geometry to show that the vertices of a triangle are related
to its ex-centers via reflection w.r.t. a time-like vector exchanging its in-center with the
point-at-infinity, an operation they named the conformal dual. In this Abstract, we will
explore the interconnections among these three previously independent lines of study
of the Lorentzian geometric algebras, focusing on the simple case of G3,1.

Compatible Null Vectors and Conformal Geometric Algebra. In a recent series of
papers [4, 5], the second author has characterized Lorentzian metric vector spaces, which
have signature r1,´1, . . . ,´1s or r´1, 1, . . . , 1s, in terms of the geometric algebras generated
by a set of abstract null vectors. Any such pair of non-zero null vectors a2 “ b2 “ 0 is easily
seen to satisfy the multiplication table

Null Vector Multiplication Table
2a ‚b “ γ a b ab ba

a 0 ab 0 γa
b ba 0 γb 0
ab γa 0 γab 0
ba 0 γb 0 γba

(1)

wherein γ “ pab`baq “ 2a‚b ‰ 0, and to generate the geometric algebra G1,1. A pair of null
vectors for which 2a ‚ b “ 1 is called a conjugate pair, in which case ab and ba are mutually
annihilating idempotents that partition unity. A set of null vectors tai | i “ 0, . . . , nu with
γij “ γji – 2ai ‚ aj is said to positively correlated if γij ą 0 and negatively correlated if
γij ă 0 for all 0 ď i, j ď n. More generally, if there exist ϵi P t˘1u such that tϵi aiu is
positively or negatively correlated, the vectors will be called mutually compatible. Such a
(mutually) compatible system of null vectors generates an algebra which is isomorphic to
G1,n when it is positively correlated, or Gn,1 when it is negatively correlated.
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In particular, the geometric algebra Gn`1,1 of the well-known “conformal model” of n-
dimensional Euclidean (and conformal) geometry is obtained from any negatively correlated
system of n ` 1 null vectors with a0 ‚ ai “ ´1 for 0 ď i ď n ` 1. In this case, the
indefinite analogue of Gram-Schmidt ortho-normalization given in Refs [4, 5] will produce
an orthonormal basis including f “ a1 ` a0{2, e0 “ a1 ´ a0{2, and an additional n anti-
commuting linear combinations of the null vectors e1, . . . , en with ´f2 “ e21 “ ¨ ¨ ¨ e2n “ 1.
It can then be shown that ai “ a1 ` ai ` a0 a

2
i {2, where ai is the orthogonal projection

of ai on the subspace xxe1, . . . , enyy for i “ 2, . . . , n ` 1, so that a0 serves as the point-
at-infinity n8 of the conformal model while a1 plays the role of the origin n0 . It should
be noted however that a positively correlated system could be used just as well, and that
this is in some respects more natural since then the inner products are half the squared
distances rather than the negatives thereof, and n8 “ a0 is conjugate to n0 “ a1 as well
as a2, . . . , an`1 . Nonetheless, in what follows we will stick with negatively correlated null
vectors and conformal geometric algebra as it is commonly defined.

Hence consider a negatively correlated system of four null vectors a, b, c,n8 P G3,1 sat-
isfying a ‚ n8 “ b ‚ n8 “ c ‚ n8 “ ´1, as in Ref. [2, §5]. These vectors determine a triangle
in the Euclidean plane having squared edge lengths a2 “´2 b ‚ c, b2 “´2a ‚ c, c2 “´2a ‚ b.
Without loss of generality we may take a as the origin and write

a “ n0 , b “ n0 ` b ` n8 c2{2 , c “ n0 ` c ` n8 b2{2 (2)

(a “ 0,b, c P G2 Ă G3,1). Then the squared area of the triangle is given by

t2 – 1
4

}b^c}
2

“ 1
4

`

b2c2 ´ pb ‚ cq
2
˘

“ 1
4

`

b2c2 ´ pb2 ` c2 ´ a2q2{4
˘

“ 1
16

pa ` b ` cqpa ` b ´ cqpa ´ b ` cqp´a ` b ` cq ,
(3)

where the law of cosines was used at the end of the first line. The r.h.s. is of course Heron’s
formula for the (squared) area of a triangle Ja,b, cK.

We can “lift” this G2 formula into an expression involving the corresponding null vectors
together with the point-at-infinity in G3,1 as follows. First, note that a2 “ a2 “ 0, pb´aq2 “

2a ‚ b “ c2 and pc ´ aq2 “ 2a ‚ c “ b2 while pb ´ aq ‚ pc ´ aq “ b ‚ c ´ a ‚ pb ` cq “
1
2
pb2 ` c2 ´ a2q “ b ‚ c. It follows that t2 “ }pb ´ aq ^ pc ´ aq}2 as well. Expanding this

outer product gives b^ c ´ a^ c ` a^ b, which is the boundary ´n8
‚ pa^ b^ cq of the

trivector formed from the vertices of the triangle. From this we can show that t2 is given by
the Cayley-Menger determinant ´}n8 ^a^b^c}2 of the vertices, namely

`

pc^b^aq ‚ n8

˘

‚

`

n8
‚ pa^b^cq

˘

“

pc^b^a
˘

‚

`

n8 ^
`

n8
‚ pa^b^cq

˘˘

“

´
`

c^b^a
˘

‚

`

n8
‚

`

n8 ^pa^b^cq
˘˘

“

´
`

c^b^a^n8

˘

‚

`

n8 ^a^b^c
˘

.

(4)

Expansion of this determinant in the squared edge lengths yields a polynomial which factor-
izes to give Heron’s formula as above.
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Heron’s Formula and the Heron Parameters. In the course of extending Heron’s
formula for the area of a Euclidean triangle to the hyper-volumes of simplices in all dimensions
n, the first author introduced a set of npn ´ 1q{2 invariant non-negative parameters that
jointly determine an n-simplex up to isometry [1, 2]. He called them the natural parameters
because, in contrast to the multi-variate polynomial equalities and inequalities the inter-
vertex distances must fulfill, the consistency relations they satisfy are nearly trivial. In
particular, a triangle Ja,b, cK Ă R2 may be specified up to isometry by the three independent
parameters u, v, w ě 0, which determine its edge lengths simply as a “ v ` w, b “ u ` w,
c “ u`v. The tangency of the triangle’s edges to its in-circle together with the Pythagorean
theorem shows that u, v, w are the equal lengths of the pairs of line segments connecting its
vertices to its in-touch points j,k, l (cf. Fig. 1). This simple geometric interpretation played
a key role in generalizing Heron’s formula to higher dimensions.

The geometric properties of triangles and triangle centers often become algebraically
much simpler when expressed in terms of u, v, w. For example, the Pythagorean criterion
for the triangle to have a right angle at a is su “ vw where s – u` v `w “ pa` b` cq{2 is
its semi-perimeter, while Heron’s formula for the squared area of the triangle becomes

t2 “ s uvw “ 1
2
s Ωpu, v, wq – 1

2
pu ` v ` wq det

»

–

0 u v
u 0 w
v w 0

fi

fl . (5)

Hence the natural parameters of a triangle are also known as Heron parameters. Upon
solving the above three linear equations giving a, b, c in terms of u, v, w, we find that u “

p´a` b` cq{2, v “ pa´ b` cq{2 & w “ pa` b´ cq{2, which yields the traditional version of
Heron’s formula (3) upon substitution.

The zeros of Heron’s formula are degenerate triangles with collinear vertices, and the
factor u, v or w thereof that vanishes depends upon which vertex lies between the other two.

Figure 1: The geometric interpretation of the Heron parameters u, v, w as the equal lengths
of the pairs of line segments into which the edges incident each vertex of the triangle ABC
are divided by the in-touch points J,K, L of its in-circle. These parameters determine the
in-radius r “ t{s “

a

uvw{s, where s “ u ` v ` w is the semi-perimeter, and hence its area
as t “

?
s uvw. (Reproduced with permission from Ref. [1].)
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Surprisingly, the zeros in higher dimensions are much more subtle, and indeed unprecedented
in classical Euclidean geometry. In particular, the generic zeros in three dimensions do not
correspond to tetrahedra with co-planar vertices, but to collinear tetrahedra with vertices
separated by infinite distances [1]! The conformal geometric algebra derivation of the formula
for tetrahedra [2] however suggests that these strange geometric configurations can be better
understood by taking the full conformal symmetry of the equations into account. The final
section of this Abstract gives an overview of how that works in two dimensions.

The Conformal Center and Dual of a Triangle. In an absolutely beautiful expository
paper that has garnered but a single independent citation in the decade since it was published
[3], Udo Hertrich-Jeromin, Alastair King & Jun O’Hare showed that the three ex-centers
and in-center of a triangle are “dual” to its vertices and the point-at-infinity. This duality
relation is moreover preserved under conformal (or Möbius) transformations, earning it the
cognomen of the conformal dual. Here we reformulate their main ideas in the conformal
geometric algebra G3,1, with emphasis on their interpretations in the Euclidean plane.

This is most elegantly done by renormalizing the null vectors a, b, c P G3,1 representing
the vertices along with the point-at-infinity n8 as follows. First, one computes the recip-
rocal vector space basis rA,B,C,Ds of the basis ra, b, c, d – n8s, which satisfies a ‚ A
“ b ‚ B “ c ‚ C “ d ‚ D “ 1 while all the other inner products between the two bases
vanish. Geometrically, the reciprocal vectors A,B,C dually represent the lines spanned by
the edges Jb, cK, Ja, cK, Ja,bK resp., in that any point x is on those lines whenever x ‚A “ 0,
x ‚ B “ 0, x ‚ C “ 0, and their Lorentzian norms }A} “ 1{ha, }B} “ 1{hb, }C} “ 1{hc are
the inverse heights of the vertices over their opposite edges. The reciprocal vector D rep-
resents the circum-circle of the triangle in the same way, and its norm }D} “ R is the
circum-radius of the triangle. Second, one scales the reciprocal vectors to obtain a new basis
Â – ha A, B̂ – hbB, Ĉ – hcC & D̂ “ D{R the norms of which are all unity. The
inner products of the null vector basis with their respective normalized reciprocals are then
ha, hb, hc, whereas d ‚ D̂ “ 1{R. Finally, one applies the inverse scale factors to the corre-
sponding null vectors to obtain a new basis satisfying â ‚ Â “ b̂ ‚ B̂ “ ĉ ‚ Ĉ “ d̂ ‚ D̂ “ 1, so
the two renormalized bases again constitute a reciprocal pair.

The conformal center of the quadrangle â, b̂, ĉ, d̂ is then defined as half the sum of these
renormalized null vectors:

z “ 1
2

`

â ` b̂ ` ĉ ` d̂
˘

“ 1
2

`

a{ha ` b{hb ` c{hc ` n8 R
˘

(6)

Using the well-known relation 1{r “ 1{ha`1{hb`1{hc where r is the in-radius of the triangle
as above, we find that

4 }z}
2

“ 2
´a ‚ b

hahb
`

a ‚ c

hahc
`

b ‚ c

hbhc

¯

´ 2
´ 1

ha
`

1

hb
`

1

hc

¯

R

“ ´
c2

hahb
´

b2

hahc
´

a2

hbhc
´ 2

R

r
. (7)
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Figure 2: The conformal dual of a triangle is obtained by reflecting its vertices A,B,C in the
in-center I to get A1,B1,C1, and then inverting those points in the circle z (magenta) centered
on I with radius 2

?
rR, where r & R denote the in-radius and circum-radius, resp. The

results A2, B2, C2 coincide with the ex-centers IA, IB, IC, resp., while the point-at-infinity is
mapped to the in-center. The reciprocal basis of the triangle consists of the lines spanned by
the edges opposite each vertex and its circum-circle (green), which is “opposite” the point-
at-infinity; the cyan circles are the reciprocal basis of its conformal dual.

The first term on the right can also be simplified as

´
c2hc ` b2hb ` a2ha

hahbhc
“ ´

4 s t

8 t3{pabcq
“ ´

s abc

2 t2
“ ´

2 sR

t
“ ´

2R

r
, (8)

(since abc “ 4 tR) and hence }z}2 “ ´R{r, a scale-independent ratio.
It follows that the reflection of e.g. â w.r.t. ẑ – z{}z} is

ẑ â ẑ “ ´
r

4R

`

b̂ â b̂ ` ĉ â ĉ ` d̂ â d̂ `

pb̂ â ĉ ` ĉ â b̂q ` pb̂ â d̂ ` d̂ â b̂q ` pĉ â d̂ ` d̂ â ĉq
˘

. (9)

The reverse-symmetric terms in this expansion can themselves be further expanded as b̂ â b̂ “

b̂ pâ ‚ b̂ ` â^ b̂q “ 2 pâ ‚ b̂q b̂ etc., and b̂ â ĉ ` ĉ â b̂ “ pâ ‚ b̂ ´ â^ b̂q ĉ ` ĉ pâ ‚ b̂ ` â^ b̂q “

2 pâ ‚ b̂q ĉ ` 2 pâ ‚ ĉq b̂ ´ 2 pb̂ ‚ ĉq â, etc. The inner products of the renormalized null vectors
in these expressions are given by e.g.

â ‚ b̂ “
a ‚ b

ha hb
“ ´

abc2

8 t2
“ ´

Rc

2 t
(10)
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as well as e.g.

ĉ ‚ d̂ “
c ‚ n8

hc{R
“ ´

Rc

2 t
“ â ‚ b̂ , (11)

Together with r “ t{s, Eqs. (10) & (11), and their analogues for the other pairs of null
vectors, this works out to:

ẑ â ẑ “ p4 sq
´1

`

c b̂ ` b ĉ ` a d̂ ` pc ĉ ` b b̂ ´ a âq

` pc d̂ ` a b̂ ´ b âq ` pb d̂ ` a ĉ ´ c âq
˘

“ p´â ` b̂ ` ĉ ` d̂q { 2

(12)

In a similar fashion we obtain ẑ b̂ ẑ “ pâ ´ b̂ ` ĉ ` d̂q{2, ẑ ĉ ẑ “ pâ ` b̂ ´ ĉ ` d̂q{2, and
ẑ d̂ ẑ “ pâ ` b̂ ` ĉ ´ d̂q{2.

These reflections w.r.t. ẑ are the conformal duals â˚, b̂˚, ĉ˚, d̂˚ of the renormalized ver-
tices and point-at-infinity. It can be shown that â˚ “ ia{p2 raq, b̂˚ “ ib{p2 rbq, ĉ˚ “ ic{p2 rcq
and d̂˚ “ i{p2 rq where ia, ib, ic P G3,1 are the centers of the ex-circles opposite the vertices
a, b, c resp., i P G3,1 is the center of the in-circle, and ra, rb, rc, r are the corresponding
radii. Since }z}2 ă 0, this duality corresponds to inversion in a circle centered on i of radius
2 r{

a

r{R “ 2
?
r R preceded or followed by reflection in i (cf. Fig. 2).

Finally, note that the Gramian of the renormalized vectors is

pd̂^ ĉ^ b̂^ âq ‚ pâ^ b̂^ ĉ^ d̂q “
R4

16 t4
det

»

—

—

–

0 c b a
c 0 a b
b a 0 c
a b c 0

fi

ffi

ffi

fl

(13)

“
R4

16 t4
pa ` b ` cqpa ` b ´ cqpa ´ b ` cqpa ´ b ´ cq ,

which by Heron’s formula is just ´R4{t2, again a scale-independent quantity. This may be
viewed as a conformally invariant version of Heron’s formula, which brings us in a full circle.
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