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Summary of the Abstract

”For who can make that straight, which he hath made crooked?” Ecclesiastes 7:13

In a sub-Riemannian space we can neither move nor send information in all the direc-
tions, nor can we receive information from everywhere. There are constraints (imposed
by God, by a moral imperative, by a government, or just by the laws of Nature). We
study the role of geometric algebras in sub-Riemannian space. We mainly discuss control
problems on free Carnot groups of step 2, specially Heisenberg group.

Actual Abstract Sections

1 Introduction

Geometric control theory utilizes various geometric approaches to manage different dy-
namical systems [10, 4], with a particular focus on sub-Riemannian geometry within the
Hamiltonian framework [2, 1]. Our goal is to expand these methodologies by integrating
geometric algebras (GA) that are in line with the essence of these challenges. In this
pursuit, we reframe certain control problems using GA concepts [14, 15, 16], leveraging
the natural SO(n)-invariant operations within geometric algebras to effectively handle
sets of optimal solutions [6].

2 Carnot groups

Carnot groups are a subclass of Lie groups characterized by having a nilpotent Lie al-
gebra. A Lie group is essentially a smooth manifold endowed with a group structure.
Important examples of Lie groups include matrix groups such as SO(n) and O(n), as well
as their coverings, i.e. Clifford groups Spin(n) and Pin(n), which we’ll delve into later.
The Lie algebra corresponding to a Lie group G consists of the tangent space TeG at the
identity element, along with the Lie bracket operation [, ]. An algebra g is considered
nilpotent if it satisfies the condition [g, [g, [g . . . ]]] = 0, where the brackets are nested.
If [g, [g, g]] = 0, the nilpotency step is two. A fundamental example of a Carnot group
with step two is the three-dimensional Heisenberg group, denoted as H3. The terms ”Lie
group,” ”Lie algebra,” and ”Lie bracket” pay homage to the Norwegian mathematician



Sophus Lie (1842 - 1899), whose contributions laid the groundwork for these concepts.
Additionally, Sophus Lie’s legacy extends to the inception of the Abel Prize, often re-
garded as the Nobel Prize equivalent in the realm of Mathematical Sciences. Today, Lie
groups hold significant importance in various fields, including mechanics and quantum
mechanics.

2.1 Heisenberg group H3

The Heisenberg group is named after Werner Heisenberg (1901 - 1976) German theoret-
ical physicist, one of the main pioneers of the theory of quantum mechanics. It can be
seen as the subset of matrices

G =


1 a c
0 1 b
0 0 1

∣∣∣∣∣a, b, c ∈ R

 (1)

which forms a group with the usual matrix multiplication:1 a1 c1
0 1 b1
0 0 1

1 a2 c2
0 1 b2
0 0 1

 =

1 a1 + a2 c1 + c2 + a1b2
0 1 b1 + b2
0 0 1

 .

Clearly, the bijection ψ(x1, x2, t) =

1 x1 t
0 1 x2
0 0 1

 induces a group structure on R3 and

the left-invariant fields on this group (Proposition 1.2 in [5])

X = ∂x1 , Y = ∂x2 + x1∂t, T = ∂t

form a nilpotent Lie algebra ⟨X, Y, T = [X, Y ]⟩. The form of the vector fields was
determined by the choice of coordinates. With a straightforward change of coordinates
(as demonstrated in Proposition 1.3 in [5]), we can transform them into a vector field
represented in a symmetric form

X = ∂y1 − 2y2∂τ , Y = ∂y2 − 2y1∂τ , T = 4∂τ ,

where the group operation on R3 will then be of the form

(y1, y2, τ) ◦ (ȳ1, ȳ2, τ̄) = (y1 + ȳ1, y2 + ȳ2, τ + τ̄ − 2(y1ȳ2 − y2ȳ1)). (2)

The Lie group (R3, ◦) is called symmetric three dimensional Heisenberg group H3, the
element (0, 0, 0) is origin and the inverse is (y1, y2, τ) = (−y1,−y2,−τ).
The group H3 can be realized in the Grassmannian algebra Gr(2) by the identification

(y1, y2, t) 7→ 1 + y1e1 + y2e2 + te1 ∧ e2,

where the multiplication coincides with wedge operation

(1 + y1e1 + y2e2 + te1 ∧ e2) ∧ (1 + ȳ1e1 + ȳ2e2 + t̄e1 ∧ e2)
= 1 + (y1 + ȳ1)e1 + (y2 + ȳ2)e2 + (t+ t̄+ (y1ȳ2 − y2ȳ1))e1 ∧ e2).

(3)

Note that, the difference in the last term in (2) and (3) is caused by slightly different
definition of Lie bracket and wedge product on vectors [a, b] = ab− ba = −2a ∧ b.
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2.2 Free Carnot groups of step two.

The multiplication (2) can be interpreted that the Heisenberg group is isomorphic to
the semidirect product R2 ⋊ so(2) where the mentioned multiplication can be seen as

((y1, y2), τ) ◦ ((ȳ1, ȳ2), τ̄) = ((y1, y2) + (ȳ1, ȳ2), (τ + τ̄)− 2(y1, y2)

(
0 1
−1 0

)
(ȳ1, ȳ2)

T ),

where

(
0 1
−1 0

)
is generator of so(2).

In general we denote free Carnot groups of step two as Lie groups Cn which are iso-
morphic to Rn ⋊ so(n). In dimension n = 3 we speak of so called Cartan group
C3 = R3 ⋊ so(3) together with an operation defined by

(u,A) ◦ (ũ, Ã) = (u+ ũ, A+ Ã− 2(uE1ũ
T + uE2ũ

T + uE3ũ
T )), (4)

where E1 =

0 0 −1
0 0 0
1 0 0

, E2 =

 0 1 0
−1 0 0
0 0 0

 and E1 =

0 0 0
0 0 1
0 −1 0

 are generators of

so(3).

Free Carnot group C3 = Rn ⋊ so(n) of step two can be realized in the Grassmannian

algebra Gr(n) by the identification Rm ⊕ R
n(n−1)

2 ∼= Rm ⊕ ∧2Rm, i.e.

(y1, · · · yp, t12, . . . tn−1n) 7→ 1 + y1e1 + · · ·+ ynen + t12e1 ∧ e2 + · · ·+ tn−1nen−1 ∧ en. (5)

3 Nilpotent control problem

By nilpotent control problems we mean the invariant control problems on Carnot groups
and we consider the free Carnot groups Cn of step 2, [1, 13, 11]. If we denote the local
coordinates by (x, z) ∈ Rm ⊕ ∧2Rm, we can model the corresponding Lie algebra g as

Xi = ei + ei ∧ (e1 + · · ·+ em),

Xij = ei ∧ ej.
(6)

We discuss the related optimal control problem

q̇(t) = u1X1 + · · ·+ umXm (7)

for t > 0 and q in G and the control u = (u1(t), . . . , um(t)) ∈ Rm with the boundary
condition q(0) = q1, q(T ) = q2 for fixed points q1, q2 ∈ G, where we minimize the

cost functional 1
2

∫ T

0
(u21 + · · · + u2m)dt. The solutions q(t) then correspond to the sub–

Riemannian geodesics, i.e. admissible curves parametrized by a constant speed whose
sufficiently small arcs are the length minimizers.

The cost function mentioned above corresponds to the energy and in the square to the
length of the curve. In fact, it is a quadratic form on Rn and identification (5) can be
seen as

Rm ⊕ R
n(n−1)

2 ↪→ Gn,

where Gn is a geometric algebra with positive definite signature.
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3.1 Controls - vertical (fiber) system

We use the Hamiltonian approach to this control problem [1]. There are no strict
abnormal extremals for the step 2 Carnot groups, so we focus on the normal geodesics
and address them just as geodesics. The left–invariant vector fields Xi, i = 1, . . . ,m
form a basis of TG and determine the left–invariant coordinates on G. We define the
corresponding left–invariant coordinates hi, i = 1, . . . ,m and wi, i = 1, . . . ,

(
m
2

)
on the

fibres of T ∗G by hi(λ) = λ(Xi) and wi(λ) = λ(Xm+i), for arbitrary 1–forms λ on G.
Thus we use (xi, wi) as the global coordinates on T ∗G. The geodesics are exactly the
projections of normal Pontryagin extremals. Using uj(t) = hj(λ(t)) and the equation

λ̇(t) = H⃗(λ(t)) for the normal extremals, we write the fiber system as

ḣi = −
m−n∑
l=1

m∑
j=1

clijhjwl, i = 1, . . . ,m,

ẇj = 0, j = 1, . . . ,

(
m

2

)
,

(8)

where clij are the structure constants of the Lie algebra g for the basis Xi. The solutions
wi, i = 1, . . . , n−m are constants that we denote by

w1 = K1, . . . , wn−m = K(m2 )
. (9)

If at least one ofKi is non–zero, the first part of the fibre system (8) forms a homogeneous
system of ODEs ḣ = −Ωh with constant coefficients for h = (h1, . . . , hm)

T and the
system matrix Ω. Its solution is given by h(t) = e−tΩh(0), where h(0) is the initial value
of the vector h at the origin.

In the geometric algebra framework, we have

Ω = Kie1 ∧ e2 + · · ·K(m2 )
em−1 ∧ em

and e−tΩ ∈ Spin(m).

For example in C2 = H3 and C3, we have ω = Ke1 ∧ e2 and ω = K1e1 ∧ e2 + K2e1 ∧
e3 +K3e2 ∧ e3 respectively. So

h1 = g1h(0)ḡ1, g1 = cos(Kt) + sin(Kt)e1 ∧ e2 (10)

h2 = g1h(0)ḡ1, g2 =
1

K
(cos(Kt) + sin(Kt)(K1e1 ∧ e2 +K2e2 ∧ e3 +K3e1 ∧ e3)),

(11)

where K = K2
1 +K2

2 +K2
3

3.2 Geodesics - base (horizontal) systems

Assume that λ(t) = (xi(t), zi(t), hi(t), wi(t)) in T ∗G is a normal extremal. Then the
controls uj to the system (7) satisfy uj(t) = hj(λ(t)) and the base system takes the form
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of

ẋi = hi, i = 1, . . . ,m

żj = −1

2

m∑
i=1

cjikhixk, j = 1, . . . , n−m
(12)

for q = (xi, zi).

In C2 and C3 we have

x1(t) =

∫
g1(t)h0g1(t)dt, x2(t) =

∫
g2(t)h0g2(t)dt, (13)

z1(t) =

∫
h1(t) ∧ ẋ1(t)dt z2(t) =

∫
h2(t) ∧ ẋ1(t)dt, (14)

where K = K2
1 +K2

2 +K2
3 .

4 Mechanical motivation: vertical rooling disc

As a motivation, we consider mechanisms moving in the plane, typically wheeled mech-
anisms like cars (with or without trailers) robotic snakes [7, 9] or trident snake mech-
anisms, [9, 8]. To control the mechanisms locally, we consider the nilpotent approx-
imations of the original control systems [3]. Although the configuration spaces and
their approximations have the same filtration, the approximations form Carnot groups
generally endowed with more symmetries [12]. One gets the symmetries generated by
the right–invariant vector fields, and there may be additional symmetries acting non–
trivially on the distribution. This observation leads to the idea of local control in the
geometric algebra approach.
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[8] J. Hrdina, L. Zalabová, Local geometric control of a certain mechanism
with the growth vector (4,7), J. Dyn. Control Syst. 26 (2020) 199–216
https://doi.org/10.1007/s10883-019-09460-7

[9] M. Ishikawa, Trident snake robot: locomotion analysis and con-
trol. IFAC Symposium on Nonlinear Control Systems 6 (2004) 895–900
https://doi.org/10.1016/S1474-6670(17)31339-3

[10] V. Jurdjevic, Geometric Control Theory (Cambridge Studies in Advanced Mathe-
matics. Cambridge: Cambridge University Press (1996)

[11] A. Montanari, G. Morbidelli, On the sub–Riemannian cut locus in a model of free
two-step Carnot group. Calc. Var. 56(36) (2017) https://doi.org/10.1007/s00526-
017-1149-1

[12] O. Myasnichenko, Nilpotent (3, 6) sub–Riemannian prob-
lem. Journal of Dynamical and Control Systems, 8(4) (2002) 573–
597https://doi.org/10.1023/A:1020719503741

[13] L. Rizzi, U. Serres, On the cut locus of free, step two Carnot groups, Proc. Amer.
Math. Soc. 145 (2017) 5341–5357 https://doi.org/10.1090/proc/13658

[14] D. Hildenbrand, Foundations of Geometric Algebra Computing, Springer Verlag
(2013)

[15] Ch. Perwass, Geometric Algebra with Applications in Engineering, Springer Verlag
(2009)

[16] P. Lounesto, Clifford Algebra and Spinors. 2nd edn. CUP, Cambridge (2006).

6


	Introduction
	Carnot groups
	Heisenberg group H3
	Free Carnot groups of step two.

	Nilpotent control problem
	Controls - vertical (fiber) system
	Geodesics - base (horizontal) systems

	Mechanical motivation: vertical rooling disc

