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Symmetries of Maxwell’s equations of electrodynamics are studied from the point of view of
Stokes’ boundary theorem in geometric calculus. We show how considering the magnetic vector
potential leads to a more direct correspondence and elaborate on its properties using hydrodynamical
analogies.

I. INTRODUCTION

For the past one and a half century, Maxwell’s equa-
tions for electrodynamics have been heavily investigated
and applied in a wide range of systems and settings1–7.
Although the their vector derivative format is more com-
monly studied, their integral form can be seen to contain
more information, as the dimensionality of the manifolds
in which the fields are summed up in are made explicit,
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Furthermore, the time derivative outside of the integral
in Eq. (1) encodes the Lorentz force law, if Reynolds
transport theorem is used8. The vector derivative form
of the equations is obtained by applying the relevant vec-
tor integral theorems9, and omitting the integrals and
differential elements of both sides.

The integral vector theorems of vector calculus can
be generalized and combined in a single theorem com-
monly known as Stokes’ theorem, using differential forms
along with the exterior derivative10,11. Hestenes has
argued12,13 that Stokes’ theorem via the exterior deriva-
tive contains half of the information content of the
boundary theorem of geometric calculus14, where the
other half can be obtained from dual forms. In a previous
work, this difference was investigated and a systematic
way of visualization formulated for the basic cases in one,
two, and three dimensions15. In this work, we compare
the symmetries of the integral form of Maxwell’s equa-
tions, Eqs. (1)-(4), with those obtained from the maxi-
mally symmetric cases of the boundary theorem of geo-
metric calculus in two and three dimensions. We show
how a more direct correspondence between the two is
found in the electromagnetic potentials and discuss the
implications thereof.

II. THE BOUNDARY THEOREM OF
GEOMETRIC CALCULUS

Compared with vector calculus and calculus of differ-
ential forms, geometric calculus differs in that the inner
and outer derivative are combined in a single operator

∇F = ∇ · F + ∇ ∧ F, (5)

where∇ denotes the multivector derivative operator. For
a differentiable multivector field F with an orthonormal
basis ei on an open set in Rn, it is defined by

∇F = ei∂iF = e1∂1F + e2∂2F + ...+ en∂nF, (6)

with the shorthand notation ∂i =
∂
∂i
. For differentiating

fields on manifolds in Rn, one has to use the component
of the vector derivative lying within the manifold, as it
can have components parallel and perpendicular to the
manifold in general16, respectively,

∇ = ∇|| +∇⊥. (7)

Using the pseudoscalar, Im, of the smoothm-dimensional
oriented manifold M , the vector derivative component
parallel to the manifold can be obtained with

∇||F = I−1
m (Im ·∇F ), (8)

which leads to the definition of the tangential vector
derivative on manifolds

∂ = ∇|| = I−1
m (Im ·∇). (9)

Note, to distinguish it from the boundary operator ∂,
bold notation is used for the vector derivative on man-
ifolds. If the vector derivative lies entirely within the
manifold, i.e. for the special case of m = n for Mn in Rn,
then ∇⊥ = 0 and thus from Eqs. (7) and (9), ∂ = ∇.
The boundary theorem of geometric calculus for a mul-

tivector field F in a flat manifold14,16,17 can be written
as ˆ

M

dxm ∂F =

˛
∂M

dxm−1 F , (10)

where dxm and dxm−1 are directed differential elements
of the manifold M and boundary ∂M , respectively. The
boundary theorem includes separate components of inner
and outer derivatives12, in a similar manner to Eq. (5),



2

the derivative splits into generalized divergence and curl
components,

ˆ
M

dxm (∂ · F + ∂ ∧ F ) =

˛
∂M

dxm−1 F . (11)

To obtain a graphical representation of the symmetries
of the theorem, scalars can be denoted with dots, vectors
with oriented lines, bivectors with oriented planes, trivec-
tors with oriented volumes and so forth. For simplicity,
manifolds are shown to be of maximal symmetry (spher-
ical) and, unless stated otherwise, Mn is considered in
Rn so that ∂ = ∇. For the present purpose, it suffices to
explore homogeneous multivector fields of grade n− 1.

III. TWO-DIMENSIONAL CASES

For a vector field on a two-dimensional manifold in
R2, the boundary theorem leads to Figs. 1 and 2. From
a purely visual perspective, Fig. 1 can be seen to share
the vector structure of Gauss’s law, Eq. (3). The dimen-
sionality of the integrals is however off by one degree,
as Gauss’s law applies in three dimensional space. At
this point, the comparison may seem superficial, but it
is worth keeping in mind that Maxwell’s equations are
universal for locally conserved quantities18.

ˆ
M

dxn ∧ (∇ · F⃗ ) =

˛
∂M

dxn−1 ∧ F⃗

FIG. 1. 2D graphical representation of the divergence com-
ponent of Stokes’ theorem using Geometric calculus for the
case of dim(F ) = 1 = dim(∂M).

Considering the dynamics implied by Eq. (2), sketched
in Fig. 3, no direct correspondence to Fig. 2 is evident
at first sight. However, the current density and displace-
ment current vectors are dual to the curl bivector. Com-
paring Eq. (1) with Fig. 2, the boundary circulation and
the bivector component within the manifold are shared,
but Eq. (1) involves an additional time derivative com-
ponent of the bivector. Furthermore, the relationship

ˆ
M

dxn · (∇ ∧ F⃗ ) =

˛
∂M

dxn−1 · F⃗

FIG. 2. 2D graphical representation of the curl component
of Stokes’ theorem using Geometric calculus for the case of
dim(F ) = 1 = dim(∂M).

between the fields and their derivatives is not compati-
ble between the two. This not surprising, as Maxwell’s
equations have been shown to correspond to a space-time
split of the Faraday bivector17, so more complex relations
are expected. It’s nonetheless worth noting how the two
dimensional Stokes’ theorem shares some common ele-
ments, and observe in what way they differ moving for-
ward.

~J + ∂t ~E

~B

FIG. 3. Sketch of the magnetic field, B⃗, around a current
carrying element J⃗ and/or displacement current ∂tE⃗.

It has long been argued that the electromagnetic po-
tentials are more fundamental than the force fields de-
rived from them19,20. Therefore, we pose the question if
a more straight forward correspondence to the boundary
theorem cases can be found by considering the electro-
magnetic potentials?
Due to being an axial (bivector-dual) field, the mag-

netic field has a vector potential, A⃗, so that B⃗ = ∇× A⃗,
rather than a scalar potential. The integral form of this
expression combined with Green’s curl theorem gives

¨
S

B⃗ · dS⃗ =

¨
S

∇× A⃗ · dS⃗ =

˛
∂S

A⃗ · dℓ⃗. (12)

This field configuration is directly manifested by a cur-
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rent carrying solenoid, Fig. 4. In a cornerstone proposal

~B
~A

S

FIG. 4. The magnetic vector potential, A⃗ and magnetic field
B⃗, around a solenoid S.

by Aharanov and Bohm21, and follow-up experiment by
Tonomura20, a phase-shift of the electron wavefunction
was shown to occur as it propagates around the solenoid,
even in the absence of a magnetic field strength in the
space surrounding the solenoid. Although still somewhat
debated, the effect has a straight forward hydrodynami-
cal analogue as shown by Berry et al.22, where the fluid
velocity corresponds to the magnetic vector potential,
and the vorticity to the magnetic field. This analogy
holds through the whole system of electromagnetic and
hydrodynamical equations8, see Table I.

Looking back at the two dimensional curl case of the
boundary theorem, Fig. 2, the resemblance is near ex-
act. The major point gained from this comparison is
that the bivector within the manifold, responsible for
the non-zero circulation, is a kind of singularity, albeit
a bivector-valued one. Keeping in mind that Cauchy’s
residue theorem of complex analysis is contained within
the boundary theorem of geometric calculus14, this is an
interesting notion worthy of more rigorous study, since
bivectors are pseudoscalars in two dimensional spaces.

Electromagnetism Hydrodynamics

magnetic vector potential velocity

[A : ML/TQ] [v : L/T]

magnetic field [B: M/TQ] vorticity [ω: 1/T]

electric field [E: ML/T2Q] acceleration [L: L/T2 ]

electric scalar potential kinematic pressure

[ϕ : ML2/T2Q] [ϕ : ML2/T2Q]

phase function [χ: ML2/TQ] velocity potential [Φ: L2/T]

charge [q: Q] mass [m: M]

charge density [ρq: Q/L3] fluid density [ρf: M/L3]

current density [J: Q/TL2] mass flux [jm: M/TL2]

TABLE I. Analogous concepts in electrodynamics and hydro-
dynamics. Key: Concept [symbol: Dimension in SI-units (in
terms of the basic quantities mass (M), length (L), time (T)
and charge (Q))].

IV. THREE-DIMENSIONAL CASES

By considering bivector fields on three-dimensional
manifolds in a similar manner as before, the next set of
cases of the boundary theorem are obtained15. To conve-
niently distinguish the inner and outer components, the
coordinate-free definition of the tangential vector deriva-
tive can be applied,

∂F = lim
|dxm|→0

I−1
m

|dxm|

˛
∂M

dxm−1F, (13)

the definition of which is enabled by the boundary
theorem13. Since the field is now bivector valued, de-

noted by ÙF , more components are obtained under the
integral,

∂ÙF = lim
|dV |→0

I−1
3

|dV |

‹
∂V

(dx2·ÙF+dx2×ÙF+dx2∧ÙF ). (14)

Assuming the manifold M3 to be strictly in R3, the last
term of Eq. (14) vanishes. Its existence is allowed if M
is embedded in a larger space, and although interesting,
this is set aside for now. With dimensional analysis the

vector-valued divergence ∇ · ÙF and the trivector-valued

curl∇∧ÙF can be matched with the corresponding bound-
ary integrals,

˚
M

dx3 · (∇ · ÙF ) =

‹
∂M

dx2 × ÙF , (15)

and ˚
M

dx3 · (∇ ∧ ÙF ) =

‹
∂M

dx2 · ÙF . (16)

The graphical representation of Eq. (15) is shown in Fig.
5.

FIG. 5. Graphical representation of the divergence compo-
nent of Stokes’ theorem using Geometric calculus for the cases
of dim(F ) = 2 = dim(M)− 1 = dim(∂M).
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At first glance, the emerging structure is quite unfa-
miliar, and no correspondence with Maxwell’s equations
is evident. Recall, resemblance to Eqs. (2) and (4) is yet
to be seen. Although the divergence of the magnetic field
is zero and often considered in conjunction with Gauss’s
law, the magnetic field differs in being an axial vector, so
we do not consider the two dimensional divergence case
to apply for the magnetic divergence.

Continuing in the same spirit as before, consider the
magnetic vector potential for a current carrying element,
Fig. 6a, setting the displacement current to zero for sim-
plification. The circulation (curl) of the vector potential
has the exact same form as the vector divergence of the
bivector case of the boundary theorem, Fig. 5. This cor-

|A(r)| · êz

B=∇×A

(a) (b)

FIG. 6. (a) The magnetic vector potential and magnetic field
around a current carrying element. (b) Sketch of a smoke
ring, by Tait23, ano 1876.

respondence goes to show that considering the magnetic
field as a vector, rather than a bivector, hides the richer
dynamical structure in this case. It is from circulation in
the momentum (magnetic vector potential), that the ax-
ial essence of the magnetic field vector lies. Furthermore,
a straight forward hydrodynamical analogue exists, the
smoke ring, when considering the magnetic vector poten-
tial in the role of fluid velocity, Fig. 6b.

Moving on to the trivector valued curl component, Eq.
(16), the graphical representation is shown in Fig. 7. As
before, the form is somewhat unfamiliar. If we however

consider the dual of the magnetic field, the bivector ÙB,
Fig. 7 can be seen to correspond to a magnetic monopole,
but as a generalized curl of a bivector field, rather than
a divergence of a vector field, as in Eq. (4). Once again,
a more direct correspondence is found in a fresh context
by considering the electromagnetic potential.

FIG. 7. Graphical representation of the curl component of
Stokes’ theorem using Geometric calculus for the cases of
dim(F ) = 2 = dim(M)− 1 = dim(∂M).

V. DISCUSSION

In the current investigation, the application of the
boundary theorem has been restricted to unembed-
ded manifolds with maximal symmetry. The theorem
however applies equally to both curved and irregular
spaces24. In continuation of the current work, more com-
plex gauge symmetries and interior degrees of freedom
can be considered. Higher dimensional cases can also
be mapped out, and the effect of subspaces investigated.
The space-time integration elements and corresponding
dynamics of the cases shown also need to be studied.
It should be noted that the correspondence between

geometric calculus and differential geometry is still be-
ing worked out in full25, application of geometric algebra
and calculus is however well underway26–28. Arguably
both Clifford analysis and tensor analysis are more gen-
eral than geometric calculus but its main strength is the
geometry aspect, allowing for ease of visualization. The
accessibility to advanced tools of analysis is highly valu-
able as well, both for students and researchers.

VI. CONCLUSION

Symmetries of Maxwell’s equations of electromag-
netism have been compared to corresponding instances
of the boundary theorem in geometric calculus. A more
direct correspondence between the two has be shown to
be obtainable by considering the electromagnetic poten-
tials. The comparison highlights the importance of the
bivector nature of the magnetic field, and naturally leads
to consideration of the boundary theorem for more com-
plex gauge symmetries and internal degrees of freedom,
worthy of further investigation.
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