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Abstract

In the context of a meeting bringing together people interested in applications of Ge-
ometric Algebra (GA) across wide areas of engineering and science, it is of interest to
see if fairly elementary GA tools can help us understand an area of modern physics
normally considered quite difficult conceptually, and which uses a whole set of advanced
mathematical tools. Such a description could easily fit the topic of General Relativity,
where the notions of curved manifolds, differential geometry and tensor analysis are of-
ten a barrier to people outside the field being able to feel they understand topics such
as black holes and gravitational waves. These barriers are removed, or at least much
reduced, if one instead takes a flat-space GA approach to gravity, as discussed in e.g.
[1] and [2]. However, what we wish to talk about in this contribution are some topics
in a different area, at the interface between mathematics and particle physics. This
area concerns the use of octonions to motivate the symmetry groups arising in the stan-
dard model of particle physics, and also its extensions to ‘unified theories’ based upon
groups with a larger set of symmetries and working in higher dimensions. Remarkably,
we will be able to show that the octonions themselves, and the actions of these higher
symmetry groups, can all be expressed using just the Spacetime Algebra (STA), i.e. the
Geometric Algebra of 4d spacetime. This makes computations within e.g. the SU(3)
group of quantum chromodynamics, and the representation of quark and gluon states,
all accessible to someone with a computer algebra program able to work in the STA
(or alternatively the CI(1,3) space corresponding to the Conformal Geometric Algebra
(CGA) of 2d (anti-)Euclidean space).

Recently, in [3], it was shown how we can indeed provide a faithful representation
of octonions within the STA, and we argued there how the link with the Dirac current
provides an interesting basis for why the STA is in fact a natural home for them.

Thus the aim for the first part of the current talk will be to briefly review, for a
general GA audience, the STA and the way the Dirac algebra is expressed in it and
then show how the non-associative octonion product can be expressed in terms of Dirac
spinors.

Then we discuss how the particle physics SU(3) colour group can be represented by



double-sided multiplication by even-grade STA elements, and how this can be interpreted
in terms of single-sided multiplication by octonions. The quantity which the SU(3) colour
transformations leave invariant is the ‘norm’ of a general STA bivector F', defined as
(YoF'vF). We show here, how this can be interpreted as a sub-part of more general
requirement for the preservation of the norm of the Dirac current 1y for a general
Dirac spinor v, and not just for its bivector part, thus generalising from bivector norm
to preservation of octonionic norm. This preservation is guaranteed for combinations of
octonion multiplications, known as ‘octonionic chains’, which lie at the basis of ideas
by Cohl Furey and others (e.g. [4]) about the link between octonions and the standard
model of particle physics,. We can thus discuss the extent to which a reformulation of
these can lead to a wholly STA-based version of the standard model. By this we mean
a version where all group actions and quantities can be expressed in terms of elements
of the STA, and since the STA is the geometric algebra of spacetime, can therefore be
viewed as intrinsically geometric in nature.

This approach then naturally incorporates the question of whether larger symmetry
groups than the SU(3), SU(2) and U(1) of the standard model can be accommodated
within the approach based on octonions in the STA, and in particular whether the latter
leads to particular candidates for a ‘unification’” symmetry group in particle physics,
which can at some level ‘explain’ and link the symmetries we already know, and help
relate various quantities within the standard model, the values of which are otherwise
mysterious.

As part of this we link with recent work which has looked at the some exceptional
Lie Groups as candidates for unification, such as for example in a series of papers by
Wilson, Dray and Manogue (see e.g. [5]). These approaches, which use octonions, but
in a matrix-based context, initially seem unlikely to be related to the STA at all, but
in fact we have been able to translate the main aspects of the proofs into a wholly
STA-based approach via extending our decoding of the octonions, to include also the
sedenions. These are the next non-associative algebra one obtains after the octonions
using the Cayley-Dickson process, and it turns out their properties can be reproduced
by extending the octonion translation, which is in terms of Dirac spinors, to the entire
16-dimensional STA| i.e. by including odd as well as even elements. They do not form
a division algebra, but nevertheless we have shown that using them we can now reach
much larger symmetry groups in the STA, including an explicit version of the group
Spin(10), the spinorial version of the orthogonal group SO(10), which has long been
considered as a prime candidate for unification of the forces (see e.g. [6] and [7]).

In all these applications, the Cartan subalgebra (the maximal set of mutually com-
muting states) of the corresponding Lie group is very important, and we show how for
the largest groups involved, for which the others mentioned above are subgroups, the
Cartan subalgebra is picked out in the STA approach as corresponding to the set of
reflections in STA elements, thus giving a wholly new insight into this aspect of Lie
algebra.

We anticipate that the extension to sedenions will allow us to make contact (in
STA terms) with the largest exceptional Lie group, namely Eg, which has also long-
been proposed as the ‘unification group’ underlying the standard model, and this should
hopefully be clear by the time of the talk. There is already a direct link with the
octonions, and therefore the STA, in the fact that the root lattice of Eg corresponds to
norm-1 octonions with integer or half-integer coefficients for coordinates, which is again



something we hope to have understood in STA terms in the near future.

Overall, although the individual topics mentioned above may sound somewhat eso-

teric or complicated for a general audience, there is a underlying aim of making some
advanced aspects of particle physics approachable in a new way, and accessible to anyone
who is familiar with the basics of GA and the STA.
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