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Abstract. In computational chemistry, efficiently computing interatomic
distances and their derivatives is crucial for advancing our understanding
of molecular structures and dynamics. We present a study of two alter-
native representations of the 3D space in molecular geometry, the ho-
mogeneous and the conformal models, against the traditional Euclidean
framework. By comparing these models, our research suggests the con-
formal model as a promising approach in computational chemistry.

1 Distances in the Euclidean Space

We conceptualize a molecule as a sequence of n atoms, delineated by internal
coordinates di, θi, φi. Here, di denotes the bond length between adjacent atoms
at Cartesian positions xi−1, xi ∈ R3, for i = 2, . . . , n. The angle θi, formed by
consecutive bond vectors bi−1 and bi with bi = xi−xi−1, for i = 3, . . . , n, and the
torsion angle φi, indicating the rotation between planes spanned by bi−2, bi−1

and bi−1, bi for i = 4, . . . , n, further describe the molecular structure.
The Cartesian coordinates of the molecule’s atoms are derived from these

internal coordinates by initially positioning the first three atoms as:

x1 = (0, 0, 0)t, x2 = (d2, 0, 0)
t, x3 = (d2 − d3 cos θ3, d3 sin θ3, 0)

t.

Beyond the third atom, determining the position requires both the angle θi
and the torsion angle φi, encapsulated by the transformation matrix

Bi =

 − cos θi − sin θi 0
sin θi cosφi − cos θi cosφi − sinφi

sin θi sinφi − cos θi sinφi cosφi

 ,

for i = 4, . . . , n.
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Applying these matrices Bi, with d1 = φ1 = φ2 = φ3 = 0 and θ1 = θ2 = π,
allows the Cartesian coordinates of all atoms to be expressed via the internal
coordinates through

xi = (d1B[1] + d2B[2] + · · ·+ diB[i])e1,

where e1 = (1, 0, 0)t and
B[i] = B1B2 · · ·Bi,

for i = 1, . . . , n.
The distance between any two atoms, i and j, is then computed as:

ri,j = ∥xj − xi∥
=
∥∥(di+1B[i+1] + · · ·+ djB[j])e1

∥∥
=

∥∥∥∥∥B[i+1]

(
di+1I3 +

j∑
s=i+2

(
ds

s∏
m=i+2

Bm

))
e1

∥∥∥∥∥ ,
with I3 denoting the identity matrix in R3×3. Since B[i+1] is an orthogonal
matrix, we obtain

ri,j =

∥∥∥∥∥
(
di+1I3 +

j∑
s=i+2

(
ds

s∏
m=i+2

Bm

))
e1

∥∥∥∥∥ .
2 Distances in the Homogeneous Space

The homogeneous coordinate system offers an alternative representation for the
3D space, extending the conventional three-dimensional space into four dimen-
sions. In this model, a point x = (x1, x2, x3)

t in the 3D space is represented by
a four-dimensional vector X ∈ R4, expressed as:

X =


x1

x2

x3

1

 .

Thompson [6] suggests leveraging the homogeneous model for converting in-
ternal molecular coordinates into Cartesian coordinates, facilitating the consoli-
dation of the atom’s three positioning movements (one translation and two rota-
tions) into a singular linear transformation, improving upon traditional methods
by simplifying mathematical operations.

In this model, translating a point xi ∈ R3 is represented as[
I3 die1
0 1

]
,
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and the rotations dictated by the bond and torsion angles are integrated into a
single matrix:

Bi =


− cos θi − sin θi 0 −di cos θi

sin θi cosφi − cos θi cosφi − sinφi di sin θi cosφi

sin θi sinφi − cos θi sinφi cosφi di sin θi sinφi

0 0 0 1

 ,

for i = 1, . . . , n, with initial conditions set for simplification.
In contrast to the Euclidean model, where Cartesian coordinates of a point

xi require sequential operations and scaling, the homogeneous model streamlines
this to a singular multiplication,

Xi = B[i]e4,

where
e4 = (0, 0, 0, 1)t

signifies the origin in 3D space, and i = 1, . . . , n, representing the total atoms in
the chain.

Computing the Euclidean distance ri,j between two points xi and xj , we have
[2]:

ri,j = ∥(xj − xi)∥
= ∥(B1 · · ·Bi · · ·Bj)e4 − (B1 · · ·Bi)e4∥
= ∥(B1 · · ·Bi) [(Bi+1 · · ·Bj)e4 − Ie4] ∥
=
∥∥(B[i+1,j] − I4

)
e4
∥∥ ,

where I4 is the identity matrix in R4×4 and B[i,j] =

j∏
k=i

Bk.

3 Distances in the Conformal Space

The conformal model [5] offers a different approach to representing the 3D space
[3, 4], where a point x = (x1, x2, x3)

t is mapped to a five-dimensional vector
X ∈ R5, formulated as

X = x+ e0 +
∥x∥2

2
e∞.

After some calculations [1], we obtain

Xi = B[i]e0,

with matrices B[i] constructed analogously to those in the homogeneous model,
which implies that

r2i,j = 2et∞B[i+1,j]e0.
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The advantages of the conformal model become more evident in the calcula-
tion of derivatives [1].

For instance, the derivative of the interatomic distance ri,j with respect to
an internal coordinate αk is represented in the Euclidean space as

∂ri,j
∂αk

=
1

ri,j
et1

(di+1I3 +

j∑
s=i+2

dsB[i+2,s]

)t

B[i+2,k−1]
∂Bk

∂αk

(
dkI3 +

j∑
s=k+1

dsB[k+1,s]

) e1

and as

∂ri,j
∂αk

=
1

ri,j
et4

(
Bt

[i+1,j]B[i+1,k−1]
∂Bk

∂αk
B[k+1,j]

)
e4

in the homogeneous space.
In the conformal space, we obtain a more succinct expression given by

∂ri,j
∂αk

=
1

ri,j
et∞B[i+1,k−1]

∂Bk

∂αk
B[k+1,j]e0.

4 Conclusion

In the full version of this work [1], we will provide details of how distance and
derivative expressions were obtained with each model.
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