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Abstract. In computational chemistry, efficiently computing interatomic
distances and their derivatives is crucial for advancing our understanding
of molecular structures and dynamics. We present a study of two alter-
native representations of the 3D space in molecular geometry, the ho-
mogeneous and the conformal models, against the traditional Euclidean
framework. By comparing these models, our research suggests the con-
formal model as a promising approach in computational chemistry.

1 Distances in the Euclidean Space

We conceptualize a molecule as a sequence of n atoms, delineated by internal
coordinates d;, 0;, ;. Here, d; denotes the bond length between adjacent atoms
at Cartesian positions z;_q,2z; € R?, for i = 2,...,n. The angle ;, formed by
consecutive bond vectors b;_1 and b; with b; = x;—x;_1, for i = 3,...,n, and the
torsion angle ¢;, indicating the rotation between planes spanned by b;_2,b;_1
and b;_1,b; for i =4, ... n, further describe the molecular structure.

The Cartesian coordinates of the molecule’s atoms are derived from these
internal coordinates by initially positioning the first three atoms as:

T, = (0,0,0)t, Ty = (dQ,0,0)t, Tr3 = (d2 — d3 00893,d3 sin03,0)t.

Beyond the third atom, determining the position requires both the angle 6;
and the torsion angle ¢;, encapsulated by the transformation matrix

—cos b; —sin 6; 0
B; = | sinf; cos p; —cosB;cosp; —sinp; | ,
sin 0; sin p; — cos#;sinp; cosp;

fori=4,...,n.
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Applying these matrices B;, with d; = @1 = 2 = 3 =0 and 0; = 05 = 7,
allows the Cartesian coordinates of all atoms to be expressed via the internal
coordinates through

w; = (di By + daBpg) + - - - + d; By)Jex,

where e; = (1,0,0)" and
By = B1By - -+ By,

fori=1,...,n.
The distance between any two atoms, ¢ and j, is then computed as:

T = |l — x|

= |[(dit1Bpiga) + -+ + d; By)ed |

7 s
Blitq <di+1f3+ Z (ds H Bm>>el

s=i+2 m=i+2

)

with I3 denoting the identity matrix in R®**3. Since Bii11) is an orthogonal
matrix, we obtain

(aone $ (1 11 5))

s=i+2 m=4+2

Tij = ‘

2 Distances in the Homogeneous Space

The homogeneous coordinate system offers an alternative representation for the
3D space, extending the conventional three-dimensional space into four dimen-
sions. In this model, a point x = (1, 72, 73)" in the 3D space is represented by
a four-dimensional vector X € R*, expressed as:

T

€2

T3
1

X =

Thompson [6] suggests leveraging the homogeneous model for converting in-
ternal molecular coordinates into Cartesian coordinates, facilitating the consoli-
dation of the atom’s three positioning movements (one translation and two rota-
tions) into a singular linear transformation, improving upon traditional methods
by simplifying mathematical operations.

In this model, translating a point z; € R? is represented as

Igdiel
0o 1|’
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and the rotations dictated by the bond and torsion angles are integrated into a
single matrix:

—cosb; —sin6; 0 —d; cos 0;
B — sin 6; cos p; — cos 6; cos ; — sin ; d; sin 6; cos p;
* 7 |sin6;sing; —cosf;sing; cosy; d;sind;sing; |’
0 0 0 1
for i =1,...,n, with initial conditions set for simplification.

In contrast to the Euclidean model, where Cartesian coordinates of a point
x; require sequential operations and scaling, the homogeneous model streamlines
this to a singular multiplication,

X; = Bjea,
where
eqs = (0,0,0,1)
signifies the origin in 3D space, and i = 1, ..., n, representing the total atoms in
the chain.
Computing the Euclidean distance r; ; between two points x; and z;, we have
(2]:
rig = l(zj — =)
=|[|(B1---B;---Bj)es — (B1 - Bj)ed|
= [[(B1---Bi) [(Bis1--- Bj)es — Leq] ||

= [[(Bis1.5) = 1a) eall

J
where I is the identity matrix in R*** and By 5 = H By.

3 Distances in the Conformal Space

The conformal model [5] offers a different approach to representing the 3D space
[3,4], where a point x = (71,22, 73)" is mapped to a five-dimensional vector
X € R®, formulated as

=

g Coor

X=x+e+
After some calculations [1], we obtain

X = B[i}e()v

with matrices Bj; constructed analogously to those in the homogeneous model,
which implies that

2 t
755 = 2e5Blit1,j1€0
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The advantages of the conformal model become more evident in the calcula-
tion of derivatives [1].

For instance, the derivative of the interatomic distance r; ; with respect to
an internal coordinate oy is represented in the Euclidean space as

. t .
ori; 1 J OBy, J
Wlkj = n,jetl <dz‘+113+ Z dsB[H—Q,s]) B[i+2,k—1]@ (dk[3+ Z dsBt1,5) | | e

s=i+2 s=k+1
and as

(Q)Ti’j 1 t + 8Bk
day, B ;jezl (B[Hl’j]B[iJrl’k_l] Oay, Bip41.1 ) ea

,

in the homogeneous space.
In the conformal space, we obtain a more succinct expression given by

aTi,j o 1 (9Bk

¢
= —ei o Blit1,k—1) 75— Blr+1,j€0-
Dy, Tij oo [i+1, }80416 [k+1,5]

4 Conclusion

In the full version of this work [1], we will provide details of how distance and
derivative expressions were obtained with each model.
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