Computing interatomic distances using Euclidean, Homogeneous, and Conformal Models ${ }^{\star}$

Jesus Camargo ${ }^{1}$, Carlile Lavor ${ }^{2}$
${ }^{1}$ CCET, The Western Paraná State University - Unioeste, 85819-110, Cascavel,
Brazil
\{marco.s.camargo@hotmail.com
${ }^{2}$ IMECC, University of Campinas, 13081-970, Campinas, Brazil
clavor@unicamp.br

Abstract

In computational chemistry, efficiently computing interatomic distances and their derivatives is crucial for advancing our understanding of molecular structures and dynamics. We present a study of two alternative representations of the 3D space in molecular geometry, the homogeneous and the conformal models, against the traditional Euclidean framework. By comparing these models, our research suggests the conformal model as a promising approach in computational chemistry.

1 Distances in the Euclidean Space

We conceptualize a molecule as a sequence of n atoms, delineated by internal coordinates $d_{i}, \theta_{i}, \varphi_{i}$. Here, d_{i} denotes the bond length between adjacent atoms at Cartesian positions $x_{i-1}, x_{i} \in \mathbb{R}^{3}$, for $i=2, \ldots, n$. The angle θ_{i}, formed by consecutive bond vectors b_{i-1} and b_{i} with $b_{i}=x_{i}-x_{i-1}$, for $i=3, \ldots, n$, and the torsion angle φ_{i}, indicating the rotation between planes spanned by b_{i-2}, b_{i-1} and b_{i-1}, b_{i} for $i=4, \ldots, n$, further describe the molecular structure.

The Cartesian coordinates of the molecule's atoms are derived from these internal coordinates by initially positioning the first three atoms as:

$$
x_{1}=(0,0,0)^{t}, \quad x_{2}=\left(d_{2}, 0,0\right)^{t}, \quad x_{3}=\left(d_{2}-d_{3} \cos \theta_{3}, d_{3} \sin \theta_{3}, 0\right)^{t}
$$

Beyond the third atom, determining the position requires both the angle θ_{i} and the torsion angle φ_{i}, encapsulated by the transformation matrix

$$
B_{i}=\left[\begin{array}{ccc}
-\cos \theta_{i} & -\sin \theta_{i} & 0 \\
\sin \theta_{i} \cos \varphi_{i}-\cos \theta_{i} \cos \varphi_{i}-\sin \varphi_{i} \\
\sin \theta_{i} \sin \varphi_{i} & -\cos \theta_{i} \sin \varphi_{i} & \cos \varphi_{i}
\end{array}\right]
$$

for $i=4, \ldots, n$.

[^0]Applying these matrices B_{i}, with $d_{1}=\varphi_{1}=\varphi_{2}=\varphi_{3}=0$ and $\theta_{1}=\theta_{2}=\pi$, allows the Cartesian coordinates of all atoms to be expressed via the internal coordinates through

$$
x_{i}=\left(d_{1} B_{[1]}+d_{2} B_{[2]}+\cdots+d_{i} B_{[i]}\right) e_{1}
$$

where $e_{1}=(1,0,0)^{t}$ and

$$
B_{[i]}=B_{1} B_{2} \cdots B_{i},
$$

for $i=1, \ldots, n$.
The distance between any two atoms, i and j, is then computed as:

$$
\begin{aligned}
r_{i, j} & =\left\|x_{j}-x_{i}\right\| \\
& =\left\|\left(d_{i+1} B_{[i+1]}+\cdots+d_{j} B_{[j]}\right) e_{1}\right\| \\
& =\left\|B_{[i+1]}\left(d_{i+1} I_{3}+\sum_{s=i+2}^{j}\left(d_{s} \prod_{m=i+2}^{s} B_{m}\right)\right) e_{1}\right\|,
\end{aligned}
$$

with I_{3} denoting the identity matrix in $\mathbb{R}^{3 \times 3}$. Since $B_{[i+1]}$ is an orthogonal matrix, we obtain

$$
r_{i, j}=\left\|\left(d_{i+1} I_{3}+\sum_{s=i+2}^{j}\left(d_{s} \prod_{m=i+2}^{s} B_{m}\right)\right) e_{1}\right\| .
$$

2 Distances in the Homogeneous Space

The homogeneous coordinate system offers an alternative representation for the 3D space, extending the conventional three-dimensional space into four dimensions. In this model, a point $x=\left(x_{1}, x_{2}, x_{3}\right)^{t}$ in the 3 D space is represented by a four-dimensional vector $X \in \mathbb{R}^{4}$, expressed as:

$$
X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
1
\end{array}\right]
$$

Thompson [6] suggests leveraging the homogeneous model for converting internal molecular coordinates into Cartesian coordinates, facilitating the consolidation of the atom's three positioning movements (one translation and two rotations) into a singular linear transformation, improving upon traditional methods by simplifying mathematical operations.

In this model, translating a point $x_{i} \in \mathbb{R}^{3}$ is represented as

$$
\left[\begin{array}{cc}
I_{3} & d_{i} e_{1} \\
0 & 1
\end{array}\right]
$$

and the rotations dictated by the bond and torsion angles are integrated into a single matrix:

$$
B_{i}=\left[\begin{array}{cccc}
-\cos \theta_{i} & -\sin \theta_{i} & 0 & -d_{i} \cos \theta_{i} \\
\sin \theta_{i} \cos \varphi_{i}-\cos \theta_{i} \cos \varphi_{i}-\sin \varphi_{i} & d_{i} \sin \theta_{i} \cos \varphi_{i} \\
\sin \theta_{i} \sin \varphi_{i} & -\cos \theta_{i} \sin \varphi_{i} & \cos \varphi_{i} & d_{i} \sin \theta_{i} \sin \varphi_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

for $i=1, \ldots, n$, with initial conditions set for simplification.
In contrast to the Euclidean model, where Cartesian coordinates of a point x_{i} require sequential operations and scaling, the homogeneous model streamlines this to a singular multiplication,

$$
X_{i}=B_{[i]} e_{4}
$$

where

$$
e_{4}=(0,0,0,1)^{t}
$$

signifies the origin in 3 D space, and $i=1, \ldots, n$, representing the total atoms in the chain.

Computing the Euclidean distance $r_{i, j}$ between two points x_{i} and x_{j}, we have [2]:

$$
\begin{aligned}
r_{i, j} & =\left\|\left(x_{j}-x_{i}\right)\right\| \\
& =\left\|\left(B_{1} \cdots B_{i} \cdots B_{j}\right) e_{4}-\left(B_{1} \cdots B_{i}\right) e_{4}\right\| \\
& =\left\|\left(B_{1} \cdots B_{i}\right)\left[\left(B_{i+1} \cdots B_{j}\right) e_{4}-I e_{4}\right]\right\| \\
& =\left\|\left(B_{[i+1, j]}-I_{4}\right) e_{4}\right\|,
\end{aligned}
$$

where I_{4} is the identity matrix in $\mathbb{R}^{4 \times 4}$ and $B_{[i, j]}=\prod_{k=i}^{j} B_{k}$.

3 Distances in the Conformal Space

The conformal model [5] offers a different approach to representing the 3D space [3, 4], where a point $x=\left(x_{1}, x_{2}, x_{3}\right)^{t}$ is mapped to a five-dimensional vector $X \in \mathbb{R}^{5}$, formulated as

$$
X=x+e_{0}+\frac{\|x\|^{2}}{2} e_{\infty}
$$

After some calculations [1], we obtain

$$
X_{i}=B_{[i]} e_{0}
$$

with matrices $B_{[i]}$ constructed analogously to those in the homogeneous model, which implies that

$$
r_{i, j}^{2}=2 e_{\infty}^{t} B_{[i+1, j]} e_{0}
$$

The advantages of the conformal model become more evident in the calculation of derivatives [1].

For instance, the derivative of the interatomic distance $r_{i, j}$ with respect to an internal coordinate α_{k} is represented in the Euclidean space as

$$
\frac{\partial r_{i, j}}{\partial \alpha_{k}}=\frac{1}{r_{i, j}} e_{1}^{t}\left[\left(d_{i+1} I_{3}+\sum_{s=i+2}^{j} d_{s} B_{[i+2, s]}\right)^{t} B_{[i+2, k-1]} \frac{\partial B_{k}}{\partial \alpha_{k}}\left(d_{k} I_{3}+\sum_{s=k+1}^{j} d_{s} B_{[k+1, s]}\right)\right] e_{1}
$$

and as

$$
\frac{\partial r_{i, j}}{\partial \alpha_{k}}=\frac{1}{r_{i, j}} e_{4}^{t}\left(B_{[i+1, j]}^{t} B_{[i+1, k-1]} \frac{\partial B_{k}}{\partial \alpha_{k}} B_{[k+1, j]}\right) e_{4}
$$

in the homogeneous space.
In the conformal space, we obtain a more succinct expression given by

$$
\frac{\partial r_{i, j}}{\partial \alpha_{k}}=\frac{1}{r_{i, j}} e_{\infty}^{t} B_{[i+1, k-1]} \frac{\partial B_{k}}{\partial \alpha_{k}} B_{[k+1, j]} e_{0} .
$$

4 Conclusion

In the full version of this work [1], we will provide details of how distance and derivative expressions were obtained with each model.

References

1. Camargo, J., Lavor, C.: Conformal coordinates in molecular geometry. (In preparation)
2. Camargo, J., Lavor, C.: A new perspective on the homogeneous coordinate system for calculating interatomic distances and their derivatives in terms of internal coordinates. (Submitted)
3. Kanatani, K.: Understanding Geometric Algebra: Hamilton, Grassmann, and Clifford for Computer Vision and Graphics. AK Peters/CRC Press (2015)
4. Lavor, C., Souza, M., Aragón, J.: Orthogonality of isometries in the conformal model of the 3d space. Graphical Models 114, 101100 (2021)
5. Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Sommer, G. (eds), Springer (2001)
6. Thompson, H.B.: Calculation of cartesian coordinates and their derivatives from internal molecular coordinates. The Journal of Chemical Physics 47(9), 3407-3410 (1967)

[^0]: * Supported by the Brazilian research agencies FAPESP and CNPq.

