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Abstract. Extended Abstract

In Conformal Geometric Algebra (CGA), a point (including the conformal point at infinity e∞) is represented by
a null vector, and the representation is unique up to scale. A versor is the geometric product of finitely many invert-
ible vectors in Rn+1,1. A conformal transformation acts on points via the (left) adjoint action of the corresponding
versor V upon the null vectors representing the points:

AdV(x) = VxV−1, (1)

and the versor inducing the conformal transformation is unique up to a nonzero scalar or pseudoscalar factor.

Although in conformal geometric constructions, starting from points one can construct lines and circles by 3-
vectors, 2-planes and 2-spheres by 4-vectors, etc, which are outer products of null vectors representing the incident
points involved in the construction, in symbolic geometric computing it is the geometric product of these null vectors
that prove to be much more efficient than the graded parts of the geometric product, such as the outer product,
the meet product, the inner product, etc. Hence, monomials that are the geometric product of null vectors, called
null monomials, turn out to be the basic algebraic terms in symbolic computing. Their geometric interpretations
and applications are an important topic of research.

In Grassmann algebra, a blade as the outer product of vectors, represents a linear subspace, and in CGA when
focusing on the null vectors and positive vectors in the linear subspace, the blade can be interpreted geometrically
as lines, circles, etc., or dual to such geometric entities. However, if a homogeneous multi-vector is not a blade, then
its geometric interpretation is not clear in general.

In CGA, the geometric product of invertible vectors is a versor, and can be interpreted geometrically as the
generator of a conformal transformation, the latter being the composition of the conformal transformations each
being induced by one invertible vector factor of the versor. However, when some vector factors are not invertible,
the geometric interpretation of such geometric products is still not clear.

In the first part of this talk, we address the problem of the geometric interpretation of null monomials in CGA,
which is the the extreme case where in the geometric product all the vector factors are not invertible. We only
highlight some guiding examples below.

In CGA, we do not distinguish between a non-zero entity and its nonzero scalings. We use x ≡ y to denote that
x, y are equal up to a nonzero scalar factor. Sometimes to take the sign into consideration, we use x ≡+ y to denote
that x, y are equal up to a positive scalar factor.

Example 1. Let null vector n represent an affine point. Then e∞n is a null monomial of length (or degree) 2.
Let there be another null monomial n1n2 of length 2 such that n1n2 ≡ e∞n. It is easy to see that n1 ≡ n and
n2 ≡ e∞. So null monomial n1n2 represents an ordered pair of points.

In contrast, e∞ ∧ n represents an unordered pair of points, because e∞ ∧ n ≡ n ∧ e∞. When the sign is take
into account, then e∞ ∧ n also represents the ordered pair of points e∞,n.

Example 2. Let null vectors n1,n2 represent two different affine points. Then e∞n1n2 is a null monomial of
length 3. If there is another null monomial n′

1n
′
2n

′
3 of length 3 such that n′

1n
′
2n

′
3 ≡ e∞n1n2, direct arguments show

that n′
1 ≡ e∞, n′

3 ≡ n2, and n′
2 can be any affine point on line n1n2 other than n2. So e∞n1n2 represents a pair

of ordered points e∞,n2, together with line n1n2.

In contrast, e∞ ∧ n1 ∧ n2 only represents the line passing through points n1,n2. To represent this line with the
outer product, e∞,n1,n2 can be replaced by any other three points on the line.
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If the sign of e∞n1n2 is taken into account, then any affine point p has a unique null-vector representation,
denoted by the same symbol, that satisfies e∞ · p = −1. A point n3 on line n1n2 has the following unique null
vector representation:

n3 = λn1 + (1− λ)n2 + ϵe∞, (2)

for some scalar ϵ that ensures n2
3 = 0. In fact,

ϵ = −λ(1− λ)n1 · n2 =
d2n1n2

2
λ(1− λ). (3)

So e∞n3n2 = λe∞n1n2, and e∞n3n2 ≡+ e∞n1n2 if and only if point n3 is on line n1n2 and on the same side with
n1 relative to n2. So e∞n1n2 represents an ordered pair of points e∞,n2, and the ray from n2 towards n1.

Similarly, n2n1e∞ represents an ordered pair of points n2, e∞, and line n1n2. When the sign is taken into
account, then in the geometric interpretation, the line is replaced by the ray from n2 towards n1.

Formally, over a base numbers field K, the null monomial algebra on an alphabet A = {ni}i∈I is the quotient
of the free associative algebra K[A] modulo the two-sided ideal generated by elements of the form nini. Informally,
we allow the alphabet A to take all null vectors (up to scale) of Rn+1,1.

A null monomial has two ends. If the two ends are identical, then the null monomial is said to be isotropic,
otherwise it is said to be anisotropic. The degree (or length) of a null monomial is the number of null vector factors
in the sequence of the monomial. By definition, no two adjacent vector factors in the monomial are identical up to
scale. An anisotropic monomial has degree > 1, while an isotropic monomial has degree ≥ 1.

In the first part of this talk, we present geometric interpretations for all null monomials in CGA, together
with their normal forms leading to the geometric interpretations. The main conclusion is the following, called the
conformal split of null monomials.

Theorem 1. In CGA, any isotropic null monomial n1 · · ·nkn1 equals up to scale n1V ≡ Vn1, where V is a
versor whose vector factors anticommute with n1, and can be chosen to anticommute with any fixed second null
vector. Any anisotropic null monomial n1 · · ·nk equals up to scale n1nkVr (or Vln1nk), where Vr (or Vl) is a
versor whose vector factors anticommute with nk (or n1), and can be chosen to anticommute with n1 (or nk) as
well.

Geometrically, if versor V has its vector factors anticommute with both n1 and nk, then it induces a conformal
transformation fixing the two points represented by n1,nk respectively. For example, when n1 = e∞, if V is even,
then it induces a rotation fixing point nk, else it induces the composition of a rotation fixing point nk and a mirror
reflection with respect to a hyperplane passing through the point.

Let there be two anisotropic null monomials M = n0n1 · · ·nk and M′ = n0n
′
1 · · ·n′

l. Then M ≡ VMn0nk and
M ≡ n0VM′n′

l for some versors VM,VM′ fixing point n0. So

MM′ ≡ VMn0nkn0VM′n′
l ≡ VMVM′n0n

′
l. (4)

The product of the two monomials is equivalent to the geometric product of the two versors, followed by the common
leading vector factor n0, and the ending vector factor of M′.

For an anisotropic null monomial ended by n0, say xkxk−1 · · ·x1n0, we can also start from the right side of
the monomial to insert copies of n0, turn it into the normal form xk(n0xi2lxi2l−1

) · · · (n0xi2xi1)n0, and provide a
geometric interpretation similar to that in Theorem 1.

For two anisotropic null monomials M = n0n1 · · ·nk and M′ = n′
1 · · ·n′

ln0, we have M ≡ VMn0nk and
M ≡ n′

1n0VM′ for some versors VM,VM′ fixing point n0. So

MM′ ≡ VMn0nkn
′
1VM′n0 ≡ VM

−−−→
nkn

′
1 VM′n0. (5)

The product of the two monomials is equivalent to the geometric product of the first versor, the displacement vector
between the two ends other than n0 in the two monomials, the second versor, and the common end n0.

The second part of the talk is the core content. It addresses the problem of generating versors by anisotropic
null monomials. Let

M = x1x2 · · ·xr (6)

be an anisotropic null monomial. We shift the first vector factor x1 to the end of the monomial to get x2 · · ·xrx1,
then we multiply the result by a nonzero scalar λ−1 and add it up with M. The result is the following null binomial



From Null Monomials to Versors in Conformal Geometry 3

that we call a shifted-scaled null binomial:

V := x1x2 · · ·xr + λ−1x2x3 · · ·xrx1. (7)

The pair (M, λ) is called a shifted-scaled pair. The leading vector factor x1 of M is the shifted vector factor, called
the index of the binomial. Vector factor x2 is called the left end of the binomial, and xr is called the right end. λ is
called the scaling factor of the binomial.

In binomial V there are all together 4 ends: vector x1 that occurs twice, and vectors x2,xr each occur once.
When x2 = xr, then vector x2 also occurs twice as ends. In this case, binomial V can be rewritten in a form where
x2 serves as the index.

Proposition 1. If a shifted-scaled null binomial has two vector factors each occurring twice as ends of the binomial,
then any of them can serve as the index of the binomial.

Proof. Let
W = x2x1x3 · · ·xr−1x1 + λ−1x1x3 · · ·xr−1x1x2. (8)

be a shifted-scaled null binomial indexed by x2, where x1 also occurs twice as ends. Write W as

W ≡ x1x2x1x3 · · ·xr−1x1x2 + λx2x1x3 · · ·xr−1x1x2x1. (9)

The right side is a binomial generated by shifting x1x2x1x3 · · ·xr−1x1x2 and then scaling by λ. Q.E.D.

Theorem 2. Every shifted-scaled null binomial is a versor in CGA. Conversely, up to a nonzero scalar or pseu-
doscalar factor, every versor in CGA equals a shifted-scaled null binomial. Because of this, when a versor takes the
form of a shifted-scaled null binomial, we call it a null versor.

We raise some examples below.
Example 3. Let

V = e∞n+ λ−1ne∞. (10)

Then
VV† = λ−1(e∞ne∞n+ ne∞ne∞) = 4λ−1(e∞ · n)2 ̸= 0, (11)

where we have used the contraction identity

n1n2n1 = 2(n1 · n2)n1, (12)

for any null vector n1. So V is a versor in the Clifford algebra over the 2-space e∞ ∧ n, and generates a dilation
centered at affine point n.

In details, let n = e0 be the origin, and let nx = e0 + x + e∞x2/2 be the null vector representation of point
x ∈ (e∞ ∧ n)⊥ = Rn, then with e0 · e∞ = −1, we have

AdV(nx) ≡ (e∞e0 + λ−1e0e∞)(e0 + x+ e∞x2/2)(e0e∞ + λ−1e∞e0)
= 4(λ−2e0 + λ−1x+ e∞x2/2)
≡ e0 + λx+ e∞(λx)2/2.

(13)

So λ is the dilation ratio. In particular, if λ = 1, then e∞n+ ne∞ ≡ 1 induces the identity transformation.
Example 4. Let

V = e∞n2e∞n1 + λ−1n2e∞n1e∞ ≡ e∞n1

e∞ · n1
+ λ−1 n2e∞

e∞ · n2
. (14)

Then
VV† ≡ e∞n1e∞n2 + n2e∞n1e∞ = 4(e∞ · n1)(e∞ · n2) ̸= 0. (15)

Expanding V into graded terms, we get

V ≡ (1 + λ−1) + e∞ ∧
(

n1

e∞ · n1
− λ−1 n2

e∞ · n2

)
. (16)

By

e∞ ·
(

n1

e∞ · n1
− λ−1 n2

e∞ · n2

)
= 1− λ−1, (17)
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if λ = 1, then V induces a translation, else it induces a dilation.
In details, if λ = 1, by e∞ · ni = −1, we have

Vn1V
−1 ≡ (e∞n1 + n2e∞)n1(n1e∞ + e∞n2) = n2e∞n1e∞n1 ≡ n2, (18)

so V induces the translation from point n1 to point n2.
If λ ̸= 1, by (10), let V = (e∞x + µ−1xe∞)/e∞ · x for some unknown null vector x and scalar µ, so that x is

the dilation center and λ is the dilation ratio. The 0-graded part and 2-graded part of the equality respectively give
µ = λ and

x =
λn1/e∞ · n1 − n2/e∞ · n2

λ− 1
+ ϵe∞, (19)

where scalar ϵ is chosen to make x2 = 0. Indeed,

ϵ =
λn1 · n2

(λ− 1)2(e∞ · n1)(e∞ · n2)
. (20)

Geometrically, x is the point on affine line n1n2 with affine ratio −−→n2x : −−→n1x = λ.
Example 5. Let

V = e∞n0e∞n1n2e∞n0 + λ−1n0e∞n1n2e∞n0e∞ ≡ e∞n1n2e∞n0 + λ−1n0e∞n1n2e∞. (21)

It is easy to verify that VV† ≡ 1. Take n0 as the origin of Rn. Then e∞n1n2e∞ ≡ −−−→n1n2e, where
−−−→n1n2 ∈ Rn is the

displacement vector from point n1 to point n2, and as a vector in Rn+1,1, −−−→n1n2 is orthogonal to both e∞,n0. So

V ≡ −−−→n1n2e∞n0 + λ−1n0
−−−→n1n2e∞ = −−−→n1n2(e∞n0 − λ−1n0e∞) = (e∞n0 − λ−1n0e∞)−−−→n1n2. (22)

By (10), e∞n0 − λ−1n0e∞ induces the dilation of ratio −λ centered at n0. So when λ = −1,

e∞n0e∞n1n2e∞n0 − n0e∞n1n2e∞n0e∞ ≡ −−−→n1n2 (23)

induces the reflection with respect to the affine hyperplane normal to −−−→n1n2 and passing through point n0.
Theorem 3. All shifted-scaled pairs with the same index form a group under the component-wise product,

called the connecting group, and the product is called the connecting product. For two pairs (n0n1 · · ·nr, λ),
(n0n

′
1 · · ·n′

s, λ
′), their connecting product

(
(n0n1 · · ·nr)(n0n

′
1 · · ·n′

s), λλ
′) generates a null versor that equals the

geometric product of three versors up to scale: the versor generated by the first pair, the versor generated by
(n0nrn0n

′
1, 1), and the versor generated by the second pair. Geometrically, the connecting group of shifted-scaled

pairs with the same two indices is surjectively homomorphic to the group of conformal transformations fixing the
two points represented by the two indices respectively.

For two shifted-scaled pairs (n0n1 · · ·nr, λ) and (n0n
′
1 · · ·n′

s, λ
′) indexed by n0, their prepending product is of

the form (
n0x(n0n1 · · ·nr)(n0n

′
1 · · ·n′

s), λλ
′
)
, (24)

where x is a null vector determined by the two pairs, whose explicit expression will not be presented here.
Theorem 4. All shifted-scaled pairs with the same index form a group under the prepending product, called

the prepending group of scaled null monomials. This group is homomorphic to the group of null versors each
being generated by such a pair. Geometrically, the prepending group of shifted-scaled pairs with the same index is
surjectively homomorphic to the group of conformal transformations fixing the point represented by the index.

Finally, consider the geometric product of a sequence of invertible vectors and null vectors. Let V1, . . . ,Vk+1

be versors, and let x1, . . . ,xk be null vectors. Then

W = V1x1V2x2 · · ·VkxkVk+1

= (V1x1V
−1
1 )V1V2x2(V1V2)

−1 · · · (V1 · · ·Vk)xk(V1 · · ·Vk)
−1V1 · · ·VkVk+1

= x′
1x

′
2 · · ·x′

kV1 · · ·VkVk+1,
(25)

where x′
i = (V1 · · ·Vi)xi(V1 · · ·Vi)

−1 is a null vector, for all 1 ≤ i ≤ k. By this and Theorem 1, we get
Theorem 5. The geometric product W = V1x1V2x2 · · ·VkxkVk+1 equals x′

1x
′
kV

′, where V′ is a versor. By
shifting and scaling the subsequence of null vectors, the following versor can be generated from W:

V1x1V2x2 · · ·VkxkVk+1 + λ−1V1(V2x2 · · ·Vkxk)x
′′
1Vk+1, (26)

where x′′
1 = (V2 · · ·Vk)

−1x1(V2 · · ·Vk).


