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ABSTRACT

We introduce Clifford Group Equivariant Simplicial Message Passing Networks,
a method for steerable E(n)-equivariant message passing on simplicial com-
plexes. Our method integrates the expressivity of Clifford group-equivariant lay-
ers with simplicial message passing, which is topologically more intricate than
regular graph message passing. Clifford algebras include higher-order objects
such as bivectors and trivectors, which express geometric features (e.g., areas,
volumes) derived from vectors. Using this knowledge, we represent simplex fea-
tures through geometric products of their vertices. To achieve efficient simplicial
message passing, we share the parameters of the message network across different
dimensions. Additionally, we restrict the final message to an aggregation of the
incoming messages from different dimensions, leading to what we term shared
simplicial message passing. Experimental results show that our method is able to
outperform both equivariant and simplicial graph neural networks on a variety of
geometric tasks.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become powerful in learning from relational data across var-
ious fields (Fan et al., 2019; Zitnik & Leskovec| 2017; Battaglia et al., 2016) due to their capac-
ity to handle complex relational structures. Limitations in their expressive power for distinguish-
ing non-isomorphic graphs (Geerts & Reutter, 2022) have been addressed by developing simpli-
cial message-passing networks (Bodnar et al., 2021), which show both theoretical and practical
enhancements in expressive power. Geometric graphs embedded in spaces like metric spaces or
manifolds, with features that undergo transformations, have driven advances in the field (Satorras
et al., 2021; [Huang et al., [2022; Tholke & Fabritiis, 20225 [Finzi et al., |2020; |Brandstetter et al.,
2022; Batzner et al., 2022), including the use of Clifford algebra in Clifford Group Equivariant
Neural Networks (CGENNSs) for enhanced expressivity (Ruhe et al.| [2023). We extend this work
by introducing Clifford Group Equivariant Simplicial Message Passing Networks (CSMPNs) (Liu
et al.,|2024)), which leverage Clifford algebra to incorporate higher-order elements and achieve better
performance on geometric tasks across diverse domains and dimensions, surpassing both equivariant
and traditional message-passing GNNSs.

2 BACKGROUND

We briefly introduce Clifford group equivariant neural networks and simplicial complexes. For in-
depth coverage, see |Liu et al. (2024); Ejjkelboom et al.| (2023); Ruhe et al.| (2023)); |Bodnar et al.
(2021).

2.1 CLIFFORD GROUP EQUIVARIANT NEURAL NETWORKS

We focus on the Clifford algebra C1(R?, ¢) for a vector space R? with a quadratic form ¢. Elements
of the algebra, or multivectors, include scalars, vectors, bivectors, representing various geometric
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Figure 1: Ilustration of our proposed architecture. Top left: a set of vertices (and edges) is lifted
to a simplicial complex. We highlight three simplex types: vertices (0-simplices, ® ), edges (1-
simplices, —— ), and triangles (2-simplices, 4% ). In this case, the vertex feature is vector-valued
and embedded as the grade 1 part of a Clifford algebra element: a multivector. In three dimensions, a
multivector has scalar (O ), vector (), bivector ( Q ) and trivector ( @ ) components. Higher-order
simplices are initialized using the geometric product of their constituent vertices. As such, edges
in the top left visualization are bivector-valued, and triangles are trivector-valued. The simplicial
message-passing framework, denoted by ¢, refines the multivector-valued simplices, as portrayed in
the bottom-left, by passing messages between simplices of different order. Crucially, ¢ maintains
equivariance to the Clifford group’s orthogonal action p(w), representing a rotation here. In doing
so, our method is ensured to respect the geometric symmetries of the input data.

quantities. For a detailed discussion on Clifford algebra, refer to Ruhe et al.| (2023). The Clifford
group I'(R?, ¢) consists of invertible multivectors preserving the quadratic form, leading to orthog-
onal automorphisms, which can be seens as the transformations in corresponding Clifford spaces.

Ruhe et al. (2023) demonstrate that polynomials in multivectors and their grade projections are
Clifford group equivariant. Based on these two equivariance properties, Ruhe et al.| (2023) build
geometrically expressive Clifford group equivariant layers.

2.2  SIMPLICIAL COMPLEXES

A simplicial complex K is a collection of subsets, called simplices, closed under taking subsets. The
1-skeleton of K is a graph, making complexes a generalization of graphs. Simplicial adjacencies
(Bodnar et al., |2021) define how simplices are connected to form a simplicial complex. Simplicial
message passing extends regular message passing to these higher-dimensional structures. The the-
orems by [Bodnar et al. (2021) state that simplicial message passing networks are more powerful
than the 1-Weisfeiler-Lehman test for graph isomorphism and obtain competitive results on various
realistic graph learning tasks.

3 CLIFFORD GROUP EQUIVARIANT SIMPLICIAL MESSAGE PASSING
NETWORKS

3.1 CREATING GEOMETRIC SIMPLICIAL COMPLEXES

Constructing a simplicial complex K from a set V, part of a graph G = (V| E), can be done in
several ways. The naive approach forms a simplex for every subset of V/, leading to a large number

of simplices, (l‘fr'l) for n-simplices, which is often impractical.



To address this, various methods lift a point set to a simplicial complex more efficiently. These
include the Vietoris-Rips and Cech complexes, clique lifts from graph structures, manual construc-
tions, and algorithmic approaches like the mapper procedure (Hajij et al.,[2018). The Vietoris-Rips
complex, for instance, is built by including simplices among e-close vertices for a given € > 0.
A manual lift might involve constructing a mesh by defining vertices, edges, and faces, or using
domain-specific knowledge, such as the bond angle in a water molecule.

In our work, we employ the Vietoris-Rips and manual lifts, limiting the maximal simplex dimension
to 2 for computational efficiency.

3.2 EMBEDDING SIMPLICIAL DATA IN THE CLIFFORD ALGEBRA

We detail the embedding of scalar and vector node features into the Clifford algebra and the creation
of simplex features. Node features h’ € RF® (}Rd)l include scalars, like mass or charge, and vectors

like position or velocity. Scalars embed into 1 (R%,q) = R and vectors into Cl(l)(R‘Jl7 q) =
R?. Higher-order features are embedded in corresponding Clifford subspaces, resulting in h” €
CI(RY, g)™.

We now consider a simplicial complex K lifted from V. Our goal is, analogously to the node fea-
tures, to obtain a Clifford feature h? for each simplex o € K. For the singletons {v;} € K, we
can directly put 2"} := RV For the edges {v;,v;} € K, we can put hivs¥} .= pvipvi, de-
noting the geometric product of the two Clifford features. This process extends to triangles and
higher-dimensional simplices, multiplying Clifford features of all vertices with geometric product.
In Figure[I] we depict this embedding, illustrating how edge and triangle simplices relate to bivector-
and trivector-valued features. Since there are multiple ways to embed simplices, we learn the em-
bedding through Clifford group-equivariant layers, i.e., we take the Clifford simplicial features as
input to learnable Clifford group-equivariant layers and use the outputs as the learnable Clifford
simplicial features. These can be decomposed into parameterized linear combinations as well as
parameterized geometric products, resulting in analogous embeddings to the ones described above,
but including learnable parameters. To ensure permutation-invariant embeddings, one can aggregate
permutations of geometric products. A more intricate approach involves passing messages between
the vertices of a k-simplex. The aggregated readout is then used as the initialized feature for the
k-simplex.

Eijkelboom et al. [Eijjkelboom et al. (2023)) manually define embeddings using distances and an-
gles. Our approach, leveraging both additive and multiplicative methods, learns to embed covariant
information from multiple nodes and generalizes to higher-dimensional spaces.

3.3 EQUIVARIANT SHARED SIMPLICIAL MESSAGE PASSING

For all o € K, we now have a Clifford feature h° € CI(R?, ¢)™. We propose two techniques that
enable efficient (equivariant) message passing on simplicial complexes. In doing so, we require ac-
cess to a parameterized message function ¢ and an update function ¢”. First, the message m? will
be an equivariant aggregation of all information (processed by a neural network) from several adja-
cencies of different dimensions as defined in [Bodnar et al. (2021) In contrast to, e.g., Eijkelboom
et al.[(2023);|Bodnar et al. (2021)), who iteratively run message passing for different adjacency types,
we can leverage existing parallel implementations of classical message passing. In other words, we
consider the adjacency matrix of the simplicial complex’s corresponding hypergraph, where we have
several meta-vertices that represent the different types of simplices. This corresponds to considering
the O-simplices of the barycentric subdivision of the simplicial complex, which is a common way
for refining simplicial complexes (Ghrist,2014). This idea is visualized in Figure

Secondly, instead of considering a different parameterization for each type of communication, we
define a single message function ¢ that can handle all types of communication. However, by
conditioning ¢™ on the type of message, it can still leverage the simplicial complex. In doing so,

'Intriguingly, Bodnar et al. (2021) prove that only the boundary and upper adjacencies are required for full
expressivity. However, we only use the boundary, coboundary, and upper adjacencies to keep consistent with
Eijkelboom et al.|(2023)).



Figure 2: Left: we show how a simple graph (three fully-connected nodes) is lifted to a simplicial
complex. Using simplicial message passing, we allow communication between objects of different
dimensions. That is, between vertices (0 <> 0) < - - », nodes and edges (0 — 1 and 1 — 0) ,
edges (1 <+ 1) < - - », and between edges and triangles (1 — 2 and 2 — 1) < - - ». Right: same
as left, but a top-down view. It illustrates the hypergraph associated with the complex with several
meta-vertices representing the simplices of various dimensionality. Instead of running message
passing separately for all different communication types, we share the parameters of a single neural
network operating on the extended graph. By conditioning on the message type, it is still able to
leverage the simplicial complex.

we efficiently share parameters between different types of communication, which is in contrast with
previous methods that defined a different neural network for each type of communication.

To make the overall method equivariant, we
utilize Clifford group equivariant neural net-
works from [Ruhe et al.| (2023). Then, as long
as the simplicial embedding, the aggregation Require: K,Vo € K : he, o™, oM
operation (e.g., a summation), and ¢™ and Repeat:

Algorithm 1 Shared Simplicial Message Passing

@™ are equivariant, the overall method is Clif- m? < Agg rep() ¢ (h7,h7,dimo, dim7)
ford group equivariant. This then makes it TeC(0)

equivariant to rotations, reflections, and other :g%lggg

orthogonal transformations in any dimension. he «— ¢ (b7, m?, dim &)

The algorithm is summarized in Algorithm
Note that it generalizes typical message pass-
ing, which only considers messages from the upper adjacencies between 0-simplices, i.e. nodes.

4 EXPERIMENTS

We selected a diverse set of geometric experiments encompassing different data types across various
domains, focusing on both invariant and equivariant predictions. To ensure fair comparisons, we
carefully balanced the parameter scales between our proposed CSMPN and the baseline models in
all experiments.

4.1 5D CONVEX HULLS

In a five-dimensional space, we estimate the volume of convex hulls formed by eight points sampled
from a standard distribution, inspired by Ruhe et al|(2023). This E(5)-invariant task showcases
the effectiveness of our model, CSMPN, which leverages simplicial structures for enhanced perfor-
mance, outperforming traditional approaches by emphasizing the simplicial network’s advantages.



MSE (})

MPNN (Gilmer et al.,[2017) 0.212
GVP-GNN (Jing et al.,[2021) 0.097
VN (Deng et al.,[2021) 0.046
EGNN (Satorras et al., [2021) 0.011
CEGNN (Ruhe et al.| 2023) 0.013
EMPSN (Eijkelboom et al.,2023)  0.007 Figure 3: In the convex hulls experi-
ment, the task is to estimate the vol-
CSMPN 0.002 ume of the convex hull of eight five-
dimensional random points. Here, we
Table 1: MSE () qf the tested models on the display a three-dimensional example,
convex hulls experiment. which is easier to visualize.
Targets o  Predictions
Method MSE (})
Radial Field (Kohler et al.} [2020) 197.0 sl | *
TFN (Thomas et al.[[2018)) 66.9 < 2
SE(3)-Tr (Fuchs et al.,2020) 60.9 /AW, V’ 2
GNN (Gilmer et al.,[2017) 67.3 /* \ "
EGNN (200K) (Satorras et al.,[2021) 31.7 E Y] {.
GMN (200K) (Huang et al., 2022) 17.7 / A 10
EMPSN (200K) 15.1 VAN 5
CEGNN (200K) 9.41 iy
CSMPNs (200K) 7.55 Z s

Table 2: Left: MSE (10~2) of the tested models on the CMU motion capture dataset. Right: Depic-
tion (not cherry-picked) of an instance (the ground-truth target positions) vs. a CSMPN prediction.

4.2 CMU MOTION CAPTURE

We evaluate our models on the CMU Human Motion Capture dataset (Gross & Shi, 2001), demon-
strating the superiority of CSMPN over other equivariant architectures utilizing regular graphs.
Focusing on predicting positions of 31 nodes representing human body parts during walking, we
manually transform regular graphs into simplicial complexes to better capture human anatomy.
Our results, compared against baselines including those from Huang et al.| (2022)), highlight the
effectiveness of simplicial message passing (E(n) Equivariant Message Passing Simplicial Net-
work (EMPSN)) and the added accuracy achieved with Clifford layers (in CGENN and further
optimized in CSMPN).

Aspirin Benzene Ethanol Malonaldehyde
EqMotion (300K) (Xu et al.,2023) 5.95/8.38  1.18/1.73 5.05/7.02 5.85/9.02
EMPSN (300K) 9.53/12.63 1.03/1.12 8.80/9.76  7.83/10.85
CGENN (300K) 3.70/5.63 1.03/1.59 4.53/6.35 4.20/6.55
CSMPN (300K) 3.82/5.75 1.03/1.60 4.44/6.30 3.88/5.94

Table 3: ADE / FDE (10~2) ({) of the tested models on the MD17 atomic motion dataset.



Attack Defense
DAG-Net (200K) (Monti et al.,2020) 8.98/14.08  6.87/9.76
CGENN (200K) 9.17/14.51 6.64/9.42
CSMPN (200K) 8.88/14.06 6.44/9.22

Table 4: ADE / FDE () of the tested models on the VUSport NBA player trajectory dataset.

4.3 MD17 AToMIC MOTION PREDICTION

We explore the molecular dynamics within the MD17 dataset (Chmiela et al.| (2017)), focusing
on predicting atom motions rather than the traditional energy prediction task. Selecting four
molecules—aspirin, benzene, ethanol, and malonaldehyde—we aim to evaluate the efficacy of
CSMPN in modeling the dynamics by forecasting future atom positions from initial positions of
heavy atoms across ten time frames for each molecule. The construction of regular graphs for as-
pirin is based on k-nearest neighbors (k = 3), whereas other molecules utilize fully connected
graphs, subsequently lifted to simplicial complexes via clique complexes.

Performance is assessed using Average Displacement Error / Final Displacement Error (ADE / FDE)
metrics, with results indicating that simplicial message passing, particularly through EMPSN, signif-
icantly enhances predictive accuracy. Clifford layers contribute to further improvements, except in
benzene’s case, suggesting a beneficial inductive bias from the restricted expressivity of EMPSN for
rigid, planar molecules. CSMPN demonstrates superior performance across most assessments, with
notable advancements in ethanol and malonaldehyde predictions. Model comparisons ensure equal
simplicial structures and parameter counts, maintaining architectural similarities between CGENN
and CSMPN models.

4.4 NBA PLAYERS 2D TRAJECTORY PREDICTION

In this study, we assess the capabilities of CSMPN using the STATS SportVU NBA Dataset (STATS
Perform| 2023)), which records two-dimensional tracking positions of NBA players during regular
seasons. Our preprocessing follows the method of Monti et al.| (2020), treating each player’s posi-
tion as a two-dimensional point. We focus on predicting player movements in both offensive and
defensive scenarios over forty future frames, based on ten observed frames. The challenge lies in
accounting for motion uncertainty and player interactions.

In our approach, each player is represented as a node in a fully-connected graph, with an additional
fixed reference point to indicate the basketball court’s orientation. We construct the simplicial com-
plex using the Vietoris-Rips method with infinite € and limit the maximum simplex dimension to
2. Our model’s performance is compared against several baselines, including CGENN and those
mentioned by [Monti et al. (2020), with results detailed in Table

5 CONCLUSION

We introduce Clifford Group Equivariant Simplicial Message Passing Networks (CSMPNs), Clif-
ford algebra-based neural networks that are E(n)-equivariant and operate on simplicial complexes.
Our method merges the expressiveness of Clifford group equivariant networks with simplicial mes-
sage passing, combining vertex combinations into higher-dimensional simplices. To enhance ef-
ficiency, we simplify message passing to hypergraph-based techniques, sharing parameters across
simplex orders to maintain complex topology. Experimental results demonstrate CSMPNs outper-
forming both equivariant and simplicial graph neural networks across various tasks, though per-
formance is comparable in some cases. Future research may investigate specific scenarios where
simplicial geometric message passing excels. While increased computational cost is a limitation,
sharing parameters across simplex orders represents significant progress, with further improvements
anticipated.
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