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Abstract. This work explores the use of Geometric Algebra in aligning
sets of 3D lines. We work in spherical space where bivectors represent
the lines and rotors represent the rotations and translations. The process
takes its inspiration from the ICP point matching algorithm and relies
on the formation of cross-correlation and auto-correlation matrices. We
investigate the performance of the algorithm in the presence of noise and
compare with rotor extraction from points.
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1 Introduction

The fields of Photogrammetry and Computer Vision (CV) have traditionally
based their models and algorithms on ‘points’. Points provide mathematical
simplicity which leads to efficient algorithms. However, an object’s shape is of-
ten defined much more effectively via lines and surfaces. According to Bookstein
[1], [2], the traditional way of describing a surface with triads of coordinates for
many points (which are largely chosen at random) is not the most suitable way
to accurately capture or convey the geometry of the surface. On the contrary,
he considers the use of lines, planes, circles, spheres, etc. more convenient for
this purpose, as they offer a better approach for both the rendering and under-
standing of geometric shapes. Similarly, Torlegârd [3] notes that in environments
where the geometry of structures (like buildings and bridges) can typically be
represented with combinations of straight lines, the use of algorithms that rely
on lines rather than points can streamline the rendering process.

It is worth noting that in the early 80s there was a lot of criticism of the
reliance on landmarks for orienting images, given that finding suitable control
points can be quite challenging. Characteristically, Masry in his pioneering work
on line photogrammetry [4] questioned why researchers in photogrammetry con-
tinue to ignore the wealth of information offered by linear elements (roads, rail-
way lines, large buildings, etc.) in aerial photographs and satellite images. He
also highlighted potential problems in small-scale images (such as those from



satellites) where typically intersection points of linear features (e.g. roads) are
sought to correlate the image with the geographic space:

– A sufficient number of linear features is necessary, but the number of inter-
section points may be inadequate for practical applications.

– Linear features should not intersect within the image boundaries.
– The distribution of intersection points can lead to ill-conditioned solutions.

Computer vision researchers also recognised the advantage of using features
such as straight lines as carriers of 2D and 3D information. Huang and Netravali
[5] have provided a valuable and general overview of such relevant research during
the 90s. In cases where automation plays a primary role, the use of lines as
observables instead of points shows significant advantages, as pointed out from
the mid 90s by Heikkilä [6], Mikhail and Weerawong [7], Weng et al. [8], [9] and
also earlier in the 70s by Hottier [10]. Key benefits identified in the literature
include:

1. Linear features are detected more easily than points through image process-
ing algorithms, such as edge and boundary detection. This means that their
position and orientation can be estimated with subpixel accuracy (which is
finer than the image pixel itself) by fitting a line equation to the redundant
boundary pixel observations. Finally, the inclusion of depth information in
3D space enhances the precision of these estimations and allows for more
accurate modeling and analysis of objects.

2. For homologous lines3 across overlapping images or between an image and
space, defining homologous points is unnecessary. Theoretically, it is not
necessary to depict or correlate the same line segment in both images or
between image and space. This principle extends to 3D space where the
geometric properties of lines can be used to match and reconstruct features
across multiple viewpoints without the need for explicit point matching and
thus simplifying the process of 3D modeling and reconstruction.

3. In applications related to the built environment and human constructions
(e.g. architectural applications, urban area map updates, industrial appli-
cations, AI applications, autonomous navigation), the linear features and
especially the straight lines, outnumber points. Specifically, in 3D modeling
lines are crucial because they help represent the edges, corners, and key parts
of buildings and infrastructure.

4. Line elements have greater descriptive power than points. This basically
means that objects’ shapes are more effectively described through relation-
ships between lines rather than points. Straight lines use geometric con-
straints (like parallelism, perpendicularity, coplanarity) to strengthen the

3 Homologous lines refer to lines that correspond to each other in different images or
between an image and a physical space. They represent the same physical feature or
edge from different perspectives or viewpoints.
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final solution. In 3D space, these constraints are critical in defining the spa-
tial relationships and orientations of objects.

Geometric Algebra (GA) provides a robust mathematical framework for ad-
dressing complex geometric transformations and spatial relationships in a co-
herent and intuitive manner. We propose a GA-based algorithm to align sets of
lines in 3D space. This algorithm exploits GA’s ability to handle rotations and
translations by encapsulating the duality of these movements through the use of
motors and offers a framework for precise and efficient computations.

2 Methodology

We will work in 4D spherical space [11] – which we will also call ‘1DUp’ space –
this space has three spatial vectors {ei}, i = 1, 2, 3, which all square to +1, and a
4th, e4, which also squares to +1. Similar algorithms can be constructed in PGA
and CGA. To construct our lines we will use pairs of points in 3D Euclidean
space, transfer these to spherical space (with a given curvature factor λ) and
form lines in the 1DUp space (by wedging the spherical points). For a point p
in 3D Euclidean space, its representation in the 4D Spherical space is given by:

P =

(
2λ

λ2 + p2

)
p+

(
λ2 − p2

λ2 + p2

)
e4, P 2 = 1 (1)

Then, a spherical line L = qe12 + re13 + se14 + te23 + ue24 + v34 consisting of 6
bivectors, where q, r, s, t, u, v are scalar coefficients can be formed by wedging two
points in the 4D Spherical space P1 and P2. Moreover, L can be transformed
(rotation + translation) using a motor M as L

′
= MLM̃ with L

′
= q

′
e12 +

r
′
e13 + s

′
e14 + t

′
e23 + u

′
e24 + v

′
e34, where q

′
, r

′
, s

′
, t

′
, u

′
, v

′
are also scalar

coefficients.

2.1 Recovering the Transformation

Suppose we have a set of 6 lines Li, i = 1, . . . , 6, which are rotated and translated
via a rotor R to another set of 6 lines, L′

i, i = 1, . . . , 6. so that:

L
′

i = RLiR̃ (2)

Now, consider reciprocal sets of line {Li} and {Li′}, such that:

Li · Lj = δij , L′
i · Lj ′ = δij (3)

It is then also the case that Li′ = RLiR̃. The rotor R is made up of scalar,
bivector and quadvector (pseudoscalar, I = e1e2e3e4) parts which we can write
as R = α+B + βI. It then follows that (sum over repeated indices):

LiRLi = 6α+ 6βI − 2B = −2R+ 8(α+ βI) (4)
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Hence:
LiRLiR̃ = LiL

i′ = −2 + 8(α+ βI)R̃ (5)

Note that we can form LiL
i′ a priori. This tells us that we can form the quantity

X from our observations as:

X =
1

8
(LiL

i′ + 2) (6)

and set it equal to Y :
Y = (α+ βI)R̃ (7)

We can thus recover R if we can find α and β. α and β can be found by
forming XX̃ and noting that:

XX̃ = α2 + β2 + 2αβI (8)

The details of forming α and β will be given in the full paper.

2.2 Forming the Reciprocal Lines

The bivectors representing both L and L
′
can be mapped onto vectors in a 6D

Euclidean space to allow algebraic manipulation and analysis. This is achieved
by simply treating the scalar coefficients of the bivectors as components of vector
6D vectors.

If we denote the 6D Euclidean basis as {f1, f2, f3, f4, f5, f6}. The mapping
of the original line (bivectors) to vectors is given by:

qe12 + re13 + se14 + te23 + ue24 + v34 −→ qf1 + rf2 + sf3 + fe4 + uf5 + vf6 (9)

and similarly for the transformed lines. Call these vector representations vi and
vi

′ – we then form the reciprocal vectors vi and vi
′
via the usual formulae. vi

and vi
′
are then mapped back into bivectors in the 1DUp space using the inverse

mapping, to give the reciprocal lines.

2.3 Extending to n Lines

Now we move to the case where we have n lines {Li} and n transformed lines
{Li

′}, i = 1, ..., n. Taking inspiration from [12], we form a cross-correlation
matrix F and an autocorrelation matrix G, both of which will be 6 × 6, as
follows:

Fij =

N∑
k=1

(fi · vk)
(
fj · v

′

k

)
, Gij =

N∑
k=1

(
fi · v

′

k

)(
fj · v

′

k

)
(10)

where, as above, the vi and vi
′ are the vector mappings of the lines. We now

treat the columns of F as a set of vectors mapped from a set of 6 lines, and the
columns of G as a set of vectors mapped from a set of 6 transformed lines. We
then apply the process described in subsection 2.1 to recover the rotor R.

4



3 Preliminary Results

The analysis so far has been for the no-noise case and assumes we know the cor-
respondences between lines. In the final paper we will look at some preliminary
experiments to see how estimating the transformation with lines compares to
estimating the translation with points, in the case of added noise. Care needs
to be taken to ensure that we choose a method of putting noise on lines that
is somehow equivalent to putting noise on points (which is much more well de-
fined). Preliminary results indicate that that line method works well but more
work is required to give detailed comparisons.

4 Conclusion

This research work aims to address the 3D line registration problem in GA
a coherent and systematic manner. Lines are significant for both theoretical
research and practical applications, as highlighted in our bibliography. Due to
their clear structures, lines might be better suited for automation and real-time
tasks compared to points and could offer reliable matching across images and
accurate registration amidst noise or viewpoint shifts. We aim to thoroughly
investigate this Spherical Lines method, expecting it that it will provide new
insights in the field of line registration.
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