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Summary. This presentation explores the physics of magnetic and electric flux tubes supported

by current vortices in condensed matter having a superconducting state in which bosonic charge

carriers flow without resistance. The starting point is that the boson wave function satisfies the

Klein-Gordon equation of relativistic quantum mechanics. Next, the electromagnetic fields

within the superconducting medium are assumed to obey the quasistatic Maxwell equations

expressed with geometric algebra and calculus and incorporating either electric or hypothetical

magnetic currents. Finally, the Fundamental Theorem of Calculus is utilized in two forms to

examine flux tubes, first in electric superconductors and then in hypothetical magnetic super-

conductors. Geometric algebra and calculus enable a consistent treatment of both analyses and

their extension from three to four spatial dimensions.

1. INTRODUCTION

The Meissner effect for electrical superconductors in three spatial dimensions (3-D) describes

how a region of superconducting material excludes magnetic fields from its interior. Type I

superconducting materials exhibit the Meissner effect as long as the field strength is below a

critical threshold value. Above this threshold, the material loses it’s bulk superconductivity.

Type II superconductors are able to tolerate significantly higher magnetic fields by confining

the loss of superconductivity to a tube of normally conducting material surrounded by a vortex

of supercurrent. In this way magnetic flux is allowed to pass through the superconductor in

vortex tubes without destroying the superconductivity around the tubes. Such flux tubes are

named Abrikosov vortices honoring the work of the researcher who first explained the effect

[1]. Importantly, the magnetic flux through such tubes is quantized in multiples of a basic unit.

Notation. A field F with four grade components in 3-D is expressed as F “ χ` sE ` uB ` rT .

Following the notation of Vold [11] used previously by this author [10], the embellishments

over the variable symbols designate vectors with bars, bivectors with arcs, and trivectors with

tildes. The grade of quantities without embellishments should be clear from context.

2. NEEDED RELATIONSHIPS FROM GEOMETRIC CALCULUS

2.1. The Maxwell Equation with Magnetic Currents. In his early work, David Hestenes

[4] emphasized how the four traditional Maxwell equations can be expressed with geometric

calculus (GC) as a single equation in spacetime algebra or in a laboratory inertial frame. This

author took the latter approach [10], adding hypothetical magnetic charge and current densities.

With the assumption of quasistatic conditions, the electric and magnetic fields and their source

charge and current distributions satisfy the following four equations (separated by grade):

Bsx ¨ sE “ 4πρe(1)

Bsx ¨ uB “ ´p4π{cq sJe(2)

Bsx ^ sE “ ´p4π{cq uJm(3)

Bsx ^ uB “ 4πrρm .(4)
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2.2. Fundamental Theorem of Calculus. Following the notation of Hestenes and Sobczyk

[5], the Fundamental Theorem of Calculus using geometric algebra and geometric calculus is

(5)

ż

M

9LpdV 9Bsxq “
ż

BM

LpdSq,

where the multivector-valued function LpAq is a general linear function of its argument A. The

over-dots indicate the action of the geometric derivative Bsx. The argumentA is also multivector-

valued and LpAq may be a function of time t and spatial position sx. LpAq is assumed well

behaved over a region M bounded by the surface BM . dV is the pseudoscalar volume element

in M and dS is the pseudovector surface element of the boundary BM .

The Fundamental Theorem of Calculus is sometimes referred to as the boundary theorem in

various contexts. It is illustrated in detail both mathematically and graphically for selected

spatial dimensions by Klausen [8]. For present purposes let the linear function in Eq. (5) be

LpAq “ AF with a multivector-valued function F “ F psx, tq and suppose that M is a 2-D

surface S with surface element duσ and that its boundary BM is a closed contour C with line

element dsl. in this case, Eq. (5) becomes:

(6)

ĳ

S

duσBsxF “
¿

C

dslF.

If F is a vector field, taking the scalar part of this equation yields

(7)

ĳ

S

duσ ¨ pBsx ^ sF q “
¿

C

dsl ¨ sF,

which is Stokes’s theorem as used in traditional electrodynamics. If F is a bivector field, then

taking the trivector part of Eq. (6) yields

(8)

ĳ

S

duσ ^ pBsx ¨ uF q “
¿

C

dsl ^ uF .

3. SUPERCONDUCTIVITY

The phenomena of electrical superconductivity in solids have been well studied and described

in various approximations since its discovery in 1911 by the Dutch physicist Heike Kamerlingh

Onnes. The approximations leading to the London equation [9] are sufficient for present pur-

poses. For the analysis of flux quantization, we follow the development outlined in the solid

state textbook by Kittel [7] but with the added allowance that the quantum mechanical fields

leading to either electric or magnetic currents may require a relativistic description. A central

assumption is that the conducting charges, either electric or magnetic, are bosons. To facilitate

analysis herein, Kittel’s development is recast in terms of geometric algebra and calculus.

In relativistic quantum mechanics, the field (wave function) of either a fermion or a boson satis-

fies the Klein-Gordon (K-G) equation. Unlike fermions (which must satisfy the Pauli exclusion

principle), multiple bosons are allowed to occupy the same physical state. If sufficiently large

numbers of bosons occupy the same physical state, their collective wave function acts as a clas-

sical field. A common example of this effect is the output of a laser wherein a very large number

of photons of the same frequency are created in phase to generate the classical electromagnetic

field of the laser beam.

If a pair of like-charged fermions are bound by some interaction into a boson state and if many

of these pairs can be created in the same physical state, then the pairs will form a classical

current. The explanation of electrical superconductivity grew from the realization that certain

crystal lattices and other condensed matter systems can provide an attractive interaction binding

two conduction electrons into a boson state (referred to as a Cooper pair) carrying twice the
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electric charge of a single electron. A sufficient number of such Cooper pairs can form a

charged ”beam” propagating as a supercurrent impervious to dissipation by scattering just as

the photons of a laser beam propagate in vacuum.

4. MAGNETIC FLUX QUANTA IN THREE SPATIAL DIMENSIONS

4.1. Quasistatic Field and Current with Bosonic Conductors. Assume that the quantum

mechanical field of the bosonic charge carriers in an electric superconductor satisfy the K-G

equation as does that of a charged, spin-zero meson [2, Sec 9.3]. This field ψ is complex in

traditional quantum mechanics and represented in 3-D GA with scalar and trivector components

using the unit trivector I “ e1e2e3 with (complex) conjugate I˚ “ ´I . The electric current of

this field derived from the K-G equation is

(9) sJe “ q

2m
rψ˚p´I~Bx̄ ´ q

c
sAqψ ´ ψp´I~Bx̄ ` q

c
sAqψ˚s,

where q and m (both scalars) are the electric charge and mass, respectively, of the bosons

making up the current, Bx̄ is the geometric derivative, c is the speed of light, and sA is the vector

potential of an external field. Finally, assume that the setup is quasistatic with only steady

currents and no free charge density. In a uniform superconductor the field of a K-G plane wave

solution is simply

(10) ψ “
?
ne˘Iϕ,

where n is the number density of charge carriers (assumed constant) and ϕ “ ωt´ sk ¨ sx is the

usual phase angle of the plane wave with constant values of ω and sk. In this case, Bx̄ψ “ ¯Iskψ,

Bx̄ψ
˚ “ ˘Iskψ˚, and the current given by Eq. (9) reduces to

(11) sJe “ qn

m
r¯~sk ´ q

c
sAs.

4.2. London Equation and the Meissner Effect. Given that sk is constant and that the exterior

derivative of sA is the bivector magnetic field uB, the exterior derivative of sJe from Eq. (11) is

(12) Bx̄ ^ sJe “ ´q2n

mc
Bx̄ ^ sA “ ´q2n

mc
uB,

which is the well-known London equation of superconductivity expressed with geometric cal-

culus. The traditional derivation of this result starts with the non-relativistic Schrodinger equa-

tion but this presentation shows that it follows equally well from the relativistic K-G equation.

Another expression for the exterior derivative of sJe results from taking the exterior derivative

of the Maxwell equation given in Eq. (2):

(13) Bx̄ ^ pBsx ¨ uBq “ ´4π

c
Bx̄ ^ sJe.

As with any multivector, the geometric derivative of the divergence Bsx ¨ uB may be expanded as

(14) Bx̄pBsx ¨ uBq “ Bx̄ ¨ pBsx ¨ uBq ` Bx̄ ^ pBsx ¨ uBq.
The first term on the right of this equation, being the divergence of a divergence, vanishes [3,

Sec 6.1.3]. Then the combination of Eq. (13) and Eq. (14) yields

(15) Bx̄ ^ sJe “ ´ c

4π
pBx̄ ^ pBsx ¨ uBqq “ ´ c

4π
pBx̄pBsx ¨ uBqq.

Now Bx̄
uB “ Bsx ¨ uB ` Bx̄ ^ uB. Then according to Eq. (4) with no magnetic charge density,

Bx̄ ^ uB “ 0 giving Bsx ¨ uB “ Bx̄
uB. This result in Eq. (15) yields

(16) Bx̄ ^ sJe “ ´ c

4π
B2

x̄
uB.
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Putting this result in Eq. (12) gives

c

4π
B2

x̄
uB “ q2n

mc
uB.

This combination of the London and Maxwell equations for the interior of a superconductor

shows that the second derivative of uB is proportional to uB itself:

(17) B2

x̄
uB “ uB{λ2L,

where λL “ pmc2{4πnq2q1{2. This equation prohibits a constant field uB0 within a supercon-

ductor unless uB0 “ 0. On the other hand, if a halfspace for z ě 0 is superconducting and the

other half space for z ă 0 has a finite-valued, constant field uB0 with axial vector I uB0 parallel to

the superconductor surface, then the exponentially damped field uB0e
´z{λL will satisfy Eq. (17)

for z ě 0. For this reason, λL is referred to as the London penetration depth. Such damping

explains the Meissner effect, that is, the experimental fact that uB Ñ 0 inside a superconductor

as first discovered by the German physicists W. Meissner and R. Ochsenfeld in 1933.

4.3. Magnetic Flux Tubes. Figure 1 provides context for analyzing a flux tube in a type II su-

perconductor. It illustrates a cross section perpendicular to the axis of a tube. The inner cylinder

is normal conductor with magnetic field uB represented by the small circles with a central dot.

This bivector field is in the plane of the cross section. The surface of the tube consists of a sheet

of superconducting material with thickness determined by the London penetration depth. This

surface carries the Abrikosov vortex of supercurrent that isolates the flux tube.

Analysis will involve an integral along the contour C located in the superconductor well away

from the thin sheet of material carrying the vortex current. Interestingly, Maxwell’s Eq. (2)

shows that the Meissner effect requiring uB “ 0 along the contour within the superconductor

requires that the current sJe “ 0 along the contour, also.

Assume now that the K-G wave function of the Cooper pairs at a given time along the contour

around the flux tube is ψ “ ?
neIΘpsxq with scalar phase angle Θpsxq. Paralleling the develop-

ment in Section 4.1, we have Bx̄ψ “ IBx̄Θψ, Bx̄ψ
˚ “ ´IBx̄Θψ

˚, and the electric current:

(18) sJe “ qn

m
r~Bx̄Θ ´ q

c
sAs.

Given that sJe “ 0, the two quantities within the brackets of this expression must be equal.

Forming the line integral of this equality around the contour in Figure 1 yields:

(19)

¿

C

dsl ¨ Bx̄Θ “ q

~c

¿

C

dsl ¨ sA.

The integral on the left is the phase change of the wave function ψ in going once around the loop

C and must be an integer multiple of 2π for the wave function to be single-valued. Therefore,

the integral must equal 2πs for some integer s. Applying Stokes’s theorem from Eq. (7) and

the fact that uB “ Bx̄ ^ sA, Eq. (19) provides the magnetic flux enclosed by C:

(20) 2πs “ q

~c

¿

C

dsl ¨ sA “ q

~c

ĳ

S

duσ ¨ pBsx ^ sAq “ q

~c

ĳ

S

duσ ¨ uB.

Eq. (20) shows that the magnetic flux Φ carried by the Abrikosov vortex through the supercon-

ductor must have a quantized value

(21) Φ “
ĳ

S

duσ ¨ uB “ 2π~c

q
s.

Given that the Cooper pairs carry twice the charge e of a single electron, the quantum of mag-

netic flux (experimentally verified) for s “ 1 is Φ0 “ 2π~c{2e “ 2.0678 ˆ 10´7 gauss cm2.
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FIGURE 1. Cross section of a magnetic flux tube in a 3-D electric superconductor.

5. ELECTRIC FLUX QUANTA IN THREE SPATIAL DIMENSIONS

With geometric calculus it is straightforward to repeat the above analysis for a hypothetical,

magnetic superconductor of type II with bosonic, magnetic charge carriers giving rise to electric

flux quanta within a vortex of magnetic current. The analysis is based on a bivector potential
ŇM giving rise to an electric field via sE “ Bsx ¨ ŇM in the quasistatic case analogous to how the

vector potential gives rise to the magnetic field via uB “ Bsx ^ sA. The bosonic magnetic charge

carriers of density n have trivector charge q̃m “ Iqm of magnitude qm.

An analysis like that of Sections 4.1 and 4.2 shows, similar to the Meissner effect, that elec-

tric fields would be exponentially damped entering the surface of a magnetic superconductor

leading to an interior field sE Ñ 0. Paralleling Section 4.3, Eq. (18) becomes

(22) uJm “ ´ q̃mn

m
r~Bx̄Θ ´ q̃m

c
ŇMs

giving the magnetic current uJm in the superconductor in terms of the boson charge q̃m and the

bivector potential ŇM . Maxwell’s Eq. (3) shows that a Meissner-like effect requiring sE “ 0 deep

in the superconductor would require that the current uJm vanish, also. Then Eq. (19) becomes

(23)

¿

C

dsl ¨ Bx̄Θ “ 1

~c

¿

C

dsl ¨ pq̃m ŇMq.

The inner product of the integrand on the right side of this equation picks out the component

of q̃m ŇM that is parallel to the contour C. Given that q̃m “ Iqm is proportional to the 3-D

pseudoscalar, the integrand can be expressed as dsl ¨ pq̃m ŇMq “ q̃mpdsl^ ŇMqq. As with electrical

superconductors, the integral on the left must be an integral multiple of 2π. Using this value

with Eq. (8) and sE “ Bx̄ ¨ ŇM , Eq. (23) shows that

(24) 2πs “ q̃m

~c

¿

C

dsl ^ ŇM “ q̃m

~c

ĳ

S

duσ ^ pBx̄ ¨ ŇMq “ q̃m

~c

ĳ

S

duσ ^ sE “ q̃m

~c
Φ̃v,

where Φ̃v is the total electric flux through the vortex of magnetic current. Thus, similar to

Eq. (21), the absolute value of the electric flux in the vortex is

(25) |Φ̃v| “ |
ĳ

S

duσ ^ sE| “ 2π~c

qm
s.

Though no magnetic charge has been discovered as of yet on which to base qm, Dirac formu-

lated a quantum mechanical rationale (see, for example, [6, Sec 6.12]) involving the angular

momentum of the combined fields of an electron and a single magnetic monopole g̃ “ Ig

requiring that the magnitude g satisfy the relationship:

(26)
ge

~c
“ nd

2
,
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where nd can be any positive or negative integer. Likewise, there is no information on whether

the monopole would be a boson or fermion so we introduce a positive integer nb giving the

number of Dirac monopoles in a boson of the magnetic supercurrent. With these assumptions,

the magnitude of the bosonic magnetic charge is

(27) qm “ nbg “ nbnd

~c

2e

so that Eq. (25) becomes

(28) |Φ̃v| “ s

nbnd

4πe “ s

nbnd

Φe,

where Φe “ 4πe is the magnitude of the total electric flux from an electron. In the simplest

case, having s “ 1, nd “ 1 and the monopole being a fermion so that nb “ 2 like a Cooper pair,

the resulting vortex flux is 1{2 that of an electron. Another possibility is that the monopole is a

boson, allowing nb “ 1. In this case, with s “ 1 and nd “ 3, the vortex flux is 1{3 that of the

electron, bringing to mind the 1/3 charges of quarks in the Standard Model of particle physics.

6. FLUX HYPERTUBES IN FOUR SPATIAL DIMENSIONS

The 3-D flux tube pictured in Figure 1 may be thought of as a circular hole in a 2-D plane

repeated in parallel planes to form a tube in 3-D space. Similarly, a 4-D flux hypertube may be

thought of as spherical hole in a 3-D volume repeated in parallel volumes to form a hypertube

in 4-D space. Equation (5) for this situation yields a boundary theorem analogous to Eq. (6):¡

V

drV BsxF “
£

S

duσF.

The extension of the analysis of Section 4 to magnetic flux hypertubes is reasonably straight-

forward given the scalar nature of electric charge. A key element is to switch from a simple

exponential wave function around a circular boundary to a spherical harmonic wave function

on a spherical boundary. The extension of the analysis of Section 5 to electric flux hypertubes

is complicated by the possibility of four orthogonal, trivector magnetic charges in 4-D rather

than the single trivector charge corresponding to the pseudoscalar in 3-D. This presentation will

describe progress on these analyses.
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